Mechanism for β-amyloid Overproduction in Alzheimer Disease

Possible Antisense RNA-mediated Generation of a 5′-truncated βAPP MRNA Encoding 12-kDa C-terminal Fragment of βAPP, the Immediate Precursor of Aβ
  • Vladimir Volloch
Part of the Contemporary Neuroscience book series (CNEURO)


The overproduction of p-amyloid (AP) is associated with and appears to be a primary cause of Alzheimer’s disease (AD). Aβ can be generated by proteolysis of p-amyloid precursor protein (βAPP) in both AD-affected and normal cells. There is no evidence, however, that proteolytic cleavage leading to the production of AP in sporadic AD-affected and in normal tissues differs qualitatively or quantitatively to account for the overproduction of Aβ in AD. Therefore, an additional pathway for the enhanced production of Aβ may be involved in sporadic AD. A mechanism is proposed that may be responsible for the overproduction of Aβ in sporadic AD, which constitutes the majority of all AD cases. The proposed mechanism, which may be activated or enhanced in sporadic AD-affected tissues, is based on a model for cellular mRNA replication developed in the author’s laboratory and proposes the antisense RNA-mediated generation of a 5’-truncated βAPP mRNA encoding 12-kDa C-terminal fragment of βAPP, the immediate precursor of Aβ, followed by initiation of translation at met596 contiguously preceding Ap. The proposed model makes several verifiable predictions and suggests new directions of experimentation that may lead to a better understanding of the mechanisms involved in AD. It also sheds a new light on some previously unexplained results in the field of AD.


Alzheimer Disease Down Syndrome Antisense Strand Globin mRNA Complementary Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Selkoe, D. J. (1995) Alzheimer’s amyloid of another flavor, Nature Medicine 1, 998, 999.Google Scholar
  2. 2.
    Beyreuther, K., Pollwein, P., Multhaup, G., Monning, U., Konig, G., Dyrks, T., Schubert, W., and Masters, C. (1993) Regulation and expression of the Alzheimer’s β/A4 amyloid protein precursor in health, disease, and Down syndrome, Annals New York Acad. Sci. 695, 91–102.CrossRefGoogle Scholar
  3. 3.
    Neve, R., Finch, E., and Dawes, L. (1988) Expression of the Alzheimer amyloid precursor gene transcripts in the human brain, Neuron 1, 669–677.PubMedCrossRefGoogle Scholar
  4. 4.
    Schmechel, D., Saunders, A., Strittmatter, W., Crain, B., Hulette, C., Joo, S., Pericak-Vance, M., Goldgaber, D. and Roses, A. (1993) Increased amyloid 3-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease, Proc. Natl. Acad. Sci. USA 90, 9649–9653.CrossRefGoogle Scholar
  5. 5.
    Hyman, B., West, H., Budyrev, S., Mantgna, R., Ukleja, M., Havlin, S., and Stanley, H. (1995) Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome), Proc. Natl. Acad. Sci. USA 92, 3586–3590.CrossRefGoogle Scholar
  6. 6.
    Querfurth, H., Wijsman, E., St. George-Hyslop, P., and Selkoe, D. (1995) PAPP mRNA transcription is increased in cultured fibroblasts from the familial Alzheimer’s disease-1 family, Molec. Brain Res. 28, 319–337.PubMedCrossRefGoogle Scholar
  7. 7.
    Suzuki, N., Cheung, T., Cai, X-D., Odaka, A., Otvos, L., Eckman, C., Golde, T., andYounkin, S. (1994) An increased percentage of long amyloid β protein secreted by familial amyloid (3 precursor (f3APP717) mutants, Science 264, 1336–1340.PubMedCrossRefGoogle Scholar
  8. 8.
    Citron, M., Vigo-Pelfrey, C., Teplow, D., Miller, C., Schenk, D., Jonston, J., Winblat, B., Venizelos, N., Lannfelt, L., and Selkoe, D. (1994) Excessive production of amyloid 3-protein by peripheral cells of symptomatic and pre symptomatic patients carrying the Swedish familial Alzheimer disease mutation, Proc. Natl. Acad. Sci. USA 91, 11,993–11, 997.Google Scholar
  9. 9.
    Haass, C., Hung, A., Selkoe, D., and Teplow, D. (1994) Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid 13-protein precursor, J. Biol. Chem. 269, 17,741–17, 748.Google Scholar
  10. 10.
    Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., and Donaldson, T. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F 3-amyloid precursor protein, Nature 373, 523–527.PubMedCrossRefGoogle Scholar
  11. 11.
    Palmert, M., Usiak, M., Mayeux, R., Raskind, R., Tourtelotte, W., and Younkin, S. (1990) Soluble derivatives of the (3 amyloid protein precursor in cerebrospinal fluid: alterations in normal aging and in Alzheimer’s disease, Neurology 40, 1028–1034.PubMedCrossRefGoogle Scholar
  12. 12.
    Weidemann, A., Konig, G., Bunke, D., Fischer, P., Salbaum, J. M., Masters, C., and Beyreuther, K. (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein, Cell 57, 115–124.PubMedCrossRefGoogle Scholar
  13. 13.
    Estus, S., Golde, T., Kunishita, T., Blades, D., Lowery, D., Eisen, M., Usiak, M., Qu, X., Tabira, T., Greenberg, B., and Younkin, S. (1992) Potentially amyloidogenic, carboxyl-terminal derivatives of the β-amyloid protein precursor, Science 255, 726–728.PubMedCrossRefGoogle Scholar
  14. 14.
    Golde, T. E., Estus, S., Younkin, I., Selkoe, D., and Younkin, S. (1992) Processing of the 3-amyloid protein precursor to potentially amyloidogenic derivatives, Science 255, 728–730.PubMedCrossRefGoogle Scholar
  15. 15.
    Davis, J. and Van Nostrand, W. (1996) Enhanced pathologic properties of Dutch-type mutant amyloid-β protein, Proc. Natl. Acad. Sci. USA 93, 2996–3000.PubMedCrossRefGoogle Scholar
  16. 16.
    Hendriks, L., van Duijn, C., Cras, P., Cruts, M., Van Hul, W., van Harskamp, F., Warren, A., McInnis, M., Antonarakis, S., and Martin, J. (1992) Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene, Nature Genet. 1, 218–222.PubMedCrossRefGoogle Scholar
  17. 17.
    Citron, M., Teplow, D., and Selkoe, D. (1995) Generation of amyloid-β protein from its precursor is sequence-specific, Neuron 14, 661–670.PubMedCrossRefGoogle Scholar
  18. 18.
    Dyrks, T., Dyrks, E., Monning, U., Urmoneit, B., Turner, J., and Beyreuther, K. (1993) Generation of βA4 from the amyloid protein precursor and fragments thereof, FEBS Lett. 335, 89–93.PubMedCrossRefGoogle Scholar
  19. 19.
    Haass, C., Lemere, C., Capell, A., Citron, M., Seubert, P., Schenk, D., Lannfelt, L., and Selkoe, D. (1995) The Swedish mutation causes early-onset Alzheimer’s disease by f3-secretase cleavage within the secretory pathway, Nature Medicine 1, 1291–1296.PubMedCrossRefGoogle Scholar
  20. 20.
    Cai, X-D., Golde, T. E., andYounkin, S. G. (1993) Release of excess amyloid-f3 protein from a mutant amyloid-β protein precursor, Science 259, 514–516.PubMedCrossRefGoogle Scholar
  21. 21.
    Higaki, J.,Quon, D., Zhong, Z., and Cordell, B. (1995) Inhibition of β-amyloid formation identifies proteolytic precursors and subcellular site of catabolism, Neuron 14, 651–659.CrossRefGoogle Scholar
  22. 22.
    Dyrks, T., Dyrks, E., Monning, U., Urmoneit, B., Turner, J., and Beyreuther, K. (1993) Generation of βA4 from the amyloid protein precursor and fragments thereof, FEBS Lett. 335, 89–93.PubMedCrossRefGoogle Scholar
  23. 23.
    Dyrks, T., Monning, U., Beyreuther, K., and Turner, J. (1994) Amyloid precursor protein secretion and βA4 amyloid generation are not mutually exclusive, FEBS Leu. 349, 210–214.CrossRefGoogle Scholar
  24. 24.
    Iizuka, T., Shoji, M., Kawarabayashi, T., Sato, M., Kobayashi, T., Tada, N., Kasai, K., Matsubara, E., Watanabe, M., Tomidokoro,Y., and Hirai, S. (1996) Intracellular generation of amyloid 3-protein from amyloid β-protein precursor fragment by direct cleavage with Band y-secretase, Biochem. Biophys. Res Comm. 218, 238–242.Google Scholar
  25. 25.
    Kang, J., Lemaire, H-G., Unterbeck, A., Salbaum, J. M., Masters, C., Grzeschik, K-H., Multhaup, G., Beyreuther, K., and Muller-Hill, B. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor, Nature 325, 733–736.PubMedCrossRefGoogle Scholar
  26. 26.
    Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation, J. Biol. Chem. 266, 19,867–19, 870.Google Scholar
  27. 27.
    Breimer, L. H. and Denny, P. (1987) Alzheimer amyloid aspects, Nature 326, 749, 750.Google Scholar
  28. 28.
    Citron, M., Haass, C., and Selkoe, D. J. (1993) Production of amyloid-3-peptide by cultured cells: no evidence for internal initiation of translation at met596, Neurobiol. of Aging 14, 571–573.CrossRefGoogle Scholar
  29. 29.
    Volloch, V., Schweitzer, B., and Rits, S. (1996) Antisense globin RNA in mouse erythroid tissues: structure, origin and possible function, Proc. Natl. Acad. Sci. USA 93, 2476–2481.PubMedCrossRefGoogle Scholar
  30. 30.
    Richards, O. and Ehrenfeld, E. (1990) Poliovirus RNA replication, Curt: Topics Microbiol. Immunol. 161, 90–115.Google Scholar
  31. 31.
    Volloch, V., Schweitzer, B., and Rits, S. (1994) Evolutionarily conserved elements in the 5’ untranslated region of globin mRNA mediate site-specific priming of a unique hairpin structure during cDNA synthesis, Nucl. Ac. Res. 22, 5302–5309.CrossRefGoogle Scholar
  32. 32.
    Mita, S., Sadlock, J., Herbert, J., and Schon, E. A. (1988) A cDNA specifying the human amyloid precursor protein (ABPP) encodes a 95-kDa polypeptide, Nucl. Ac. Res. 16, 9351.CrossRefGoogle Scholar
  33. 33.
    Salbaum, J. M., Weidemann, A., Lemaire, H-G., Masters, C., and Beyreuther, K. (1988) The promoter of Alzheimer’s disease amyloid A4 precursor gene, EMBO J. 7, 2807–2813.PubMedGoogle Scholar
  34. 34.
    Mita, S., Sadlock, J., Herbert, J., and Schon, E. A. (1988) A cDNA specifying the human amyloid precursor protein (ABPP) encodes a 95-kDa polypeptide (addendum), Nucl. Ac. Res. 16, 11, 402.Google Scholar
  35. 35.
    Rubenstein, P. and Martin, D. (1983) NH2-terminal processing of actin in mouse L-cells in vivo, J. Biol. Chem. 258, 3961–3966.PubMedGoogle Scholar
  36. 36.
    Sandbrink, R., Masters, C., and Beyreuther, K. (1994)0A4 amyloid protein precursor mRNA isoforms without exon 15 are ubiquitously expressed in rat tissues including brain, but not in neurons, J. Biol. Chem. 269, 1510–1517.Google Scholar
  37. 37.
    Joachim, C. and Selkoe, D. (1992) The seminal role of beta-amyloid in the pathogenesis of Alzheimer disease, Alzheimer Disease Association Discords 6, 7–34.CrossRefGoogle Scholar
  38. 38.
    Chernak, J. (1993) Structural features of the 5’ upstream regulatory region of the gene encoding rat amyloid-13 precursor protein, Gene 133, 255–260.PubMedCrossRefGoogle Scholar
  39. 39.
    De Strooper, B., Simons, M., Multhoup, G., Van Leuven, F., Beyreuther, K., and Dotti, C. (1995) Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human 13-amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence, EMBO 1 14, 4932–4938.Google Scholar
  40. 40.
    Volloch, V., Schweitzer, B., and Rits, S. (1996) Unusual hyperabundant globin RNA in erythroid precursor cells: possible end-product of globin mRNA replication. Submitted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Vladimir Volloch

There are no affiliations available

Personalised recommendations