Apoptosis and Alzheimer’s Disease

  • Andréa LeBlanc
Part of the Contemporary Neuroscience book series (CNEURO)


The evolution of a tissue during aging requires a noninflammatory mechanism for the removal of cells that are no longer necessary. This task is accomplished by physiological cell death called programmed cell death or apoptosis. Programmed cell death is defined as an active mechanism often requiring novel transcription and translation of specific genes, which leads to distinct morphological alterations of the cell, such as DNA condensation, cell shrinkage, and membrane blebbing. The apoptotic cell retains membrane integrity, avoiding spillage of its intracellular milieu into the extracellular space. Consequently, the apoptotic cell debris are removed by a noninflammatory process (1). In contrast, necrotic cell death is a response to an acute cellular insult that promotes membrane damage and extracellular release of the cell content, resulting in an inflammatory response of the organism.


Nerve Growth Factor Programme Cell Death Neuronal Apoptosis Neurofibrillary Tangle Spinal Muscular Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kerr, J. F. R. and Harmon, B. V. (1991) Definition and incidence of apoptosis: an historical perspective, in Apoptosis: The Molecular Basis of Cell Death. Current Communications in Cell and Molecular Biology, vol. 3 ( Tomei, L. D. and Cope, F. O., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 5–29.Google Scholar
  2. 2.
    Peacocke, M. and Campisi, J. (1991) Cellular senescence: a reflection of normal growth control, differentiation, and aging? J. Cell Biochem. 45, 147–155.PubMedGoogle Scholar
  3. 3.
    Wang, E. (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved, Cancer Res. 55, 2284–2292.PubMedGoogle Scholar
  4. 4.
    Heintz, N. (1993) Cell death and the cell cycle: a relationship between transformation and neurodegeneration? Trends Biol. Sci. 18, 157–159.Google Scholar
  5. 5.
    Lockshin, R. A. and Zakeri, Z. F. (1990) Programmed cell death: new thoughts and relevance to aging, J. Gerontol. Biol. Sci. 45, B 135–140.Google Scholar
  6. 6.
    Johnson, E. M. (1994) Possible role of neuronal apoptosis in Alzheimer’s disease, Neurobiol. Aging 15 (2), 5187–5189.Google Scholar
  7. 7.
    Zeitlin, S., Liu, J.-P., Chapman, D. L., Papaioannou, V. E., and Efstratiadis, A. (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue, Nature Genet. 11, 155–163.PubMedGoogle Scholar
  8. 8.
    Portera-Caillau, C., Hedreen, J. C., Price, D. L., and Koliatsos, V. E. (1995) Evidence for apoptotic cell death in Huntington Disease and excitotoxic animal models, J. Neurosci. 15 (5), 3775–3787.Google Scholar
  9. 9.
    Roy, N., Mahadevan, M. S., McLean, M., Farahani, R., Baird, S., BesnerJohnston, A., Lefebvre, C., Kang, X., Salih, M., Aubry, H., Tamai, K., Guan, X., Ioannou, P., Crawford, T. O., de Jong, P. J., Surh, L., Ikeda, J., Korneluk, R. G., and MacKenzie, A. (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy, Cell 80, 167–178.PubMedGoogle Scholar
  10. 10.
    Lefebvre, S., Burglen, L., Reboullet, S., Clermont, O., Burlet, P., Viollet, L., Benichou, B., Cruaud, C., Millasseau, P., Zeviani, M., Le Paslier, D., Frezal, J., Cohen, D., Weissenbach, J., Munnich, A., and Melki, J. (1995) Identification and characterization of a spinal muscular Atrophy-determining gene, Cell 80, 155–165.Google Scholar
  11. 11.
    Thompson, C. (1994) Apoptosis in the pathogenesis and treatment of disease, Science 267, 1456–1462.Google Scholar
  12. 12.
    Oppenheim, R. W. (1991) Cell death during development of the nervous system, Ann. Rev. Neurosci. 14, 453–501.PubMedGoogle Scholar
  13. 13.
    Tomei, L. D. and Cope, F. O. (eds.) (1994) Apoptosis II.: The Molecular Basis of Apoptosis in Disease: Current Communications in Cell and Molecular Biology,vol. 8, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p. 430.Google Scholar
  14. 14.
    Arends, M. J. and Wyllie, A. H. (1991) Apoptosis: mechanisms and roles in pathology, Int. Rev. Exp. Pathol. 32, 223–254.PubMedGoogle Scholar
  15. 15.
    Jacobson, M. D., Burne, J. F., and Raff, M. C. (1994) Programmed cell death and bd-2 protection in the absence of a nucleus, EMBO J. 13 (8), 1899–1910.PubMedGoogle Scholar
  16. 16.
    Evans, G. I., Wyllie, A. H., Gilbert, C. S., Littlewood, T. D., Land, H., Brooks, M., Waters, M., Waters, C. M., Penn, L. Z., and Hancock, D. C. (1992) Induction of apoptosis in fibroblasts by c-myc protein, Cell 69, 119–128.Google Scholar
  17. 17.
    Collota, F., Polentarutti, N., Sironi, M., and Mantovani, A. (1992) Expression and involvement of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines, J. Biol. Chem. 267(26), 18,278–18, 283.Google Scholar
  18. 18.
    Barrett, J. C. and Preston, G. (1994) Apoptosis and cellular senescence: forms of irreversible growth arrest, in Current Communications in Cell and Molecular Biology: Apoptosis II: The Molecular Basis of Apoptosis in Disease ( Tomei, L. D. and Cope, F. O., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 253–281.Google Scholar
  19. 19.
    Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis, Science 270, 1326–1331.PubMedGoogle Scholar
  20. 20.
    Boise, L. H., Gonzalez-Garcia, M., Postema, C. E., Ding, L., Lindsten, T., Turka, L. A., Mao, X., Nunez, G., and Thompson, C. B. (1993) bd-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death, Cell 74, 597–608.Google Scholar
  21. 21.
    Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J. (1993) bd-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death, Cell 74, 609–619.Google Scholar
  22. 22.
    Yang, E., Zha, J., Jockel, J., Boise, L. H., Thompson, C. B., and Korsmeyer, S. J. (1995) Bad, a heterodimeric partner for bcl-x L and bd-2 displaces Bax and promotes cell death, Cell 80, 285–291.PubMedGoogle Scholar
  23. 23.
    Chittenden, T., Harrington, E. A., O’Connor, R., Flemington, C., Lutz, R. J., Evan, G. I., and Guild, B. C. (1995) Induction of apoptosis by the bcl-2 homologue bak, Nature 374, 733–736.PubMedGoogle Scholar
  24. 24.
    Kiefer, M. C., Brauer, M. J., Powers, V. C., Wu, J. J., Umansky, S. R., Tomei, D., and Barr, P. J. (1995) Modulation of apoptosis by the widely distributed bd-2 homologue Bak, Nature 374, 736–739.PubMedGoogle Scholar
  25. 25.
    Farrow, S. N., White, J. H. M., Martinou, I., Aven, T., Pun, K., Grinham, C. J., Martinou, J. C., and Brown, R. (1995) Cloning of a bd-2 homologue by interaction with adenovirus E 1 B 19K, Nature 374, 731–733.Google Scholar
  26. 26.
    Yin, X.-M.. Oltval, Z. N., and Korsmeyer, S. J. (1994) BH1 and BH2 domains of bcl-2 are required for inhibition and heterodimerization with bax, Nature 369, 321–323.PubMedGoogle Scholar
  27. 27.
    Takayama, S., Sato, T., Krajewski, S., Kochel, K., Irïe, S., Millan, J. A., and Reed, J. C. (1995) Cloning and functional analysis of Bag-1: a novel bcl-2 Binding protein with anticell death activity, Cell 80, 279–284.PubMedGoogle Scholar
  28. 28.
    Hockenberry, D., Nunez, G., Milliman, C., Schreiber, R. D., and Korsmeyer, S. J. (1990) bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature 348, 334–336.Google Scholar
  29. 29.
    Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., Gralla, E., Valentine, J. S., Ord, T., and Bredesen, D. E. (1993) bcl-2 inhibition of neural cell death: Decreased generation of reactive oxygen species, Science 262, 1274–1277.Google Scholar
  30. 30.
    Reed, J. C. (1994) bcl-2 and the regulation of programmed cell death, J. Cell. Biol. 124, 1–6.Google Scholar
  31. 31.
    Fernandez-Sarabia, M. J. and Bischoff, J. R. (1993) bcl-2 associates with the ras-related protein R-ras p23, Nature 366, 274–275.Google Scholar
  32. 32.
    Martin, S. J. and Green, D. R. (1995) Protease activation during apoptosis: death by a thousand cuts? Cell 82, 349–352.PubMedGoogle Scholar
  33. 33.
    Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A., and Yuan, J. (1993) Induction of apoptosis in fibroblasts by IL-10-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3, Cell 75, 653–660.PubMedGoogle Scholar
  34. 34.
    Yuan, J., Shaham, S., Ledoux, S., Ellis, H., and Horvitz, R. H. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin- 1 f3-converting enzyme, Cell 75, 641–652.PubMedGoogle Scholar
  35. 35.
    Kumar, S., Kinoshita, M., Noda, M., Copeland, N. G., and Jenkins, N. A. (1994) Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1ß-converting enzyme, Genes Dey. 8, 1613–1626.Google Scholar
  36. 36.
    Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371, 346, 347.Google Scholar
  37. 37.
    Wang, L, Miura, M., Bergeron, L., Zhu, H., andYuan, J. (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death, Cell 78, 739–750.PubMedGoogle Scholar
  38. 38.
    Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau,Y., Griffin, P. R., Labelle, M., Lazebnik, Y. A., Munday, N. A., Raju, S. M., Smulson, M. E., Yamin, T.-T., Yu, V. L., and Miller, D. K. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature 376, 37–43.PubMedGoogle Scholar
  39. 39.
    Tewari, M., Quan, L. T., O’Rourke, K., Desnoyersm, S., Zeng, Z., Beidler, D. R., Poirier, D. R., Salvesen, G. S., and Dixit, V. M. (1995) YAMA/CPP3213, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase, Cell 81, 801–809.PubMedGoogle Scholar
  40. 40.
    Faucheu, C., Diu, A., Chan, E., Blanchet, A., Miossec, C., Herve, F., Collard-Dutilleul, V., Gu, Y., Aldape, R. A., Lippke, J. A., Rocher, C., Su, M., Livingston, D. J., Hercend, T., and Lalanne, J. (1995) A novel human protease similar to the interleukin-1 f3 converting enzyme induces apoptosis in transfected cells, EMBO J. 14 (9), 1914–1922.PubMedGoogle Scholar
  41. 41.
    Voekel-Johnson, C., Entingh, A. J., Wold, W., Gooding, L. R., and Laster, S. M. (1995) Activation of intracellular proteases is an early event in TNF-induced apoptosis, J. Immunol. 154, 1707–1716.Google Scholar
  42. 42.
    Brancolini, C., Benedetti, M., and Schneider, C. (1995) Microfilament reorganization during apoptosis: the role of Gas2, a possible substrate for ICE-like proteases, EMBO J. 14 (21), 5179–5190.PubMedGoogle Scholar
  43. 43.
    Bredesen, D. E. (1995) Neural apoptosis, Ann. Neurol. 38, 839–851.PubMedGoogle Scholar
  44. 44.
    Martin, S. J. and Cotter, T. G. (1994) Apoptosis of human leukemia: induction, morphology, and molecular mechanisms, in Current Communications in Cell and Molecular Biology ( Tomei, L. D. and Cope, F. O., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 185–229.Google Scholar
  45. 45.
    Boudreau, N., Sympson, C. J., Werb, Z., and Bissell, M. J. (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix, Science 267, 891–893.PubMedGoogle Scholar
  46. 46.
    Los, M., Van de Craen, M., Penning, L. C., Schenk, H., Westendorp, M., Baeuerie, P. A., Droge, W., Krammer, P. H., Fiers, W., and Schulze-Osthoff, K. (1995) Requirement of an ICE/CED-3 protease for FAS/APO-1-mediated apoptosis, Nature 375, 81–83.PubMedGoogle Scholar
  47. 47.
    Enari, M., Hug, H., and Nagata, S. (1995) Involvement of an ICE-like protease in FAS-mediated apoptosis, Nature 375, 78–81.PubMedGoogle Scholar
  48. 48.
    Kerr, J. F. R. and Harmon, B. V. (1991) Definition and incidence of apoptosis: an historical perspective, in Current Communications in Cell and Molecular Biology ( Cope, L. D. T. a. F. O., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 5–29.Google Scholar
  49. 49.
    Lazebnik, Y., Cole, S., Cooke, C., Nelson, W., and Earnshaw, W. (1993) Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis, J. Cell. Biol. 123 (1), 7–22.PubMedGoogle Scholar
  50. 50.
    Wyllie, A. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature 284, 555, 556.Google Scholar
  51. 51.
    Walker, R. R, Kokileva, L., LeBlanc, J., and Sikorska, M. (1993) Detection of the initial stages of DNA fragmentation in apoptosis, Biotechniques 15 (6), 1032–1040.PubMedGoogle Scholar
  52. 52.
    Raff, M., Banes, B., Burne, J., Coles, H., Ishizaki, Y., and Jacobson, M. (1993) Programmed cell death and the control of cell survival: lessons from the nervous system, Science 262, 695–699.PubMedGoogle Scholar
  53. 53.
    Rubin, L., Gatchalian, C., Rimon, G., and Brooks, S. (1994) The molecular mechanisms of neuronal apoptosis, Curr. Opinion Neurobiol. 4, 696–702.Google Scholar
  54. 54.
    Silos-Santiago, I., Greenlund, L., Johnson, E., and Snider, W. (1995) Molecular genetics of neuronal survival, Curr. Opinion Neurobiol. 5, 42–49.Google Scholar
  55. 55.
    Pittman, R. N., Wang, S., DiBenedetto, A. J., and Mills, J. C. (1993) A system for characterizing cellular and molecular events in programmed neuronal cell death, J Neurosci. 13 (9), 3669–3680.PubMedGoogle Scholar
  56. 56.
    Edwards, S. N., Buckmaster, A. E., and Tolkovsky, A. M. (1991) The death program in cultured sympathetic neurones can be suppressed at the posttranslational level by nerve growth factor, cyclic AMP, and depolarization, J. Neurochem. 57 (6), 2140–2143.PubMedGoogle Scholar
  57. 57.
    Deckwerth, T. and Johnson, E. (1993) Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor, J. Cell. Biol. 123, 1207–1222.PubMedGoogle Scholar
  58. 58.
    Edwards, S. and Tolkovsky, A. (1994) Characterization of apoptosis in cultured rat sympathetic neurons after nerve growth factor withdrawal, J. Cell. Biol. 124 (4), 537–546.PubMedGoogle Scholar
  59. 59.
    Martin, D., Ito, A., Horigome, K., Lampe, P. A., and Johnson, E. M. (1992) Biochemical characterization of programmed cell death in NGF-deprived sympathetic neurons, J. Neurobiol. 23, 1205–1220.PubMedGoogle Scholar
  60. 60.
    Dypbukt, J. M., Ankarcrona, M., Burkitt, M., Sjoholm, A., Strom, K., Orrenius, S., and Nicoreta, P. (1994) Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting R1Nm5F cells: the role of intracellular polyamines, J. Biol. Chem. 269, 30,553–30, 560.Google Scholar
  61. 61.
    Bonfoco, E., Krainc, D., Ankarcrona, M., Nicoreta, R, and Lipton, S. A. (1995) Apoptosis and necrosis: two distinct events induced respectively by mild and intense insults with Nmethyl-n-aspartate or nitric oxide/superoxide in cortical cell cultures, Proc. Natl. Acad. Sci. USA 92, 7162–7166.PubMedGoogle Scholar
  62. 62.
    Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Orrenius, S., Lipton, S. A., and Nicoreta, P. (1995) Glutamate-induced neuronal death: a succession of necrosis and apoptosis depending on mitochodrial function, Neuron 15, 961–973.PubMedGoogle Scholar
  63. 63.
    LeBlanc, A. C. (1995) Increased production of 4 kDa amyloid ß peptide in serum deprived human primary neuron cultures: possible involvement of apoptosis, J. Neurosci. 15 (12), 7837–7846.PubMedGoogle Scholar
  64. 64.
    Sheng, M. and Greenberg, M. E. (1990) The regulation and function of c-fos and other immediate early genes in the nervous system, Neuron 4, 477–485.PubMedGoogle Scholar
  65. 65.
    Smeyne, R. J., Vendrell, M., Hayward, M., Baker, S. J., Miao, G. G., Schilling, K., Robertson, L. M., Curran, T., and Morgan, J. I. (1993) Continuous c-fos expression precedes programmed cell death in vivo, Nature 363, 166–169.PubMedGoogle Scholar
  66. 66.
    Estus, S., Zaks, W., Freeman, R., Gruda, M., Bravo, R., and Johnson, E. (1994) Altered gene expression in neurons during programmed cell death: Identification of c-jun as necessary for neuronal apoptosis, J. Cell. Biol. 127 (6), 1717–1727.PubMedGoogle Scholar
  67. 67.
    Ham, J., Whitefield, J., Pfarr, C. M., Lallemand, J., Yaniv, M., and Rubin, L. L. (1995) A cjun dominant negative mutant protects sympathetic neurons against programmed cell death, Neuron 14, 927–939.PubMedGoogle Scholar
  68. 68.
    Merry, D. E., Veis, D. J., Hickey, W. F., and Korsmeyer, S. J. (1994) bc1–2 protein expression is widespread in the developing nervous system and retained in the adult PNS, Development 120, 301–311.Google Scholar
  69. 69.
    Gonzalez-Garcia, M., Perez-Ballestro, R., Ding, L., Duan, L., Boise, L., and Thompson, C. B. (1995) bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death, Proc. Natl. Acad. Sci. USA 92, 4304–4308.Google Scholar
  70. 70.
    Motoyama, N., Wang, F., Roth, K. A., Sawa, H., Nakayama, K.-I., Nakayama, K., Negishi, I., Senju, S., Zhang, Q., Fujii, S., and Loh, D. Y. (1995) Massive cell death of immature hematopoietic cells and neurons in bcl-x-deficient mice, Science 267, 1506–1510.PubMedGoogle Scholar
  71. 71.
    Krajewski, S., Krajewska, M., Shabaik, A., Wang, H.-G., Irie, S., Fong, L., and Reed, J. C. (1994) Immunohistochemical analysis of in vivo patterns of bcl-x expression, Cancer Res. 54, 5501–5507.PubMedGoogle Scholar
  72. 72.
    Frankowski, H., Missoten, M., Fernandez, P.-A., Martinou, I., Michel, P., Sadoul, R., and Martinou, J.-C. (1995) Function and expression of the bcl-x gene in the developing and adult nervous system, Neuroreport 6, 1917–1921.PubMedGoogle Scholar
  73. 73.
    Veis, D. J., Sorenson, C. M., Shutter, J. R., and Korsmeyer, S. J. (1993) bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycistic kidneys, and hypopigmented hair. Cell 75, 229–240.Google Scholar
  74. 74.
    Shimizu, S., Eguchi, Y., Kosaka, H., Kamlike, W., Matsuda, H., and Tsujimoto, Y. (1995) Prevention of hypoxia-induced cell death by bc1–2 and bcl-xL, Nature 374, 811–813.PubMedGoogle Scholar
  75. 75.
    Roth, K., Motoyama, N., and Loh, D. (1996) Apoptosis of bcl-x-deficient telencephalic cells in vitro, J. Neurosci., 16, 1753–1758.PubMedGoogle Scholar
  76. 76.
    Batistatou, A., Merry, D. E., Korsmeyer, S. J., and Greene, L. A. (1993) bc1–2 affects survival but not neuronal differentiation of PC 12 cells, J. Neurosci. 13, 4422–4428.Google Scholar
  77. 77.
    Mah, S. P., Zhong, L. T., Liu, Y., Roghani, A., Edwards, R. H., and Bredesen, D. E. (1993) The protooncogene bc1–2 inhibits apoptosis in PC 12 cells, J. Neurochem. 60, 1183–1186.PubMedGoogle Scholar
  78. 78.
    Garcia, I., Martinou, I., Tsujimoto, Y., and Martinou, J. (1992) Prevention of programmed cell death of sympathetic neurons by the bc1–2 proto-oncogene, Science 258, 302–304.PubMedGoogle Scholar
  79. 79.
    Dubois-Dauphin, M., Frankowski, H., Tsujimoto, Y., and Huarte, J. (1994) Neonatal motorneuron overexpressing the bd-2 protooncogene in transgenic mice are protected from axotomy-induced cell death, Proc. Natl. Acad. Sci. USA 91, 3309–3313.PubMedGoogle Scholar
  80. 80.
    Martinou, J.-C., Dubois-Dauphin, M., Staple, J. K., Rodriguez, I., Frankowski, H., Missotten, M., Albertini, P., Talabot, D., Catsicas, S., Pietra, C., and Huarte, J. (1994) Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia, Neuron 13, 1017–1030.PubMedGoogle Scholar
  81. 81.
    Jacobson, M. D. and Raff, M. (1995) Programmed cell death and bc1–2 protection in very low oxygen, Nature 374, 814–816.PubMedGoogle Scholar
  82. 82.
    Greenlund, L. J. S., Korsmeyer, S. J., and Johnston, E. M. (1995) Role of bc1–2 in the survival and function of developing and mature sympathetic neurons, Neuron 15, 649–661.PubMedGoogle Scholar
  83. 83.
    Haldar, S., Jena, N., and Croce, C. M. (1995) Inactivation of bcl-2 by phosphorylation, Proc. Natl. Acad. Sci. USA 92, 4507–4511.PubMedGoogle Scholar
  84. 84.
    Milligan, C. E., Prevette, D.,Yaginuma, H., Homma, S., Cardwell, C., Fritz, L. C., Tomaselli, K. J., Oppenheim, R. W., and Schwartz, L. M. (1995) Peptide inhibitors of the ICE protease family arrest programmed cell death of motorneurons in vivo and in vitro, Neuron 15, 385–393.Google Scholar
  85. 85.
    Hanger, D. P., Brion, J. P., Gallo, J. M., Cairns, N. J., Luthert, P. J., and Anderton, B. H. (1991) Tau in Alzheimer’s disease and Down’s syndrome is insoluble and abnormally phosphorylated, Biochem. J. 275 (APR), 99–104.PubMedGoogle Scholar
  86. 86.
    Brion, J. P., Hanger, D. P., Bruce, M. T., Couck, A. M., Flamentdurand, J., and Anderton, B. H. (1991) Tau in Alzheimer neurofibrillary tangles—N-terminal and C-terminal regions are differentially associated with paired helical filaments and the location of a putative abnormal phosphorylation site, Biochem. J. 273, 127–133.PubMedGoogle Scholar
  87. 87.
    Hamos, J., DeGennaro, L., and Drachman, D. (1989) Synaptic loss in Alzheimer’s disease and other dementias, Neurology 39, 355–361.PubMedGoogle Scholar
  88. 88.
    Davies, P. and Maloney, A. (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet 2, 1403.PubMedGoogle Scholar
  89. 89.
    Whitehouse, P., Price, D., Struble, R., Clark, A., Coyle, J., and DeLong, M. (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science 215, 1237–1239.PubMedGoogle Scholar
  90. 90.
    Terry, R., Peck, A., DeTeresa, R., Schechter, R., and Horoupian, D. (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type, Ann. Neurol. 10, 184–192.PubMedGoogle Scholar
  91. 91.
    Barr, P. J. and Tomei, D. (1994) Apoptosis and its role in human disease, Bio/Technology 12, 487–493.PubMedGoogle Scholar
  92. 92.
    Rose, C. D. and Henneberry, R. C. (1993) Mechanisms of programmed cell death and their implications for the brain, Neurodegeneration 2, 287–298.Google Scholar
  93. 93.
    Xiong, W. and Montell, C. (1995) Defective glia induce neuronal apoptosis in the repo visual system of Drosophila, Neuron 14, 581–590.PubMedGoogle Scholar
  94. 94.
    Sofroniew, M. V., Galletly, N. P., Isacson, O., and Svendsen, C. N. (1990) Survival of adult basal forebrain cholinergic neurons after loss of target neurons, Science 247, 338–342.PubMedGoogle Scholar
  95. 95.
    LeBlanc, A. C. (1994) The role of ß-amyloid peptide in Alzheimer’s disease, Metabolic Brain Disease 9 (1), 3–31.PubMedGoogle Scholar
  96. 96.
    Sherrington, R., Rogaev, E. J., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tauda, T., Mar, L., Foncin, J.-F., Bruni, A. C., Montreal, M. P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., Chumakov, I., Pollen, D., Brookes, A., Sanseau, P., Pollinsky, R. J., Wasco, W., Da Silva, H. A. R., Haines, J. L., Pericak-Vance, M. A., Tanzi, R. E., Roses, A. D., Fraser, P., Rommens, J. M., and St. George-Hyslop, P. H. (1995) Cloning of a gene bearing mis-sense mutations in early-onset familial Alzheimer’s disease, Nature 375, 754–760.PubMedGoogle Scholar
  97. 97.
    Querfurt, H. W., Wisjsman, E. M., St. George Hyslop, P., and Selkoe, D. (1995) 3APP mRNA transcription is increased in cultured fibroblasts from the familial Alzheimer’s disease-1 family, Mol. Brain Res. 28, 319–337.Google Scholar
  98. 98.
    Yankner, B. A., Duffy, L. K., and Kirschner, D. A. (1990) Neurotrophic and neurotoxic effects of amyloid ß protein: reversal by tachykinin neuropeptides, Science 250, 279–286.PubMedGoogle Scholar
  99. 99.
    Forloni, G., Chiesa, R., Smiroldo, S., Verga, L., Salmona, M., Tagliavini, F., and Angeretti, N. (1993) Apoptosis mediated neurotoxicity induced by chronic application of (3-amyloid fragment 25–35, Neuroreport 4, 523–526.PubMedGoogle Scholar
  100. 100.
    Loo, D., Copani, A., Pike, C. J., Whittemore, E., Walencewicz, A. J., and Cotman, C. W. (1993) Apoptosis is induced by ß-amyloid in cultured central nervous system neurons, Proc. Natl. Acad. Sci. USA 90, 7951–7955.PubMedGoogle Scholar
  101. 101.
    Mattson, M., Cheng, B., Culwell, A., Esch, F., Lieberburg, I., and Rydel, R. (1993) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the ßamyloid precursor protein, Neuron 10, 243–254.PubMedGoogle Scholar
  102. 102.
    Levy-Lahad, E., Wasco, W., Poorkej, P., Romano, D. M., Oshima, J., Pettingell, W. H., Yu, C., Jondro, P., Schmidt, S., Wang, K., Crowley, A., Fu, Y., Guenette, S., Galas, D., Nemens, E., Wijsman, E., Bird, T., Schellenberg, G., and Tanzi, R. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus, Science 269, 973–977.PubMedGoogle Scholar
  103. 103.
    Rabizadeh, S., Gralla, E. B., Borcheldt, D., Gwinn, R., Valentine, J., Sisodia, S., Wong, P., Lee, M., Hahn, H., and Bredesen, D. (1995) Mutations associated with amyotropic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells, Proc. Natl. Acad. Sci. USA 92, 3024–3028.PubMedGoogle Scholar
  104. 104.
    Lassmann, H., Bancher, C., Breitschopf, H., Wegiel, J., Bobinski, M., Jellinger, K., and Wisniewski, H. (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ, Acta Neuropathol. 89, 35–41.PubMedGoogle Scholar
  105. 105.
    Su, J., Anderson, A., Cummings, B., and Cotman, C. (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease, Neuroreport 5, 2529–2533.PubMedGoogle Scholar
  106. 106.
    Petito, C. K. and Roberts, B. (1995) Evidence of apoptotic cell death in HIV encephalitis, Am. J. Pathol. 146 (5), 1121–1130.PubMedGoogle Scholar
  107. 107.
    Zhang, R, Hirsch, E. C., Damier, P., Duyckaerts, C., and Javoy-Agid, F. (1992) c-fos protein-like immunoreactivity: distribution in the human brain and over-expression in the hippocampus of patients with Alzheimer’s disease, Neuroscience 46(1), 9–21.Google Scholar
  108. 108.
    Anderson, A. J., Cummings, B. J., and Cotman, C. W. (1994) Increased immunoreactivity of jun-andfos-related proteins in Alzheimer’s disease: Association with pathology, Exp. Neurol. 125, 286–295.PubMedGoogle Scholar
  109. 109.
    May, P. C., Lampert-Etchells, M., Johnson, S. A., Poirier, J., Masters, J. N., and Finch, C. E. (1990) Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat, Neuron 5, 831–839.PubMedGoogle Scholar
  110. 110.
    Ahuja, H. S., Tenniswood, M., Lockshin, M., and Zakeri, Z. (1994) Expression of clusterin in cell differentiation and cell death, Biochem. Cell. Biol. 72, 523–530.PubMedGoogle Scholar
  111. 111.
    Satou, T., Cummings, B. J., and Cotman, C. W. (1995) Immunoreactivity for bcl-2 protein within neuorns in the Alzheimer’s disease brain increases with disease severity, Br. Res. 697 (1–2), 35–43.Google Scholar
  112. 112.
    Wisniewski, H., Wegiel, J., Wang, M., Kujawa, M., and Lach, B. (1989) Ultrastructural studies of the cells forming amyloid fibers in classical plaques, Can. J. Neurol. Sci. 16, 535–542.PubMedGoogle Scholar
  113. 113.
    Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G., and Cotman, C. W (1993) Neurodegeneration induced by ß-amyloid peptides in vitro: the role of peptide assembly state, J. Neurosci. 13 (4), 1676–1687.PubMedGoogle Scholar
  114. 114.
    Pike, C. J., Cummings, B. J., and Cotman, C. W. (1992) ß-amyloid induces neuritic dystrophy in vitro: similarities with Alzheimer pathology, Neuroreport 3, 769–772.PubMedGoogle Scholar
  115. 115.
    Anderson, A. J., Pike, C. J., and Cotman, C. W. (1995) Differential induction of immediate early gene proteins in cultured neurons by (3-amyloid (A3): Association of c jun with Aß-induced apoptosis, J. Neurochem. 65, 1487–1498.PubMedGoogle Scholar
  116. 116.
    Takashima, A., Noguchi, K., Sato, K., Hoshino, T., and Imahori, K. (1993) tau protein kinase I is essential for amyloid ß-protein-induced neurotoxicity, Proc. Natl. Acad. Sci. USA 90, 7789–7793.Google Scholar
  117. 117.
    Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. (1992) ß-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity, J. Neurosci. 12 (2), 376–389.PubMedGoogle Scholar
  118. 118.
    Behl, C., Davis, J., Cole, G. M., and Schubert, D. (1992) Vitamin E protects nerve cells from amyloid ß protein toxicity, Biochem. Biophys. Res. Commun. 186 (2), 944–950.PubMedGoogle Scholar
  119. 119.
    Behl, C., Davis, J., Lesley, R., and Schubert, D. (1994) Hydrogen peroxide mediates amyloid ß protein toxicity, Cell 77, 817–827.PubMedGoogle Scholar
  120. 120.
    Schubert, D., Behl, C., Lesley, R., Brack, A., Dargusch, R., Sagara, Y., and Kimura, H. (1995) Amyloid peptides are toxic via a common oxidative mechanism, Proc. Natl. Acad. Sci. USA 92, 1989–1993.PubMedGoogle Scholar
  121. 121.
    Shearman, M., Ragan, C., and Iversen, L. (1994) Inhibition of PC 12 cell redox activity is a specific, early indicator of the mechanism of 3-amyloid-mediated cell death, Proc. Natl. Acad. Sci. USA 91, 1470–1474.PubMedGoogle Scholar
  122. 122.
    Butterfield, A., Hensley, K., Harris, M., Mattson, M., and Carney, J. (1994) 3-amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: Implications to Alzheimer’s disease, Biochem. Biophys. Res. Comm. 200, 710–715.PubMedGoogle Scholar
  123. 123.
    Bredesen, D. (1994) Neuronal apoptosis: genetic and biochemical modulation, in Apoptosis II (D. T. a. F. Cope, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 397–421.Google Scholar
  124. 124.
    Rabizadeh, A., Bitler, C. M., Butcher, L. L., and Bredesen, D. E. (1994) Expression of the low-affinity nerve growth factor receptor enhances 3-amyloid peptide toxicity, Proc. Natl. Acad. Sci. USA 91, 10,703–10, 706.Google Scholar
  125. 125.
    Gravina, S., Ho, L., Eckman, C., Long, K., Otvos, L.,Younkin, L., Suzuki, N., and Younkin, S. (1995) Amyloid 3 peptide (A3) in Alzheimer’s Disease brain, J. Biol. Chem. 270 (13), 7013–7016.PubMedGoogle Scholar
  126. 126.
    Busciglio, J., Lorenzo, A., Yeh, J., and Yankner, B. A. (1995) 3-amyloid fibrils induce tau phosphorylation and loss of microtubule binding, Neuron 14, 879–888.Google Scholar
  127. 127.
    Arispe, N., Pollard, H. B., and Rojas, E. (1993) Giant multilevel cation channels formed by Alzheimer disease amyloid 3-protein [A 3P-(1–40)] in bilayer membranes, Proc. Natl. Acad. Sci. USA 90, 10,573–10, 577.PubMedGoogle Scholar
  128. 128.
    Mirzabekov, T., Lin, M., Yuan, W., Marshall, P. J., Carman, M., Tomaselli, K., Lieberburg, I., and Kagan, B. L. (1994) Channel formation in planar bilayers by a neurotoxic fragment of the beta-amyloid peptide, Biochem. Biophys. Res. Commun. 202 (2), 1142–1148.PubMedGoogle Scholar
  129. 129.
    Etcheberrigaray, R., Ito, E., Kim, C. S., and Alkon, D. L. (1994) Soluble f3-amyloid induction of Alzheimer’s phenotype for human fibroblast K+ channels, Science 264, 276–279.PubMedGoogle Scholar
  130. 130.
    Araujo, D. M. and Cotman, C. W. (1992) 3-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease, Br. Res. 559, 141–145.Google Scholar
  131. 131.
    Meda, L., Cassatella, M., Szendrei, G., Otvos, L., Baron, P., Villalba, M., Ferrari, D., and Rossi, F. (1995) Activation of microglial cells by 3-amyloid protein and interferon-gamma, Nature 374, 647–650.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Andréa LeBlanc

There are no affiliations available

Personalised recommendations