Skip to main content

Role of Axonal and Somatodendritic Monoamine Transporters in Action of Uptake Blockers

  • Chapter
Neurotransmitter Transporters

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

There is a large body of evidence indicating the presence of neuronal monoamine transport systems for dopamine (DA), norepinephrine (NE), and serotonin (5-HT) not only in axon terminals, but also in somatodendrites (6,38,44,61,67,82,100).Monoamine transporters are central to the actions of uptake blockers such as antidepressants and psychostimulants. This chapter focusses on recent findings obtained from in vitro and in vivo studies with uptake blockers at the level of both somatodendritic and axonal monoamine transporters, with particular attention to our findings on the monoamine effects of various uptake blockers in the axonal and somatodendritic areas of the DA pathway. These findings have provided new insights into the roles of both axonal and somatodendritic monoamine transporters in determining the potency, the selectivity, and the regulation of the action of uptake blockers. Further elucidation of these roles may assist in understanding the complex mechanisms responsible for various neuropathophysiological conditions, for the therapeutics of antidepressants, and for the reinforcement by abused drugs such as cocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, J. M. and White, F. J. A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neurosci. Lett. 117 (1990) 181–187.

    PubMed  CAS  Google Scholar 

  2. Adell, A. and Artigas, F. Differential effects of clomipramine given locally or systemically on extracellular 5-hydroxytryptamine in raphe nuclei and frontal cortex. Naunyn-Schmiedebergs Arch. Pharmacol. 343 (1991) 237–244.

    PubMed  CAS  Google Scholar 

  3. Adell, A., Carceller, A., and Artigas, F. In vivo brain dialysis study of the somatodendritic release of serotonin in the raphe nuclei of the rat: Effect of 8hydroxy-2-(di-n-propylamino)tetralin. J. Neurochem. 60 (1993) 1673–1681.

    CAS  Google Scholar 

  4. Arborelius, L., Chergui, K., Mruase, S., Nomikos, G. G., Hook, B. B., Chouvet, G., Hacksell, U., and Svensson, T. H. The 5-HT1A receptor selective ligands, (R)8-OH-DPAT and (S)-UH-301, differentially affect the activity of midbrain dopamine neurons. Naunyn-Schmiedebergs Arch. Pharmacol. 347 (1993) 353–562.

    PubMed  CAS  Google Scholar 

  5. Bayer, V. E. and Pickel, V. M. Somatic and dendritic basis for dopaminergic modulation in the ventral tegmental area. Soc. Neurosci. Abstr. 15 (1989) 483. 4.

    Google Scholar 

  6. Beart, P. M. and McDonald, D. Neurochemical studies of the mesolimbic dopaminergic pathway: Somatodendritic mechanisms and GABAergic neurons in the rat ventral tegmentum. J. Neurochem. 34 (1980) 1622–1689.

    CAS  Google Scholar 

  7. Beart, P. M. and McDonald, D. 5-Hydroxytryptamine and 5-hydroxytryptaminergic-dopaminergic interactions in the ventral tegmental area of rat brain. J. Pharm. Pharmacol. 34 (1982) 591–593.

    PubMed  CAS  Google Scholar 

  8. Becquet, D., Faudon, M., and Héry, F. The role of serotonin release and autoreceptors in the dorsalis raphe nucleus in the control of serotonin release in the cat caudate nucleus. Neuroscience 39 (1990) 639–647.

    PubMed  CAS  Google Scholar 

  9. Bel, N. and Artigas, F. Fluvoxamine preferentially increase extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur. J. Pharmacol. 229 (1992) 101–103.

    PubMed  CAS  Google Scholar 

  10. Benloucif, S., Keegan, M. J., and Galloway, M. P. Serotonin-facilitated dopamine release in vivo: Pharmacological characterization. J. Pharmacol. Exp. Ther. 265 (1993) 373–377.

    CAS  Google Scholar 

  11. Benuck, M. and Reith, M. E. A. Dopamine releasing effect of phenylbiguanide in tat striatal slices. Naunyn-Schmiedebergs Arch. Pharmacol. 345 (1992) 666–672.

    PubMed  CAS  Google Scholar 

  12. Berger, P., Elsworth, J. D., Arroyo, J., and Roth, R. H. Interaction of [3H]GBR12935 and GBR12909 with the dopamine uptake complex in nucleus accumbens. Eur. J. Pharmacol. 177 (1990) 91–94.

    PubMed  CAS  Google Scholar 

  13. Biegon, A. and Rainbow, T. C. Localization and characterization of [3H]desmethylimipramine binding sites in rat brain by quantitative autoradiography. J. Neurosci. 3 (1983) 1069–1076.

    PubMed  CAS  Google Scholar 

  14. Bobillier, P., Seguin, S., Deguelurce, A., Lewis, B. D., and Pujol, J. F. The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography. Brain Res. 166 (1979) 1–8.

    PubMed  CAS  Google Scholar 

  15. Boja, J. W. and Kuhar, M. J. [3H]Cocaine binding and inhibition of [3H]dopamine uptake is similar in both the rat striatum and nucleus accumbens. Fur. J. Pharmacol. 173 (1989) 215–217.

    CAS  Google Scholar 

  16. Bosker, F., Klompmakers, A., and Westenberg, H. Extracellular 5-hydroxytryptamine in median raphe nucleus of the conscious rat is decreased by nanomolar concentrations of 8-hydroxy-2-(di-n-propylamino)tetralin and is sensitive to tetrodotoxin. J. Neurochem. 63 (1994) 2165–2171.

    PubMed  CAS  Google Scholar 

  17. Bradberry, C. W. and Roth, R. H. Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral tegmental area as shown by in vivo micro-dialysis. Neurosci. Eett. 103 (1989) 97–102.

    CAS  Google Scholar 

  18. Broderick, P. A. Distinguishing effects of cocaine IV and SC on mesoaccumbens dopamine and serotonin release with chloral hydrate anesthesia. Pharmacol. Biochem. Behay. 43 (1992) 929–937.

    CAS  Google Scholar 

  19. Burney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther. 185 (1973) 560–571.

    Google Scholar 

  20. Cameron, D. L. and Williams, J. T. Cocaine inhibit GAGA release in the VTA through endogenous 5-HT. J. Neurosci. 14 (1994) 6763–6767.

    PubMed  CAS  Google Scholar 

  21. Carboni, E. and Chiara, G. Di. Serotonin release estimated by transcortical dialysis in freely-moving rats. Neuroscience 32 (1989) 637–645.

    PubMed  CAS  Google Scholar 

  22. Carboni, E., Tanda, G. L., Frau, R., and Di Chiara, G. Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J. Neurochem. 55 (1990) 1067–1070.

    PubMed  CAS  Google Scholar 

  23. Chan, J., Nirenberg, M. J., Peter, D., Liu, Y., Edwards, R. H., and Pickel, V. M. Localization of the vesicular monoamine transporter-2 in dendrites of dopaminergic neurons: Comparison of rat substantia nigra and ventral tegmental area. Soc. Neurosci. Abstr. 21 (1995) 373.

    Google Scholar 

  24. Chan-Palay, V. Serotonin neurons and their axons in the raphe dorsalis of the rat and rhesus monkey: demonstration by high resolution autoradiography with 3H-serotonin. In Chan-Palay V. and Palay S. L. (eds.), Cytochemical Method is Neuroanatomy, Liss, New York, 1982, pp. 357–386.

    Google Scholar 

  25. Chen, H-T., Clark, M., and Goldman, D. Quantitative autoradiography of 3Hparoxetine binding sites in rat brain. J. Pharmacol. Toxicol. Meth. 27 (1992) 209–216.

    CAS  Google Scholar 

  26. Chen, J., van Praag, H. M., and Gardner, E. L. Activation of 5-HT3 receptor by 1-phenylbiguanide increases dopamine release in the rat nucleus accumbens. Brain Res. 543 (1991) 354–357.

    PubMed  CAS  Google Scholar 

  27. Chen, N.-H. and Reith, M. E. A. [3H]Dopamine and [3H]serotonin release in vitro induced by electrical stimulation in A9 and A10 dopamine regions of rat brain: characterization and responsiveness to cocaine. J. Pharmacol. Exp. Ther. 267 (1993) 379–389.

    PubMed  CAS  Google Scholar 

  28. Chen, N.-H. and Reith, M. E. A. Autoregulation and monoamine interactions in the ventral tegmental area in the absence and presence of cocaine: A microdialysis study in freely moving rats. J. Pharmacol. Exp. Ther. 271 (1994) 1597–1610.

    PubMed  CAS  Google Scholar 

  29. Chen, N.-H. and Reith, M. E. A. Effects of locally applied cocaine, lidocaine, and various uptake blockers on monoamine transmission in the ventral tegmental area of freely moving rats: a microdialysis study on monoamine interrelationships. J. Neurochem. 63 (1994) 1701–1713.

    PubMed  CAS  Google Scholar 

  30. Chen, N.-H. and Reith, M. E. A. Monoamine interaction measured by micro-dialysis in the ventral tegmental area of rats treated systemically with (±)-8hydroxy-2-(Di-N-propylamino)tetralin. J. Neurochem. 64 (1995) 1585–1597.

    PubMed  CAS  Google Scholar 

  31. Chen, N.-H., Xu, C., Coffey, L. L., and Reith, M. E. A. [3H]WIN35,428(2b-carbomethoxy-3b-(4-fluorophenyl)tropane)binding to rat brain membranes: Comparing dopamine cell body areas with nerve terminal regions. Biochem. Pharmacol. 51 (1996) 563–566.

    PubMed  CAS  Google Scholar 

  32. Cheramy, A., Leviel, V., and Glowinski, J. Dendritic release of dopamine in the substantia nigra. Nature 289 (1981) 537–542.

    PubMed  CAS  Google Scholar 

  33. Cunningham, K. A. and Lakoski, J. M. The interaction of cocaine with serotonin dorsal raphe neurons. Neuropsychopharmacology 3 (1990) 41–50.

    PubMed  CAS  Google Scholar 

  34. Cunningham, K. A., Paris, J. M., and Goeders, N. E. Chronic cocaine enhances serotonin autoregulation and serotonin uptake binding. Synapse 11 (1992) 112–123.

    PubMed  CAS  Google Scholar 

  35. Curtis, A. L., Conti, E., and Valentimo, R. J. Cocaine effects on brain noradrenergic neurons of anaesthetized and unanesthetized rats. Neurophamacology 32 (1993) 419–428.

    CAS  Google Scholar 

  36. Delfs, J. M., Schreiber, L., and Kelley, A. E. Microinjection of cocaine into the nucleus accumbens elicits locomotor activation in the rat. J. Neurosci. 10 (1990) 303–310.

    PubMed  CAS  Google Scholar 

  37. Dennis, T., L’heureux, R., Carter, C., and Scatton, B. Presynaptic alpha-2 adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by in vivo dialysis) in the rat. J. Pharmacol. Exp. Ther. 241 (1987) 642–649.

    PubMed  CAS  Google Scholar 

  38. Dewar, K. M., Reader, T. A., Grondin, L., and Descarries, L. [3H]Paroxetine binding and serotonin content of rat and rabbit cortical areas, hippocampus, neostriatum ventral mesencephalic tegmentum, and midbrain raphe nuclei region. Synapse 9 (1991) 14–26.

    Google Scholar 

  39. Donnan, G. A., Kaczmarczyk, S. J., McKenzie, J. S., Kamins, R. M., Chilco, P. J., and Mendelsohn, F. A. O. Catecholamine uptake sites in mouse brain: distribution determined by quantitative [3H]mazindol autoradiography. Brain Res. 504 (1989) 64–71.

    PubMed  CAS  Google Scholar 

  40. Einhorn, L. C., Johansen, P. A., and White, F. J. Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J. Neurosci. 8 (1988) 100–112.

    PubMed  CAS  Google Scholar 

  41. Fibiger, H. C., Phillips, A. G., and Brown, E. E. The neurobiology of cocaine-induced reinforcement. Ciba Found. Symp 166 (1992) 96–124.

    PubMed  CAS  Google Scholar 

  42. Florin, S. M., Kuczenski, R., and Segal, D. S. Regional extracellular norepinephrine responses to amphetamine and cocaine and effects of clonidine pretreatment. Brain Res. 654 (1994) 53–62.

    PubMed  CAS  Google Scholar 

  43. Friedman, E. and Cooper, T. B. Pharmacokinetics of chlorimipramine and its demethylated metabolite in blood and brain regions of rats treated acutely and chronically with chlorimipramine. J. Pharmacol. Exp. Ther. 225 (1983) 387–390.

    PubMed  CAS  Google Scholar 

  44. Gehlert, D. R., Gackenheimer, S. L., and Robertson, D. W. Localization of rat brain binding sites for [3H]tomoxetine, an enantiomerically pure ligand for nor-epinephrine reuptake sites. Neurosci. Lett. 157 (1993) 203–206.

    PubMed  CAS  Google Scholar 

  45. Glennon, R. A. and Dukat, M. Serotonin receptors and their ligands: a lack of selective agents. Pharmacol. Biochem. Behay. 40 (1991) 1009–1017.

    CAS  Google Scholar 

  46. Gonon, F. G. Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24 (1988) 19–28.

    PubMed  CAS  Google Scholar 

  47. Graznna, R. and Molliver, M. The locus coeruleus in the rat. Neuroscience 5 (1980) 21–40.

    Google Scholar 

  48. Grenholff, J. and Svensson, T. H. Prazosin modulates the firing pattern of dopamine neurons in rat ventral tegmental area. Eur. J. Pharmacol. 233 (1993) 79–84.

    Google Scholar 

  49. Gu, H., Wall, S. C., and Rudnick, G. Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J. Biol. Chem. 269 (1994) 7124–7130.

    PubMed  CAS  Google Scholar 

  50. Harris, G. C. and Williams, J. T. Sensitization of locus ceruleus neurons during withdrawal from chronic stimulants and antipressants. J. Pharmacol. Exp. Ther. 261 (1992) 476–483.

    PubMed  CAS  Google Scholar 

  51. Hemby, S. E., Jones, G. H., Justice, J. B., and Neill, D. B. Conditioned locomotor activity but not conditioned place preference following intra-accumbens infusions of cocaine. Psychopharmacology 106 (1992) 330–336.

    PubMed  CAS  Google Scholar 

  52. Henry, D. J., Greene, M. A., and White, F. J. Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: repeated administration. J. Pharmacol. Exp. Ther. 251 (1989) 833–839.

    PubMed  CAS  Google Scholar 

  53. Herdon, H., Strupish, J., and Nahorski, S. R. Differences between the release of radiolabelled and endogenous dopamine from superfused rat brain slices: effects of depolarizing stimuli, amphetamine and synthesis inhibition. Brain Res. 348 (1985) 309–320.

    PubMed  CAS  Google Scholar 

  54. Hery, F., Faudon, M., and Fueri, C. Release of serotonin in structures containing serotoninergic nerve cell bodies: Dorsalis raphe nucleus and nodose ganglia of the cat. Ann. NY Acad. Sci. 473 (1986) 239–255.

    CAS  Google Scholar 

  55. Hjorth, S. and Auerbach, S. B. Further evidence for the importance of 5-HT1A autoreceptors in the action of selective serotonin reuptake inhibitors. Eur. J. Pharmacol 260 (1994) 251–255.

    PubMed  CAS  Google Scholar 

  56. Hjorth, S. Serotonin 5-HT1A autoreceptor blockade potentiates the ability of the 5-HT reuptake inhibitor citalopram to increase nerve terminal output of 5-HT in vivo: a microdialysis study. J. Neurochem. 60 (1993) 776–779.

    PubMed  CAS  Google Scholar 

  57. Hrdina, P. D., Foy, B., Hepner, A., and Summers, R. J. Antidepressant binding sites in brain: autoradiographic comparison of [3H]paroxetine and [3H]imipramine localization and relationship to serotonin transporter. J. Pharmacol. Exp. Ther. 252 (1990) 410–418.

    PubMed  CAS  Google Scholar 

  58. Hurd, Y. and Ungerstedt, U. Cocaine: an in vivo microdialysis evaluation of its acute action on dopamine transmission in rat striatum. Synapse 3 (1989) 48–54.

    PubMed  CAS  Google Scholar 

  59. Invernizzi, R., Belli, S., and Samanin, R. Citalopram’s ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug’s effect in the frontal cortex. Brain Res. 584 (1992) 322–324.

    PubMed  CAS  Google Scholar 

  60. Jacocks III H. M. and Cox, B. M. Serotonin-stimulated release of [3H]dopamine via reversal of the dopamine transporter in rat striatum and nucleus accumbens: a comparison with release elicited by potassium, N-methyl-D-aspartic acid, glutamic acid and D-amphetamine. J. Pharmacol. Exp. Ther. 262 (1992) 356–364.

    Google Scholar 

  61. Javitch, J. A., Strittmatter, S. M., and Snyder, S. H. Differential visualization of dopamine and norepinephrine uptake sites in rat brain using [3H]mazindol autoradiography. J. Neurosci. 5 (1985) 1513–1521.

    PubMed  CAS  Google Scholar 

  62. Jiang, L. H., Ashby Jr., C. R., Kasser, R. J., and Wang, R. Y. The effect of infra-ventricular administration of the 5-HT3 receptor agonist 2-methylserotonin on the release of dopamine in the nucleus accumbens: An in vivo chronocoulometric study. Brain Res. 513 (1990) 156–160.

    PubMed  CAS  Google Scholar 

  63. Jordan, S., Kramer, G. L., Zukas, P. K., Moeller, M., and Petty, F. In vivo biogenic amine efflux in medial prefrontal cortex with imipramine, fluoxetine, and fluvoxamine. Synapse 18 (1994) 294–297.

    PubMed  CAS  Google Scholar 

  64. Kalivas, P. W. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res. Rev. 18 (1993) 75–113.

    PubMed  CAS  Google Scholar 

  65. Kalivas, P. W., Bourdelais, A., Abhold, R., and Abbott, L. Somatodendritic release of endogenous dopamine: in vivo dialysis in the A10 dopamine region. Neurosci. Lett. 100 (1989) 215–220.

    PubMed  CAS  Google Scholar 

  66. Kalivas, P. W. and Duffy, P. A comparison of axonal and somatodendritic dopamine release using in vivo dialysis. J. Neurochem. 56 (1991) 961–967.

    PubMed  CAS  Google Scholar 

  67. Kalivas, P. W. and Duffy, P. Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J. Neurosci. 13 (1933) 265–275.

    Google Scholar 

  68. Kalivas, P. W. and Duffy, P. Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine perikarya. J. Neurosci. 13 (1933) 276–284.

    Google Scholar 

  69. Kalivas, P. W. and Weber, B. Effects of daily cocaine and morphine treatment on somatodendritic and terminal field dopamine release. J. Neurochem. 50 (1988) 1498–1504.

    PubMed  CAS  Google Scholar 

  70. Kaufman, M., Spealman, R. D., and Madras, B. K. Distribution of cocaine recognition sites in monkey brain: I. In vitro autoradiography with [3H]CFT. Synpase 9 (1991) 177–187.

    CAS  Google Scholar 

  71. Kelland, M. D., Chiodo, L. A., and Freeman, A. S. Anesthetic influences on the basal activity and pharmacological responsiveness of nigrostriatal dopamine neurons. Synapse 6 (1990) 207–209.

    PubMed  CAS  Google Scholar 

  72. Kelland, M. D., Freeman, A. S., and Chiodo, L. A. Chloral hydrate anesthesia alters the responsiveness of identified midbrain dopamine neurons to dopamine agonist administration. Synapse 3 (1989) 30–37.

    PubMed  CAS  Google Scholar 

  73. Kelly, E., Jenner, P., and Marsden, C. D. Evidence that [3H]dopamine is taken up and released from nondopaminergic nerve terminals in the rat substantia nigra in vitro. J. Neurochem. 45 (1985) 137–144.

    PubMed  CAS  Google Scholar 

  74. Kihara, T. and Masato, I. Effects of duloxetine, a new serotonin and norepinephrine uptake inhibitor, on extracellular monoamine levels in rat frontal cortex. J. Pharmacol. Exp. Ther. 272 (1995) 177–183.

    PubMed  CAS  Google Scholar 

  75. Koe, B. K. Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J. Pharmacol. Exp. Ther. 199 (1976) 649–661.

    PubMed  CAS  Google Scholar 

  76. Lacey, M. G., Mercuri, N. B., and North, R. A. Action of cocaine on rat dopaminergic neurones in vitro. Br. J. Pharmacol. 99 (1990) 731–735.

    PubMed  CAS  Google Scholar 

  77. Lategan, A. J., Marien, M. R., and Colpaert, F. C. Effects of locus coeruleus lesions on the release of endogenous dopamine in the rat nucleus accumbens and caudate nucleus as determined by intracerebral microdialysis. Brain Res. 523 (1990) 134–138.

    PubMed  CAS  Google Scholar 

  78. Lategan, A. J., Marien, M. R., and Colpaert, F. C. Suppression of nigrostriatal and mesolimbic dopamine release in vivo following noradrenaline depletion by DSP-4: a microdialysis study. Life Sci. 50 (1992) 995–999.

    PubMed  CAS  Google Scholar 

  79. Levi, G. and Raiteri, M. Carrier-mediated release of neurotransmitters. Trends Neurosci. 16 (1993) 415–419.

    PubMed  CAS  Google Scholar 

  80. Li, M-Y., Yan, Q-S., Coffey, L. L., and Reith, M. E. A. Extracellular dopamine, norepinephrine, and serotonin in the nucleus accumbens of freely moving rats following focal cocaine and other monoamine uptake blockers. J. Neurochem. 66 (1996) 559–568.

    PubMed  CAS  Google Scholar 

  81. Matsumoto, M., Yoshioka, M., Togashi, H., Hirokami, M., Tochihara, M., Ikeda, T., Smith, C. B., and Saito, H. Mu-opioid receptors modulate noradrenaline release from the rat hippocampus as measured by brain microdialysis. Brain Res. 636 (1994) 1–8.

    PubMed  CAS  Google Scholar 

  82. Mennicken, F., Savasta, M., Peretti-Renucci, R., and Feuerstein C. Autoradiographic localization of dopamine uptake sites in the rat brain with 3H-GBR 12935. J. Neural. Transm. 87 (1992) 1–14.

    CAS  Google Scholar 

  83. Moore, R. Y. and Card, J. P. Noradrenaline containing neuron systems. In Böjorklund, A. and Hökfelt T. (eds.), Handbook of Chemical Neuroanatomy, Elsevier, Amsterdam, 1984, pp. 123–153.

    Google Scholar 

  84. Mosko, S. S., Haubrich, D., and Jacobs, B. L. Serotonin afferents to the dorsal raphe nucleus: Evidence from HRP and synaptosomal uptake studies. Brain Res. 119 (1977) 269–290.

    Google Scholar 

  85. Nissbrandt, H., Engberg, G., and Pileblad, E. The effect of GBR12909, a dopamine re-uptake inhibitor, on monoaminergic neurotransmission in rat striatum, limbic forebrain, cortical hemispheres and substantia nigra. NaunynSchmiedebergs Arch. Pharmacol. 344 (1991) 16–28.

    PubMed  CAS  Google Scholar 

  86. Nissbrandt, H., Pileblad, E., and Carlsson, A. Evidence for dopamine release and metabolism beyond the control of nerve impulses and dopamine receptors in rat substantia nigra. J. Pharm. Pharmacol. 37 (1985) 884–889.

    PubMed  CAS  Google Scholar 

  87. Nissbrandt, H., Sundström, E., Jonsson, G., Hjorth, S., and Carlsson, A. Synthesis and release of dopamine in rat brain: comparison between substantia nigra pars compacta, pars reticulata, and striatum. J. Neurochem. 52 (1989) 1170–1182.

    PubMed  CAS  Google Scholar 

  88. Nomikos, G. G., Damsma, G., Wenkstern, D., and Fibiger, H. C. In vivo characterization of locally applied dopamine uptake inhibitors by striatal microdialysis. Synapse 6 (1990) 106–112.

    PubMed  CAS  Google Scholar 

  89. Oades, R. D. and Halliday, G. M. Ventral tegmental (A10) system: 1. anatomy and connectivity. Brain Res. 434 (1987) 117–165.

    PubMed  CAS  Google Scholar 

  90. Okuma, Y. and Osumi, Y. KC1-induced calcium-independent release of dopamine from rat brain slices. Brain Res. 363 (1986) 47–52.

    PubMed  CAS  Google Scholar 

  91. Pacholczyk, T., Blakely, R. D., and Amara, S. G. Expression cloning of a cocaine-and antidepressant-sensitive human noradrenaline transporter. Nature 350 (1991) 350–354.

    PubMed  CAS  Google Scholar 

  92. Pan, WH. T., Lim, L-H., and Shiau, M-R. Difference in extracellular cocaine concentration between the ventral tegmental area and the medial prefrontal cortex following intravenous administration as revealed by quantitative microdialysis coupled with in vivo calibration. J. Neurosci. Meth. 53 (1994) 65–71.

    CAS  Google Scholar 

  93. Parsons, L. H. and Justice, Jr. J. B. Perfusate serotonin increases extracellular dopamine in the nucleus accumbens as measured by in vivo microdialysis. Brain Res. 606 (1993) 195–199.

    PubMed  CAS  Google Scholar 

  94. Parsons, L. H. and Justice, J. B., Jr. Serotonin and dopamine sensitization in the nucleus accumbens, ventral tegmental area, and dorsal raphe nucleus following repeated cocaine administration. J. Neurochem. 61 (1993) 1611–1619.

    CAS  Google Scholar 

  95. Pecci Saavedra, J., Brusco, A., Peressini, S., and Oliva, D. A new case for a presynaptic role of dendrites: an immunocytochemical study of the N. raphe dorsalis. Neurochem. Res. 11 (1986) 997–1009.

    CAS  Google Scholar 

  96. Perry, K. and Fuller, R. W. Effect of fluoxetine on serotonin and dopamine concentration in microdialysis fluid from rat stratum. Life Sci. 50 (1992) 1683–1690.

    PubMed  CAS  Google Scholar 

  97. Pitts, D. K. and Marwah, J. Electrophysiological actions of cocaine on noradrenergic neurons in rat locus coeruleus. J. Pharmacol. Exp. Ther. 240 (1987) 345–341.

    PubMed  CAS  Google Scholar 

  98. Reith, M. E. A., Meisler, B. E., Sershen, H., and Lajtha, A. Structural requirements for cocaine congeners to interact with dopamine and serotonin uptake sites in mouse brain and to induce stereotyped behavior. Biochem. Pharmacol. 35 (1986) 1123–1129.

    PubMed  CAS  Google Scholar 

  99. Richelson, E. and Pfenning, M. Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: most antidepressants selectively block norepinephrine uptake. Eur. J. Pharmacol. 104 (1984) 277–286.

    PubMed  CAS  Google Scholar 

  100. Richfield, E. K. Quantitative autoradiography of the dopamine uptake complex in rat brain using [3H]GBR 12935: Binding characteristics. Brain Res. 540 (1991) 1–13.

    PubMed  CAS  Google Scholar 

  101. Ritz, M. C., Cone, E. J., and Kuhar, M. J. Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study. Life Sci. 46 (1990) 635–645.

    PubMed  CAS  Google Scholar 

  102. Ritz, M. C., Lamb, R. J., Goldberg, S. R., and Kuhar, M. J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237 (1987) 1219–1223.

    PubMed  CAS  Google Scholar 

  103. Robertson, G. S., Damsma, G., and Fibiger, H. C. Characterization of dopamine release in the substantia nigra by in vivo microdialysis in freely moving rats. J. Neurosci. 11 (1991) 2209–2216

    PubMed  CAS  Google Scholar 

  104. Rothman, R. B., Lewis, B., Dersch, C., Xu, H., Radesca, L., de Costa, B. R., Rice, K. C., Kilburn, R. B., Akunne, H. C., and Pert, A. Identification of a GBR12935 homolog, LR1111, which is over 4,000-fold selective for the dopamine transporter, relative to serotonin and norepinephrine transporters. Synapse 14 (1993) 34–39.

    Google Scholar 

  105. Rutter, J. J. and Auerbach, S. B. Acute uptake inhibition increase extracellular serotonin in the rat forebrain. J. Pharmacol. Exp. Ther. 265 (1993) 1319–1324.

    PubMed  CAS  Google Scholar 

  106. Santiago, M. and Westerink, B. H. C. Characterization and pharmacological responsiveness of dopamine release recorded by microdialysis in the substantia nigra of conscious rats. J. Neurochem. 57 (1991) 738–747.

    PubMed  CAS  Google Scholar 

  107. Silvia, C. P., King, G. R., Lee, T. H., Xue, Z-Y., Caron, M. G., and Ellinwood, E. H. Intranigra administration of D2 dopamine receptor antisense oligodeoxynucleotides establishes a role for nigrastriatal D2 autoreceptors in the motor actions of cocaine. J. Pharmacol. Exp. Ther. 46 (1994) 51–57.

    CAS  Google Scholar 

  108. Simon, J. R. and Ghetti, B. Is there a significant somatodendritic uptake of dopamine in the substantia nigra? Evidence from the weaver mutant mouse. Neurochem. Int. 22 (1993) 471–477.

    PubMed  CAS  Google Scholar 

  109. Thomas, D. N., Post, R. M., and Pert, A. Focal and systemic cocaine differentially affect extracellular norepinephrine in the locus coeruleus, frontal cortex and hippocampus of the anaesthetized rat. Brain Res. 645 (1994) 135–142.

    PubMed  CAS  Google Scholar 

  110. Ugedo, L., Grenhoff, J., and Svensson, T. H. Ritanserin, a 5-HT receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology 98 (1989) 45–50.

    PubMed  CAS  Google Scholar 

  111. Wassef, M., Berod, A., and Sotelo, C. Dopaminergic dendrites in the pars reticulata of the rat substantia nigra and their striatal input. Combined immunocytochemical localization of tyrosine hydroxylase and anterograde degeneration. Neuroscience 6 (1981) 2125–2139.

    PubMed  CAS  Google Scholar 

  112. Westerink, B. C. and Devries, J. B. On the origin of dopamine and its metabolite in predominantly noradrenergic innervated brain areas. Brain Res. 330 (1985) 164–166.

    PubMed  CAS  Google Scholar 

  113. Williams, J. and Davies, J. A. The involvement of 5-hydroxytryptamine in the release of dendritic dopamine from slices of rat substantia nigra. J. Pharm. Pharmacol. 35 (1983) 734–737.

    PubMed  CAS  Google Scholar 

  114. Yadid, G., Pacak, K., Kopin, I. J., and Goldstein, D. S. Endogenous serotonin stimulates striatal dopamine release in conscious rats. J. Pharmacol. Exp. Ther. 270 (1994) 1158–1165.

    PubMed  CAS  Google Scholar 

  115. Yi, S. J., Gifford, A. N., and Johnson, K. M. Effect of cocaine and 5-HT3 receptor antagonists on 5-HT-induced [3H] dopamine release from rat striatal synaptosomes. Eur. JPharmacol. 199 (1991) 185–189.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, NH., Reith, M.E.A. (1997). Role of Axonal and Somatodendritic Monoamine Transporters in Action of Uptake Blockers. In: Reith, M.E.A. (eds) Neurotransmitter Transporters. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-470-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-470-2_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5980-8

  • Online ISBN: 978-1-59259-470-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics