Skip to main content

Potassium Channels and Calcium Release

Pathophysiological and Diagnostic Implications for Alzheimer’s Disease

  • Chapter
Molecular Mechanisms of Dementia

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 159 Accesses

Abstract

The number of diverse factors implicated in the etiology of Alzheimer’s disease (AD) suggests that it can arise through distinct cascades of pathophysiologic and molecular events. These include specific genetic defects involving amyloid precursor protein (APP) and its metabolism, aging itself, prior history of head trauma, and ApoE. Of these, only aging impacts on a majority of all AD cases (1–5). Considering the multifactorial nature of AD etiology as well as the number of afflicted individuals (approx 4,000,000 in the US alone), it is noteworthy that the almost universal symptom for all AD patients is early memory loss (6,7). Characteristically, other dementias are revealed by constellations of symptoms, such as motor deficits with Parkinson’s disease, Huntington’s Chorea, and Wernicke-Korsakoff’s syndrome; sensory deficits of vitamin B12 deficiency; and mood alterations of depressive disorders (8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katzman, R. and Kawas, C. H. (1994) The epidemiology of dementia and Alzheimer disease, in Alzheimer Disease ( Terry, R. D., Katzman, R., and Bick, K. L., eds.), Raven, New York, pp. 105–122.

    Google Scholar 

  2. Selkoe, D. J. (1994) Normal and abnormal biology of the ß-amyloid precursor protein, Ann. Rev. Neurosci. 17, 489–517.

    Article  PubMed  CAS  Google Scholar 

  3. Cotman, C. W. and Pike, C. J. (1994) ß-amyloid and its contributions to neurodegeneration in Alzheimer disease, in Alzheimer Disease ( Terry, R. D., Katzman, R., and Bick, K. L., eds.), Raven, New York, pp. 305–315.

    Google Scholar 

  4. Ashall, F. and Goate, A. M. (1994) Role of ß-amyloid precursor protein in Alzheimer’s disease, TIPS 19, 42–46.

    CAS  Google Scholar 

  5. Hardy, J. (1995) Apolipoprotein E in the genetics and epidemiology ofAlzheimer’s disease, Am. J. Med. Genet. 60, 456–460.

    Article  PubMed  CAS  Google Scholar 

  6. Petersen R. C., Smith, G. E., Ivnick, R. J., Kokmen, E., and Tangalos, E. G. (1994) Memory function in very early Alzheimer’s disease, Neurology 44, 867–872.

    Article  PubMed  CAS  Google Scholar 

  7. Bondi, W. B., Salmom, D. P., and Butters, N. (1994) Neuropsychological features of memory disorders in Alzheimer disease, in Alzheimer Disease ( Terry, R. D., Katzman, R., and Bick, K. L., eds.), Raven, New York, pp. 41–63.

    Google Scholar 

  8. Adams, R. D. and Victor, M. (1993) Dementia and the amnesic (Korsakoff) syndrome, in Principles of Neurology (Adams, R. D. and Victor, M., eds. ), McGraw-Hill, pp. 364–377.

    Google Scholar 

  9. Terry, R. D., Masliah, E., and Hansen, L. A. (1994) Structural basis of the cognitive alterations in Alzheimer disease, in Alzheimer Disease ( Terry, R. D., Katzman, R., and Bick, K. L., eds.), Raven, New York, pp. 179–196.

    Google Scholar 

  10. Nagy, S. Joshi, K. A., Esiri, M. M., Morris, J. H., King, E. M.-F., MacDonald, B., Litchield, S., Barnetson, L., and Smith (1996) Hippocampal pathology reflects memory deficits and brain imaging measurements in Alzheimer’s disease: clinicopathologic correlations using three sets of pathologic diagnostic criteria, Dementia 7, 76–81.

    PubMed  CAS  Google Scholar 

  11. Alkon, D. L. (1987) Memory Traces in the Brain, Cambridge University Press, New York.

    Google Scholar 

  12. Alkon, D. L. (1989) Memory storage and neural systems, Sci. Am. 260, 42–50.

    Article  Google Scholar 

  13. Alkon, D. L. (1984) Calcium-mediated reduction of ionic currents: a biophysical memory trace, Science 226, 1037–1045.

    Article  PubMed  CAS  Google Scholar 

  14. Collin, C., Ikeno, H., Harrigan, J. F., Ledelhendler, I., and Alkon, D. L. (1988) Sequential modification of membrane currents with classical conditioning, Biophys. J. 55, 955–960.

    Article  Google Scholar 

  15. Alkon, D. L., Naito, S., Kubota, M., Chen, C., Bank, B., Smallwood, J., Gallant, P., and Rasmussen, H. (1988) Regulation of Hermissenda K+ channels by cytoplasmic and membrane-associated C-kinase, J. Neurochem. 51, 903–917.

    Article  PubMed  CAS  Google Scholar 

  16. Etcheberrigaray, R., Matzel, D. L., Lederhendler, I. I., and Alkon, D. L. (1992) Classical conditioning and protein kinase C activation regulate the same single potassium channel in Hermissenda, Proc. Natl. Acad. Sci. USA 89, 7184–7188.

    Article  PubMed  CAS  Google Scholar 

  17. Coulter, D. A., Lo Turco, J. J., Kubota, M., Disterhoft, J. F., Moore, J. W., and Alkon, D. L. (1989) Classical conditioning reduces amplitude and duration of calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells, J. Neurophysiol. 61, 971–981.

    PubMed  CAS  Google Scholar 

  18. Sanchez-Andrés, J. V. and Alkon, D. L. (1991) Voltage-clamp analysis of the effects of classical conditioning on the hippocampus, J. Neurophysiol. 65, 796–807.

    PubMed  Google Scholar 

  19. Bank, B., DeWeer, A., Kuzirian, A. M., Rasmussen, H., and Alkon, D. L. (1988) Classical conditioning induces long-term translocation of protein kinase C in rabbit hippocampal CA1 cells, Proc. Natl. Acad. Sci. USA 85, 1988–1992.

    Article  PubMed  CAS  Google Scholar 

  20. Olds, J. L., Anderson, M. L., McPhie, D. L., Stanten, L. D., and Alkon, D. L. (1989) Imaging of memory-specific changes in the distribution of protein kinase C in the hippocampus, Science 245, 866–869.

    Article  PubMed  CAS  Google Scholar 

  21. Neary, T. J., Crow, T., and Alkon, D. L. (1981) Change in a specific phosphoprotein band following associative learning in Hermissenda, Nature 293, 658–660.

    Article  PubMed  CAS  Google Scholar 

  22. Nelson, T. J., Yoshioka, T., Toyoshima, S., Han, Y. F., and Alkon, D. L. (1994) Characterization of a GTP-binding protein implicated in both memory storage and interorganelle vesicle transport, Proc. Natl. Acad. Sci. USA 91, 9287–9291.

    Article  PubMed  CAS  Google Scholar 

  23. Nelson, T. J., Collin, C., and Alkon, D. L. (1990) Isolation of a G protein that is modified by learning and reduces potassium currents in Hermissenda, Science 247, 1479–1483.

    Article  PubMed  CAS  Google Scholar 

  24. Alkon, D. L., Ikeno, H., Dworkin, J., McPhie, D. L., Olds, J. L., Lederhendler, I., Matzel, L. D., Schreurs, B. G., Kuzirian, A., Collin, C., andYamoah, E. (1990) Contraction of neuronal branching volume: an anatomical correlate of Pavlovian conditioning, Proc. Natl. Acad. Sci. USA 87, 1611–1614.

    Article  PubMed  CAS  Google Scholar 

  25. Moshiach, S., Nelson, T., Sanchez-Andrés, J. V., Sakakibara, M., and Alkon, D. L. (1993) G-protein effects on retrograde axonal transport, Brain Res. 605, 298–304.

    Article  PubMed  CAS  Google Scholar 

  26. Nelson, T. J., Olds, J. L., Kim, H., and Alkon, D. L. (1994) Activation of DNA transcription in neuronal cells by ARF-like GTP-binding protein, submitted.

    Google Scholar 

  27. Nelson, T. J., Sanchez-Andrés, J. V., Schreurs, B. G., and Alkon, D. L. (1991) Classical conditioning-induces changes in low-molecular-weight GTP-binding proteins in rabbit hippocampus, J. Neurochem. 57, 2065–2069.

    Article  PubMed  CAS  Google Scholar 

  28. Kim, C S, Han, Y.-F., Etcheberrigaray, R., Nelson, T. J., Olds, J. L., Toshioka, T., and Alkon, D. L. (1995)A memory-associated GTP-binding protein (Cp20) deficit in Alzheimer’s and 3-amyloid treated fibroblasts, Proc. Natl. Acad. Sci. USA 92, 3060–3064.

    Google Scholar 

  29. Alkon, D. L. (1992) Memory’s Voice, HarperCollins, New York.

    Google Scholar 

  30. Baker, A. C., Ko, L.-W., and Blass, J. P. (1988) Systemic manifestations of Alzheimer’s disease, Age 11, 60–65.

    Article  Google Scholar 

  31. Scott, R. B. (1993) Extraneuronal manifestations of Alzheimer’s disease, JAGS 41, 268–276.

    CAS  Google Scholar 

  32. Hsueh-Meei, H., Martins, R., Gandy, S., et al. (1994) Use of cultured fibroblasts in elucidating the pathophysiology and diagnosis of Alzheimer’s disease, Proc. N. Y. Acad. Sci. 747, 225–244.

    Google Scholar 

  33. Seegmiller, J. E., Rosenbloom, F. M., and Kelley, N. W. (1967) An enzyme defect associated with a sex-linked human neurological disorder and an excessive purine synthesis, Science 155, 1682–1686.

    Article  PubMed  CAS  Google Scholar 

  34. Okada, S. and O’Brien, J. S. (1969) Tay-Sachs disease: generalized absence of a beta-d-Nacetylhexosaminidase component, Science 165, 698–701.

    Article  PubMed  CAS  Google Scholar 

  35. French, A. S. and Stockbridge, L. L. (1988) Potassium channels in human and avian fibroblasts, Proc. R. Soc. Lond. 232, 395–412.

    Article  PubMed  CAS  Google Scholar 

  36. Sakmann, B. and Neher, E. (1995) Single-Channel Recordings. Plenum, New York.

    Book  Google Scholar 

  37. Etcheberrigaray, R., Ito, E., Oka, K., Tofel-Grehl, B., Gibson, G. E., and Alkon, D. L. (1993) Potassium channel dysfunction in fibroblasts, Proc. Natl. Acad. Sci. USA 90, 8209–8213.

    Article  PubMed  CAS  Google Scholar 

  38. Peterson, C., Ratan, R. R., Shelanski, M. L., and Goldman, J. E. (1986) Cytosolic free calcium and cell spreading decreases during aging and Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 83, 7999–8001.

    Article  PubMed  CAS  Google Scholar 

  39. Gibson, G. E., Nielsen, P., Sherman, K. A., and Blass, J. P. (1987) Diminished mitogen-induced calcium uptake by lymphocytes from Alzheimer patients, Biol. Psychiatry 22, 1079–1086.

    Article  PubMed  CAS  Google Scholar 

  40. Peterson, C., Ratan, R. R., Shelanski, M. L., and Goldman, J. E. (1988) Altered response of fibroblasts from aged and Alzheimer donors to drugs that elevate cytosolic free calcium, Neurobiol. Aging 9, 261–266.

    Article  PubMed  CAS  Google Scholar 

  41. Borden, L.A., Maxfield, F. R., Goldman, J. E., and Shelanski, M. L. (1992) Resting [Ca2+]; and [Ca2+]; transients are similar in fibroblasts from normal and Alzheimer’s donors, Neurobiol. Aging 13, 33–38.

    Article  PubMed  CAS  Google Scholar 

  42. McCoy, K. R., Mullins, R. D., Newcornb, T. G., Ng, G. M., Pavlinkova, G., Polinsky, R. J., Nee, L. E., and Sisken, J. E. (1993) Serum-and bradykinin-induced calcium transients in familial Alzheimer’s fibroblasts, Neurobiol. Aging 14, 447–455.

    Article  PubMed  CAS  Google Scholar 

  43. Le Quang Sang, K. H., Mignot, E., Gilbert, J. C., et al. (1993) Platelet cytosolic free-calcium concentration is increased in aging and Alzheimer’s disease, Biol. Psychiatry 3, 391–393.

    Article  Google Scholar 

  44. Sakakibara, M., Alkon, D. L., Neary, J. T., Heldman, E., and Gould, R. (1986) Inositol trisphosphate regulation of receptor membrane currents, Biophys. J. 50, 797–803.

    Article  PubMed  CAS  Google Scholar 

  45. Spindel, E. R., Giladi, E., Segerson, T. P., and Nagalla, S. (1993) Recent Prog. Hormone Res. 48, 365–391.

    CAS  Google Scholar 

  46. Lloyd, A. C., Davies, S. A., Crossley, I., Whitaker, M., Houslay, M. D., Hall, A., Marshall, C. J. and Wakelam, M. J. O. (1989) Bombesin stimulation of inositol 1,4,5-trisphosphate generation and the intracellular release is amplified in a cell line overexpressing the N-ras proto-oncogene, Biochem. J. 260, 813–819.

    PubMed  CAS  Google Scholar 

  47. Matozaki, T., Zhu, W.-Y., Tsunoda, Y., Göke, B., and Williams, J. A. (1991) Intracellular mediators actions on rat acinar cells, Am. J. Physiol. 260, G858–G864.

    PubMed  CAS  Google Scholar 

  48. Murphy, A. C. and Rozengurt, E. (1992) Pasteurella multocida toxin selectively facilitates phosphatidylinositol 4–5-bisphosphate hydrolysis by bombesin, vasopresin, and endothelin. Requirement for a functional G protein, J. Biol. Chem. 267, 25296–25303.

    PubMed  CAS  Google Scholar 

  49. Streb, H., Irvine, R. F., Berridge, M. J., and Schultz, I. (1983) Release of Caz+ from nonmitochondrial intracellular stores in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature 306, 67–69.

    Article  PubMed  CAS  Google Scholar 

  50. Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling, Nature 361, 315–325.

    Article  PubMed  CAS  Google Scholar 

  51. Ito, E., Oka, K., Etcheberrigaray, R., et al. (1994) Internal Cat+ mobilization is altered in fibroblasts from patients with Alzheimer disease, Proc. Natl. Acad. Sci. USA 91, 534–538.

    Article  PubMed  CAS  Google Scholar 

  52. Hirashima, N., Etcheberrigaray, R., Bergamaschi, S., Racchi, M., Battaini, F., Binetti, G., Govoni, S., and Alkon, D. L. (1996) Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer’s disease, Neurobiol. Aging, 17, 549–555.

    Article  PubMed  CAS  Google Scholar 

  53. Huang, H.-M., Lin, T.-A., Sun, G. Y., and Gibson, G. E. (1995) Increased inositol 1,4,5-triphosphate accumulation correlates with an up-regulation of bradykinin receptors in Alzheimer’s disease. J. Neurochem. 64, 761–766.

    Article  PubMed  CAS  Google Scholar 

  54. Thastrup, O., Linnebjerg, H., Bjerrum, P. J., Knudsen, J. B., and Christensen, S. B. (1987) Biochim. Biophys. Acta 927, 65–73.

    Article  PubMed  CAS  Google Scholar 

  55. Takemura, H., Hughes, A. R., Thastrup, O., and Putney, J. W., Jr. (1989) Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells, J. Biol. Chem. 264, 12266–12271.

    PubMed  CAS  Google Scholar 

  56. Thastrup, O., Cullen, P. J., Drebak, B. J., Hanley, M. R., and Dawson, A. P. (1990) Thapsigargin, a tumor promoter, discharges intracellular Caz+ stores by specific inhibition on endoplasmic reticulum Caz+-ATPase, Proc. Natl. Acad. Sci. USA 87, 2466–2470.

    Article  PubMed  CAS  Google Scholar 

  57. Dunbar, B. S. (1994) Protein Blotting: A Practical Approach. Oxford University Press, New York.

    Google Scholar 

  58. Nee, L. E., Polinsky, R. J., Roswell, E., Weingartner, H., Smallberg, S., and Ebert, M. (1983) A family with histologically confirmed Alzheimer’s disease, Arch. Neurol. 40, 203–208.

    Article  PubMed  CAS  Google Scholar 

  59. National Institute of Aging (1991) Catalog of Cell Lines.

    Google Scholar 

  60. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. (1992) 1 -amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity, J. Neurosci. 12, 376–389.

    Google Scholar 

  61. Arispe, N., Pollard, H. B., and Rojas, E. (1993) Giant multilevel cation channels formed by Alzheimer’s disease amyloid, f3-protein [A13P-(1–40)] in bilayer membranes, Proc. Natl. Acad. Sci. USA 90, 10573–10577.

    Article  PubMed  CAS  Google Scholar 

  62. Etcheberrigaray, R., Ito, E., Kim, C. S., and Alkon, D. L. (1994) Soluble 13-amyloid induction of Alzheimer’s phenotype for human fibroblasts K+ channels, Science 264, 276–279.

    Article  PubMed  CAS  Google Scholar 

  63. Simmons, M. A. and Schneider, C. R. (1993) Amyloid 13 peptides act directly on single neurons, Neurosci. Lett. 150, 133–136.

    Article  PubMed  CAS  Google Scholar 

  64. Galdzicki, Z., Furuyama, R., Waldhwani, K. C., Ehrenstein, G., and Rapoport, S. I. (1993) Alzheimer disease 13-amyloid polypeptide increases permeability of PC 12 cells membrane, Soc. Neurosci. Abs. 19, 397a.

    Google Scholar 

  65. Galdzicki, Z., Furuyama, R., Waldhwani, K. C., Rapoport, S. I., and Ehrenstein, G. (1994) 13-Amyloid increases choline conductance of PC 12 cells: possible mechanism of toxicity in Alzheimer’s disease, Brain Res. 646, 332–336.

    Google Scholar 

  66. Mirzabekov, T., Lin, M.-C., Yuan, W.-L., Marshall, P. J., Carman, M., Tomaselli, K., Liebeburg, I., and Kagan, B. L. (1994) Channel formation in planar lipid bilayers by a neurotoxic fragment of beta-amyloid peptide, Biochem. Biophys. Res. Commun. 202, 1142–1148.

    Article  PubMed  CAS  Google Scholar 

  67. Weiss, J. H., Pike, C. J., and Cotman, C. W. (1994) Caz+ channel blockers attenuate 13- amyloid peptide toxicity to cortical neurons in culture, J. Neurochem. 62, 372–375.

    Article  PubMed  CAS  Google Scholar 

  68. Good, T. A., Smith, D. O., and Murphy, R. M. (1996) 13-Amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons, Biophys. J. 70, 296–304.

    Google Scholar 

  69. Furukawa, K., Barger, S. W., Blalock, E. M., and Mattson, M. P. (1996) Activation of K+ channels and suppression of neural activity by secreted 13-amyloid-precursor protein, Nature 379, 74–78.

    Article  PubMed  CAS  Google Scholar 

  70. Cohen, C. D., Vollmayr, B., and Aldenhoff, J. B. (1996) Neurosci. Lett. 202, 177–180.

    Article  PubMed  CAS  Google Scholar 

  71. Wiseman, E. J. and Jarvik, L. F. (1996) Potassium channel blockers: could they work in Alzheimer disease?, Alzheimer Disease and Associated Disorders 5, 25–30.

    Article  Google Scholar 

  72. Lavretsky, E. P. and Jarvik, L. F. J. (1992) A group of potassium-channel blockers-acetylcholine releasers: new potentials for Alzheimer disease?, Clin. Psychopharmacol. 12, 110–118.

    Article  CAS  Google Scholar 

  73. Heurteaux, C., Bertaina, V., Widmann, C., and Lazdunzki, M. (1993) K+ openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid 13-protein precursor genes and neuronal death in rat hippocampus, Proc. Natl. Acad. Sci. USA 90, 9431–9435.

    Article  PubMed  CAS  Google Scholar 

  74. Govoni, S., Bergamaschi, S., Racchi, M., Battaini, F., Binetti, G., Bianchetti, A., and Trabucchi, M. (1993) Cytosol protein kinase C down regulation in fibroblasts from Alzheimer’s disease patients, Neurology 43, 2581–2586.

    Article  PubMed  CAS  Google Scholar 

  75. Racchi, M., Wetsel, W. C., Trabucchi, M., Govoni, S., Battaini, F., Binetti, G., Bianchetti, A., and Bergamaschi, S. (1994) Reduced protein kinase C immunoreactivity in fibroblasts from patients with Alzheimer’s disease, Neurology 44, A164.

    Google Scholar 

  76. Bergamaschi, S., Racchi, M., Battaini, F., Trabucchi, M., Bianchetti, A., Binetti, G., and Govoni, S. (1994) Protein kinase C regulates 13-amyloid precursor secretion in fibroblasts from control and Alzheimer’s disease patients, Soc. Neurosci. Abs. 20, 849.

    Google Scholar 

  77. Boucher, R. (1994) Cystic fibrosis, in Harrison `s principles of internal medicine ( Isselbacher, K. S., Brauwald, E., Wilson, J. D., Martin, J. B., Fauci, A. S., and Kasper, D. L., eds.), McGraw-Hill, New York, pp. 1194–1197.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Etcheberrigaray, R., Alkon, D.L. (1997). Potassium Channels and Calcium Release. In: Wasco, W., Tanzi, R.E. (eds) Molecular Mechanisms of Dementia. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-471-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-471-9_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5889-4

  • Online ISBN: 978-1-59259-471-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics