Potassium Channels and Calcium Release

Pathophysiological and Diagnostic Implications for Alzheimer’s Disease
  • René Etcheberrigaray
  • Daniel L. Alkon
Part of the Contemporary Neuroscience book series (CNEURO)


The number of diverse factors implicated in the etiology of Alzheimer’s disease (AD) suggests that it can arise through distinct cascades of pathophysiologic and molecular events. These include specific genetic defects involving amyloid precursor protein (APP) and its metabolism, aging itself, prior history of head trauma, and ApoE. Of these, only aging impacts on a majority of all AD cases (1–5). Considering the multifactorial nature of AD etiology as well as the number of afflicted individuals (approx 4,000,000 in the US alone), it is noteworthy that the almost universal symptom for all AD patients is early memory loss (6,7). Characteristically, other dementias are revealed by constellations of symptoms, such as motor deficits with Parkinson’s disease, Huntington’s Chorea, and Wernicke-Korsakoff’s syndrome; sensory deficits of vitamin B12 deficiency; and mood alterations of depressive disorders (8).


Alzheimer Disease Potassium Channel Classical Conditioning Calcium Release Inositol Trisphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katzman, R. and Kawas, C. H. (1994) The epidemiology of dementia and Alzheimer disease, in Alzheimer Disease ( Terry, R. D., Katzman, R., and Bick, K. L., eds.), Raven, New York, pp. 105–122.Google Scholar
  2. 2.
    Selkoe, D. J. (1994) Normal and abnormal biology of the ß-amyloid precursor protein, Ann. Rev. Neurosci. 17, 489–517.PubMedCrossRefGoogle Scholar
  3. 3.
    Cotman, C. W. and Pike, C. J. (1994) ß-amyloid and its contributions to neurodegeneration in Alzheimer disease, in Alzheimer Disease ( Terry, R. D., Katzman, R., and Bick, K. L., eds.), Raven, New York, pp. 305–315.Google Scholar
  4. 4.
    Ashall, F. and Goate, A. M. (1994) Role of ß-amyloid precursor protein in Alzheimer’s disease, TIPS 19, 42–46.Google Scholar
  5. 5.
    Hardy, J. (1995) Apolipoprotein E in the genetics and epidemiology ofAlzheimer’s disease, Am. J. Med. Genet. 60, 456–460.PubMedCrossRefGoogle Scholar
  6. 6.
    Petersen R. C., Smith, G. E., Ivnick, R. J., Kokmen, E., and Tangalos, E. G. (1994) Memory function in very early Alzheimer’s disease, Neurology 44, 867–872.PubMedCrossRefGoogle Scholar
  7. 7.
    Bondi, W. B., Salmom, D. P., and Butters, N. (1994) Neuropsychological features of memory disorders in Alzheimer disease, in Alzheimer Disease ( Terry, R. D., Katzman, R., and Bick, K. L., eds.), Raven, New York, pp. 41–63.Google Scholar
  8. 8.
    Adams, R. D. and Victor, M. (1993) Dementia and the amnesic (Korsakoff) syndrome, in Principles of Neurology (Adams, R. D. and Victor, M., eds. ), McGraw-Hill, pp. 364–377.Google Scholar
  9. 9.
    Terry, R. D., Masliah, E., and Hansen, L. A. (1994) Structural basis of the cognitive alterations in Alzheimer disease, in Alzheimer Disease ( Terry, R. D., Katzman, R., and Bick, K. L., eds.), Raven, New York, pp. 179–196.Google Scholar
  10. 10.
    Nagy, S. Joshi, K. A., Esiri, M. M., Morris, J. H., King, E. M.-F., MacDonald, B., Litchield, S., Barnetson, L., and Smith (1996) Hippocampal pathology reflects memory deficits and brain imaging measurements in Alzheimer’s disease: clinicopathologic correlations using three sets of pathologic diagnostic criteria, Dementia 7, 76–81.PubMedGoogle Scholar
  11. 11.
    Alkon, D. L. (1987) Memory Traces in the Brain, Cambridge University Press, New York.Google Scholar
  12. 12.
    Alkon, D. L. (1989) Memory storage and neural systems, Sci. Am. 260, 42–50.CrossRefGoogle Scholar
  13. 13.
    Alkon, D. L. (1984) Calcium-mediated reduction of ionic currents: a biophysical memory trace, Science 226, 1037–1045.PubMedCrossRefGoogle Scholar
  14. 14.
    Collin, C., Ikeno, H., Harrigan, J. F., Ledelhendler, I., and Alkon, D. L. (1988) Sequential modification of membrane currents with classical conditioning, Biophys. J. 55, 955–960.CrossRefGoogle Scholar
  15. 15.
    Alkon, D. L., Naito, S., Kubota, M., Chen, C., Bank, B., Smallwood, J., Gallant, P., and Rasmussen, H. (1988) Regulation of Hermissenda K+ channels by cytoplasmic and membrane-associated C-kinase, J. Neurochem. 51, 903–917.PubMedCrossRefGoogle Scholar
  16. 16.
    Etcheberrigaray, R., Matzel, D. L., Lederhendler, I. I., and Alkon, D. L. (1992) Classical conditioning and protein kinase C activation regulate the same single potassium channel in Hermissenda, Proc. Natl. Acad. Sci. USA 89, 7184–7188.PubMedCrossRefGoogle Scholar
  17. 17.
    Coulter, D. A., Lo Turco, J. J., Kubota, M., Disterhoft, J. F., Moore, J. W., and Alkon, D. L. (1989) Classical conditioning reduces amplitude and duration of calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells, J. Neurophysiol. 61, 971–981.PubMedGoogle Scholar
  18. 18.
    Sanchez-Andrés, J. V. and Alkon, D. L. (1991) Voltage-clamp analysis of the effects of classical conditioning on the hippocampus, J. Neurophysiol. 65, 796–807.PubMedGoogle Scholar
  19. 19.
    Bank, B., DeWeer, A., Kuzirian, A. M., Rasmussen, H., and Alkon, D. L. (1988) Classical conditioning induces long-term translocation of protein kinase C in rabbit hippocampal CA1 cells, Proc. Natl. Acad. Sci. USA 85, 1988–1992.PubMedCrossRefGoogle Scholar
  20. 20.
    Olds, J. L., Anderson, M. L., McPhie, D. L., Stanten, L. D., and Alkon, D. L. (1989) Imaging of memory-specific changes in the distribution of protein kinase C in the hippocampus, Science 245, 866–869.PubMedCrossRefGoogle Scholar
  21. 21.
    Neary, T. J., Crow, T., and Alkon, D. L. (1981) Change in a specific phosphoprotein band following associative learning in Hermissenda, Nature 293, 658–660.PubMedCrossRefGoogle Scholar
  22. 22.
    Nelson, T. J., Yoshioka, T., Toyoshima, S., Han, Y. F., and Alkon, D. L. (1994) Characterization of a GTP-binding protein implicated in both memory storage and interorganelle vesicle transport, Proc. Natl. Acad. Sci. USA 91, 9287–9291.PubMedCrossRefGoogle Scholar
  23. 23.
    Nelson, T. J., Collin, C., and Alkon, D. L. (1990) Isolation of a G protein that is modified by learning and reduces potassium currents in Hermissenda, Science 247, 1479–1483.PubMedCrossRefGoogle Scholar
  24. 24.
    Alkon, D. L., Ikeno, H., Dworkin, J., McPhie, D. L., Olds, J. L., Lederhendler, I., Matzel, L. D., Schreurs, B. G., Kuzirian, A., Collin, C., andYamoah, E. (1990) Contraction of neuronal branching volume: an anatomical correlate of Pavlovian conditioning, Proc. Natl. Acad. Sci. USA 87, 1611–1614.PubMedCrossRefGoogle Scholar
  25. 25.
    Moshiach, S., Nelson, T., Sanchez-Andrés, J. V., Sakakibara, M., and Alkon, D. L. (1993) G-protein effects on retrograde axonal transport, Brain Res. 605, 298–304.PubMedCrossRefGoogle Scholar
  26. 26.
    Nelson, T. J., Olds, J. L., Kim, H., and Alkon, D. L. (1994) Activation of DNA transcription in neuronal cells by ARF-like GTP-binding protein, submitted.Google Scholar
  27. 27.
    Nelson, T. J., Sanchez-Andrés, J. V., Schreurs, B. G., and Alkon, D. L. (1991) Classical conditioning-induces changes in low-molecular-weight GTP-binding proteins in rabbit hippocampus, J. Neurochem. 57, 2065–2069.PubMedCrossRefGoogle Scholar
  28. 28.
    Kim, C S, Han, Y.-F., Etcheberrigaray, R., Nelson, T. J., Olds, J. L., Toshioka, T., and Alkon, D. L. (1995)A memory-associated GTP-binding protein (Cp20) deficit in Alzheimer’s and 3-amyloid treated fibroblasts, Proc. Natl. Acad. Sci. USA 92, 3060–3064.Google Scholar
  29. 29.
    Alkon, D. L. (1992) Memory’s Voice, HarperCollins, New York.Google Scholar
  30. 30.
    Baker, A. C., Ko, L.-W., and Blass, J. P. (1988) Systemic manifestations of Alzheimer’s disease, Age 11, 60–65.CrossRefGoogle Scholar
  31. 31.
    Scott, R. B. (1993) Extraneuronal manifestations of Alzheimer’s disease, JAGS 41, 268–276.Google Scholar
  32. 32.
    Hsueh-Meei, H., Martins, R., Gandy, S., et al. (1994) Use of cultured fibroblasts in elucidating the pathophysiology and diagnosis of Alzheimer’s disease, Proc. N. Y. Acad. Sci. 747, 225–244.Google Scholar
  33. 33.
    Seegmiller, J. E., Rosenbloom, F. M., and Kelley, N. W. (1967) An enzyme defect associated with a sex-linked human neurological disorder and an excessive purine synthesis, Science 155, 1682–1686.PubMedCrossRefGoogle Scholar
  34. 34.
    Okada, S. and O’Brien, J. S. (1969) Tay-Sachs disease: generalized absence of a beta-d-Nacetylhexosaminidase component, Science 165, 698–701.PubMedCrossRefGoogle Scholar
  35. 35.
    French, A. S. and Stockbridge, L. L. (1988) Potassium channels in human and avian fibroblasts, Proc. R. Soc. Lond. 232, 395–412.PubMedCrossRefGoogle Scholar
  36. 36.
    Sakmann, B. and Neher, E. (1995) Single-Channel Recordings. Plenum, New York.CrossRefGoogle Scholar
  37. 37.
    Etcheberrigaray, R., Ito, E., Oka, K., Tofel-Grehl, B., Gibson, G. E., and Alkon, D. L. (1993) Potassium channel dysfunction in fibroblasts, Proc. Natl. Acad. Sci. USA 90, 8209–8213.PubMedCrossRefGoogle Scholar
  38. 38.
    Peterson, C., Ratan, R. R., Shelanski, M. L., and Goldman, J. E. (1986) Cytosolic free calcium and cell spreading decreases during aging and Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 83, 7999–8001.PubMedCrossRefGoogle Scholar
  39. 39.
    Gibson, G. E., Nielsen, P., Sherman, K. A., and Blass, J. P. (1987) Diminished mitogen-induced calcium uptake by lymphocytes from Alzheimer patients, Biol. Psychiatry 22, 1079–1086.PubMedCrossRefGoogle Scholar
  40. 40.
    Peterson, C., Ratan, R. R., Shelanski, M. L., and Goldman, J. E. (1988) Altered response of fibroblasts from aged and Alzheimer donors to drugs that elevate cytosolic free calcium, Neurobiol. Aging 9, 261–266.PubMedCrossRefGoogle Scholar
  41. 41.
    Borden, L.A., Maxfield, F. R., Goldman, J. E., and Shelanski, M. L. (1992) Resting [Ca2+]; and [Ca2+]; transients are similar in fibroblasts from normal and Alzheimer’s donors, Neurobiol. Aging 13, 33–38.PubMedCrossRefGoogle Scholar
  42. 42.
    McCoy, K. R., Mullins, R. D., Newcornb, T. G., Ng, G. M., Pavlinkova, G., Polinsky, R. J., Nee, L. E., and Sisken, J. E. (1993) Serum-and bradykinin-induced calcium transients in familial Alzheimer’s fibroblasts, Neurobiol. Aging 14, 447–455.PubMedCrossRefGoogle Scholar
  43. 43.
    Le Quang Sang, K. H., Mignot, E., Gilbert, J. C., et al. (1993) Platelet cytosolic free-calcium concentration is increased in aging and Alzheimer’s disease, Biol. Psychiatry 3, 391–393.CrossRefGoogle Scholar
  44. 44.
    Sakakibara, M., Alkon, D. L., Neary, J. T., Heldman, E., and Gould, R. (1986) Inositol trisphosphate regulation of receptor membrane currents, Biophys. J. 50, 797–803.PubMedCrossRefGoogle Scholar
  45. 45.
    Spindel, E. R., Giladi, E., Segerson, T. P., and Nagalla, S. (1993) Recent Prog. Hormone Res. 48, 365–391.Google Scholar
  46. 46.
    Lloyd, A. C., Davies, S. A., Crossley, I., Whitaker, M., Houslay, M. D., Hall, A., Marshall, C. J. and Wakelam, M. J. O. (1989) Bombesin stimulation of inositol 1,4,5-trisphosphate generation and the intracellular release is amplified in a cell line overexpressing the N-ras proto-oncogene, Biochem. J. 260, 813–819.PubMedGoogle Scholar
  47. 47.
    Matozaki, T., Zhu, W.-Y., Tsunoda, Y., Göke, B., and Williams, J. A. (1991) Intracellular mediators actions on rat acinar cells, Am. J. Physiol. 260, G858–G864.PubMedGoogle Scholar
  48. 48.
    Murphy, A. C. and Rozengurt, E. (1992) Pasteurella multocida toxin selectively facilitates phosphatidylinositol 4–5-bisphosphate hydrolysis by bombesin, vasopresin, and endothelin. Requirement for a functional G protein, J. Biol. Chem. 267, 25296–25303.PubMedGoogle Scholar
  49. 49.
    Streb, H., Irvine, R. F., Berridge, M. J., and Schultz, I. (1983) Release of Caz+ from nonmitochondrial intracellular stores in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature 306, 67–69.PubMedCrossRefGoogle Scholar
  50. 50.
    Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling, Nature 361, 315–325.PubMedCrossRefGoogle Scholar
  51. 51.
    Ito, E., Oka, K., Etcheberrigaray, R., et al. (1994) Internal Cat+ mobilization is altered in fibroblasts from patients with Alzheimer disease, Proc. Natl. Acad. Sci. USA 91, 534–538.PubMedCrossRefGoogle Scholar
  52. 52.
    Hirashima, N., Etcheberrigaray, R., Bergamaschi, S., Racchi, M., Battaini, F., Binetti, G., Govoni, S., and Alkon, D. L. (1996) Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer’s disease, Neurobiol. Aging, 17, 549–555.PubMedCrossRefGoogle Scholar
  53. 53.
    Huang, H.-M., Lin, T.-A., Sun, G. Y., and Gibson, G. E. (1995) Increased inositol 1,4,5-triphosphate accumulation correlates with an up-regulation of bradykinin receptors in Alzheimer’s disease. J. Neurochem. 64, 761–766.PubMedCrossRefGoogle Scholar
  54. 54.
    Thastrup, O., Linnebjerg, H., Bjerrum, P. J., Knudsen, J. B., and Christensen, S. B. (1987) Biochim. Biophys. Acta 927, 65–73.PubMedCrossRefGoogle Scholar
  55. 55.
    Takemura, H., Hughes, A. R., Thastrup, O., and Putney, J. W., Jr. (1989) Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells, J. Biol. Chem. 264, 12266–12271.PubMedGoogle Scholar
  56. 56.
    Thastrup, O., Cullen, P. J., Drebak, B. J., Hanley, M. R., and Dawson, A. P. (1990) Thapsigargin, a tumor promoter, discharges intracellular Caz+ stores by specific inhibition on endoplasmic reticulum Caz+-ATPase, Proc. Natl. Acad. Sci. USA 87, 2466–2470.PubMedCrossRefGoogle Scholar
  57. 57.
    Dunbar, B. S. (1994) Protein Blotting: A Practical Approach. Oxford University Press, New York.Google Scholar
  58. 58.
    Nee, L. E., Polinsky, R. J., Roswell, E., Weingartner, H., Smallberg, S., and Ebert, M. (1983) A family with histologically confirmed Alzheimer’s disease, Arch. Neurol. 40, 203–208.PubMedCrossRefGoogle Scholar
  59. 59.
    National Institute of Aging (1991) Catalog of Cell Lines.Google Scholar
  60. 60.
    Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. (1992) 1 -amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity, J. Neurosci. 12, 376–389.Google Scholar
  61. 61.
    Arispe, N., Pollard, H. B., and Rojas, E. (1993) Giant multilevel cation channels formed by Alzheimer’s disease amyloid, f3-protein [A13P-(1–40)] in bilayer membranes, Proc. Natl. Acad. Sci. USA 90, 10573–10577.PubMedCrossRefGoogle Scholar
  62. 62.
    Etcheberrigaray, R., Ito, E., Kim, C. S., and Alkon, D. L. (1994) Soluble 13-amyloid induction of Alzheimer’s phenotype for human fibroblasts K+ channels, Science 264, 276–279.PubMedCrossRefGoogle Scholar
  63. 63.
    Simmons, M. A. and Schneider, C. R. (1993) Amyloid 13 peptides act directly on single neurons, Neurosci. Lett. 150, 133–136.PubMedCrossRefGoogle Scholar
  64. 64.
    Galdzicki, Z., Furuyama, R., Waldhwani, K. C., Ehrenstein, G., and Rapoport, S. I. (1993) Alzheimer disease 13-amyloid polypeptide increases permeability of PC 12 cells membrane, Soc. Neurosci. Abs. 19, 397a.Google Scholar
  65. 65.
    Galdzicki, Z., Furuyama, R., Waldhwani, K. C., Rapoport, S. I., and Ehrenstein, G. (1994) 13-Amyloid increases choline conductance of PC 12 cells: possible mechanism of toxicity in Alzheimer’s disease, Brain Res. 646, 332–336.Google Scholar
  66. 66.
    Mirzabekov, T., Lin, M.-C., Yuan, W.-L., Marshall, P. J., Carman, M., Tomaselli, K., Liebeburg, I., and Kagan, B. L. (1994) Channel formation in planar lipid bilayers by a neurotoxic fragment of beta-amyloid peptide, Biochem. Biophys. Res. Commun. 202, 1142–1148.PubMedCrossRefGoogle Scholar
  67. 67.
    Weiss, J. H., Pike, C. J., and Cotman, C. W. (1994) Caz+ channel blockers attenuate 13- amyloid peptide toxicity to cortical neurons in culture, J. Neurochem. 62, 372–375.PubMedCrossRefGoogle Scholar
  68. 68.
    Good, T. A., Smith, D. O., and Murphy, R. M. (1996) 13-Amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons, Biophys. J. 70, 296–304.Google Scholar
  69. 69.
    Furukawa, K., Barger, S. W., Blalock, E. M., and Mattson, M. P. (1996) Activation of K+ channels and suppression of neural activity by secreted 13-amyloid-precursor protein, Nature 379, 74–78.PubMedCrossRefGoogle Scholar
  70. 70.
    Cohen, C. D., Vollmayr, B., and Aldenhoff, J. B. (1996) Neurosci. Lett. 202, 177–180.PubMedCrossRefGoogle Scholar
  71. 71.
    Wiseman, E. J. and Jarvik, L. F. (1996) Potassium channel blockers: could they work in Alzheimer disease?, Alzheimer Disease and Associated Disorders 5, 25–30.CrossRefGoogle Scholar
  72. 72.
    Lavretsky, E. P. and Jarvik, L. F. J. (1992) A group of potassium-channel blockers-acetylcholine releasers: new potentials for Alzheimer disease?, Clin. Psychopharmacol. 12, 110–118.CrossRefGoogle Scholar
  73. 73.
    Heurteaux, C., Bertaina, V., Widmann, C., and Lazdunzki, M. (1993) K+ openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid 13-protein precursor genes and neuronal death in rat hippocampus, Proc. Natl. Acad. Sci. USA 90, 9431–9435.PubMedCrossRefGoogle Scholar
  74. 74.
    Govoni, S., Bergamaschi, S., Racchi, M., Battaini, F., Binetti, G., Bianchetti, A., and Trabucchi, M. (1993) Cytosol protein kinase C down regulation in fibroblasts from Alzheimer’s disease patients, Neurology 43, 2581–2586.PubMedCrossRefGoogle Scholar
  75. 75.
    Racchi, M., Wetsel, W. C., Trabucchi, M., Govoni, S., Battaini, F., Binetti, G., Bianchetti, A., and Bergamaschi, S. (1994) Reduced protein kinase C immunoreactivity in fibroblasts from patients with Alzheimer’s disease, Neurology 44, A164.Google Scholar
  76. 76.
    Bergamaschi, S., Racchi, M., Battaini, F., Trabucchi, M., Bianchetti, A., Binetti, G., and Govoni, S. (1994) Protein kinase C regulates 13-amyloid precursor secretion in fibroblasts from control and Alzheimer’s disease patients, Soc. Neurosci. Abs. 20, 849.Google Scholar
  77. 77.
    Boucher, R. (1994) Cystic fibrosis, in Harrison `s principles of internal medicine ( Isselbacher, K. S., Brauwald, E., Wilson, J. D., Martin, J. B., Fauci, A. S., and Kasper, D. L., eds.), McGraw-Hill, New York, pp. 1194–1197.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • René Etcheberrigaray
  • Daniel L. Alkon

There are no affiliations available

Personalised recommendations