Skip to main content

Adaptation in Neuronal Calcium Channels as a Common Basis for Physical Dependence on Central Depressant Drugs

  • Chapter
Psychoactive Drugs

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 113 Accesses

Abstract

There are many ways of approaching the study of drug tolerance and dependence, as exemplified in the various chapters in this book. What we have attempted in this chapter is to take one of the simplest properties of neurones, that is, their electrical excitability, to consider how this might be modified by central depressant drugs and how neurones might therefore adapt to the presence of such drugs. We have then reviewed the neurochemical and behavioral evidence that supports the concept that such adaptation might lead to tolerance and physical dependence. We have, therefore, deliberately oversimplified the situation in an attempt to provide a framework on which more complex explanations can be built. We believe this is justified, not least because it has led to the wide-ranging and testable hypothesis embodied in the title.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan A. M. and Harris R. A. (1986) Anaesthetic and convulsant barbiturates alter -y-aminobutyric acid-stimulated chloride flux across brain membrane. J. Pharmacol. Exp. Ther. 238, 763–768.

    PubMed  CAS  Google Scholar 

  • Allan A. M. and Harris R. A. (1987) Acute and chronic ethanol treatments alter GABA receptor-operated chloride flux. Pharmacol. Biochem. Behay. 27, 665–670.

    Article  CAS  Google Scholar 

  • Armstrong C. M. and Burstock G. (1964) The effects of several ethanols on the properties of the squid giant axon. J. Gen. Physiol. barbiturate48, 265–278.

    Google Scholar 

  • Ascioti C., De Sarro G. B., Meldrum B. S., and Nistico G. (1986) Calcium entry blockers as anticonvulsant drugs in DBA/2 mice. Br. J. Pharmacol. 88, 379 P.

    Article  Google Scholar 

  • Baird J. G. and Nahorski S. R. (1986) Potassium depolarisation markedly enhances muscarinic receptor stimulated inositol tetrakisphosphate accumulation in rat cerebral cortical slices. Biochem. Biophys. Res. Commun. 141, 1130–1137.

    Article  PubMed  CAS  Google Scholar 

  • Barker J. L. and Mathers D. A. (1981) GABA receptors and the depressant action of pentobarbital. Trends in Neurosci. 4, 10–13.

    Article  CAS  Google Scholar 

  • Barker J. L. and Owen D. G. (1986) Electrophysiological pharmacology of GABA and diazepam in cultured CNS Neurones, in Benzodiazepine/GABA Receptors and Chloride Channels: Structure and Function. Alan R. Liss Inc., pp 135–165.

    Google Scholar 

  • Bean B. P. (1984) Nitrendipine block of cardiac calcium channels: high affinity binding to the inactivated state. Proc. Natl. Acad. Sci. 81, 6388–6392.

    Article  PubMed  CAS  Google Scholar 

  • Benedek G. and Sziksay M. (1984) Potentiation of hermoregulatory and analgesic effects of morphine by calcium antagonists. Pharmacol. Res. Comm. 16, 1009–1018.

    Article  CAS  Google Scholar 

  • Ben-Sreti M. M., Gonzales J. P., and Sewell R. D. E. (1983) Effects of elevated calcium and calcium antagonists on 6,7-benzomorphaninduced analgesia. Eur. J. Pharmacol. 90, 385–391.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann M. C., Klee M. W., and Faber D. S. (1974) Different sensitivities to ethanol of early transient voltage clamp currents of Aplysia. Pfug. Arch. Physiol. 348 139–153.

    Article  CAS  Google Scholar 

  • Biscoe T. J., Duchen M. R., and Pascoe J. E. (1983) GABA/ benzodiazepine interactions in the mouse hippocampal slice. J. Physiol. 341, 8P - 9 P.

    Google Scholar 

  • Blaustein M. P. and Ector A. C. (1975) Barbiturate inhibition of calcium uptake by depolarized nerve terminals in vitro. Mol. Pharmacol. 11, 369–378.

    PubMed  CAS  Google Scholar 

  • Blum K., Hamilton M. G., and Wallace, J. E. (1977) Alcohol and opiates: a review of common neurochemical and behavioral mechanisms, in Alcohol and Opiates — Neurochemical and Behavioral Mechanisms. Academic Press, New York, pp 203–236.

    Google Scholar 

  • Boarder M. R., Marriott D., and Adams M. (1986) Stimulus-secretion coupling in cultured chromaffin cells. Dependency on external sodium and on dihydropyridine-sensitive Cat+ channels. Biochem. Pharmacol. 36, 163–167.

    Article  Google Scholar 

  • Bolger T. G., Weissman B. A., and Skolnick P. (1985) The behavioral effect of the calcium agonist BAY K 8644 in the mouse; antagonism by the calcium antagonist nifedipine. Naunyn-Schmiedebergs Arch. Pharmacol. 328, 373–377.

    Article  PubMed  CAS  Google Scholar 

  • Bongianni F., Carla V., Moroni F., and Pellegrini-Giampieto D. E. (1986) Calcium channel inhibitors suppress the morphine withdrawal syndrome in rats. Br. J. Pharmacol. 88, 561–567.

    Article  PubMed  CAS  Google Scholar 

  • v.Bormann B., Boldt J., Sturm G., Kling D., Weidler B., Lohmann E., and Hemplemann G. (1985) Calciumantagonisten in der Analgesic. Additive Analgesie durch Nimodipin wahrend cardiochirurgischer Eingriffe. Anaesthesist 34, 429–434.

    Google Scholar 

  • Bowery N., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., and Turnbull M. (1984) (—)Baclofen decreases neurotransmitter release in the mammalian CNS at a novel GABA receptor. Nature 283, 92–94.

    Article  Google Scholar 

  • Braestrup C., Nielsen M., and Squires R. F. (1979) No changes in benzodiazepine receptors after withdrawal from continuous treatment with lorazepam and diazepam. Life Sci. 24, 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Brown C., Jones B., and Oakley N. R. (1984) Differential rate of tolerance development to the sedative, hypnotic and anticonvulsant effects of benzodiazepines. Proc. 14th CINP Meeting, Florence, c558.

    Google Scholar 

  • Carlen P. L., Gurevich N., and Polc P. (1983a) Low-dose benzodiazepine neuronal inhibition: enhanced Cat+-mediated K +–conductance. Brain Res. 271, 358–364.

    Article  PubMed  CAS  Google Scholar 

  • Carlen P. L., Gurevich N., and Polc P. (1983b) The excitatory effects of the specific benzodiazepine antagonist Ro 14–7434, measured intracellularly in hippocampal CA1 cells. Brain Res. 271, 115–119.

    Article  PubMed  CAS  Google Scholar 

  • Chapman D. and Way E. L. (1980) Metal ion interactions with opiates. Ann. Rev. Pharmacol. Toxicol. 20, 553–579.

    Article  CAS  Google Scholar 

  • Clark J. W., Kalant H., and Carmichael F. J. (1977) Effect of ethanol tolerance on release of acetycholine and norepinephrine by rat cerebral cortical slices. Can. J. Physiol. Pharmacol. 55, 758–768.

    Article  PubMed  CAS  Google Scholar 

  • Collier H. O. J. (1965) A general theory in the genesis of drug dependence by induction of receptors. Nature 205, 181–182.

    Article  PubMed  CAS  Google Scholar 

  • Collier H. O. J. and Francis D. L. (1975) Morphine abstinence is associ- ated with increased brain cyclic AMP. Nature 255, 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Curtis D. R. and Johnston G. A. R. (1974) Amino acid transmitters in the mammalian nervous system. Ergebn. Physiol. 69, 97–188.

    PubMed  CAS  Google Scholar 

  • Davis W. C. and Ticku M. J. (1981) Ethanol enhances [3H]-diazepam binding at the benzodiazepine-GABA receptor-ionophore complex. Mol. Pharmacol. 20, 287–294.

    PubMed  CAS  Google Scholar 

  • Delorme E. M. and McGee R. (1986) Regulation of voltage-dependent Cat+ channels of neuronal cells by chronic changes in membrane potential. Brain Res. 397, 189–192.

    Article  PubMed  CAS  Google Scholar 

  • De Vries D. J., Ward L. C., Wilce P. A., Johnston G. A. R., and Shanley B. C. (1987) Effect of ethanol on the GABAbenzodiazepine receptor in brain, in Advances in Biomedical Alcohol Research Lindros, K. O., Ylikahri, R., and Kiianmaa, K. (eds.) Suppl. 1. Alcohol AND Alcoholism. Pergamon Press, Oxford, New York, pp 657–662.

    Google Scholar 

  • Doble A., Benavides J., Ferrir O., Bertand P., Menager J., Vaucher N., Burgevin M-C., Uzar A., Gueremy C., and Le Fur G. (1985) Dihydropyridine and peripheral type benzodiazepine binding site: subcellular distribution and molecular size. Eur. J. Pharmacol. 119, 153–167.

    Article  PubMed  CAS  Google Scholar 

  • Dolin S. J. and Little H. J. (1986a) Augmentation by calcium channels of general anaesthetic potency in mice. Br. J. Pharmacol. 88, 909–914.

    Article  PubMed  CAS  Google Scholar 

  • Dolin S. J. and Little H. J. (1986b) Effects of the calcium channel antagonist, nitrendipine, on nitrous oxide anaesthesia, tolerance and withdrawal. Anesthesiology,in press.

    Google Scholar 

  • Dolin S. J. and Little H. J. (1986c) The effects of BAY K 8644 on the general anaesthetic potencies of ethanol and argon. Br. J. Pharmacol. 89, 622 P.

    Google Scholar 

  • Dolin S. J. and Little H. J. (1986d) The dihydropyridine, nitrendipine, prevents nitrous oxide withdrawal seizures in mice. Br. J. Addict. 81, 708.

    Google Scholar 

  • Dolin S. J. and Little H. J. (1988) Differential interactions between benzodiazepines and dihydropyridines. Br. J. Pharmacol. 93, 7 P.

    Google Scholar 

  • Dolin S. J., Grant A. J., Hunter A. B., and Little H. J. (1986a) Anticonvulsant profile and whole brain concentrations of nitrendipine and nimodipine. Br. J. Pharmacol. 89, 866 P.

    Google Scholar 

  • Dolin S. J., Little H. J., Littleton J. M., and Pagonis, C. (1986b) Dihydropyridine-sensitive calcium channels are increased in ethanol physical dependence. Br. J. Pharmacol. 90, 210 P.

    Google Scholar 

  • Dolin S. J., Halsey M. J., and Little H. J. (1987a) Antagonism of pentobarbitone and midazolam general anaesthesia by the calcium channel antagonist BAY K 8644. J. Physiol. 384, 18 P.

    Google Scholar 

  • Dolin S. J., Little H. J., Hudspith M., Pagonis C., and Littleton J. (1987b). Increased dihydropyridine-sensitive calcium channels in rat brain may underlie ethanol physical dependence. Neuropharmacology 26, 275–270.

    Article  PubMed  CAS  Google Scholar 

  • Downes H., Perry R. S., Ostlund R. E., and Karler R. (1970) A study of the excitatory effects of barbiturates. J. Pharmacol. Exp. Ther. 175, 692–699.

    PubMed  CAS  Google Scholar 

  • Draski L. J., Johnson J. E., and Isaacson R. L. (1985) Nimodipine’s interactions with other drugs: II. Diazepam. Life Sci. 37, 2123–2128.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie T. V., Worth T. S., and Olsen R. W. (1986) Facilitation of recurrent inhibition in rat hippocampus by barbiturate and related nonbarbiturate depressant drugs. J. Pharmcol. Exp. Ther. 238, 564–575.

    CAS  Google Scholar 

  • Durand D. and Carlen P. L. (1984) Decreased neuronal inhibition in vitro after long-term administration of ethanol. Science 224, 1359–1361.

    Article  PubMed  CAS  Google Scholar 

  • Elrod S. V. and Leslie S. W. (1980) Acute and chronic effects of barbiturates on depolarisation-induced calcium influx into synaptosomes from rat brain regions. J. Pharmacol. Exp. Ther. 212, 131–136.

    PubMed  CAS  Google Scholar 

  • Erickson C. K., Tyler T. D., and Harris R. A. (1978) Ethanol: modification of acute intoxication by divalent cations. Science 199, 1219–1221.

    Article  PubMed  CAS  Google Scholar 

  • Eskuri S. A. and Pozos R. S. (1987) The effect of ethanol and temperature on calcium-dependent sensory neurone action potentials. Alcohol AND Drug Res. 1, 153–162.

    Google Scholar 

  • Ferendelli J. A. and Daniels-McQueen S. (1982) Comparative actions of phenytoin and other anticonvulsant drugs on potassium-and veratridine-stimulated calcium uptake into synaptosomes. J. Pharmacol. Exp. Ther. 220, 29–34.

    Google Scholar 

  • File S. E., Grenn A. R., Nutt D. J., and Vincent N. D. (1984) On the convulsant action of Ro 5–4864 and the existence of a micromolar benzodiazepine binding site in rat brain. Psychopharmacology 82, 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Franckowiak G., Bechem M., Schramm M., and Thomas G. (1985) The optical isomers of the 1,4-dihydropyridine BAY K 8644 show opposite effects on Ca’ channels. Eur. J. Pharmacol. 114, 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Friedman M. B., Erickson C. K., and Leslie S. W. (1980) Effects of acute and chronic ethanol administration on whole mouse brain synaptosomal calcium influx. Biochem. Pharmacol. 29, 1903–1908.

    Article  PubMed  CAS  Google Scholar 

  • Gallager D., Lakoski J. M., Gonsalves S. F., and Rauch S. L. (1984) Chronic benzodiazepine treatment decreases postsynaptic GABA sensitivity. Nature 290, 74–77.

    Article  Google Scholar 

  • Glossman H., Ferry D. R., Lubbecke F., Mewes R., and Hofmann F. (1982) Calcium channels: direct identification with ligand binding sites. Trends Pharmacol. Sci. 3, 431–433.

    Article  Google Scholar 

  • Goldstein D. B. (1972) Relationship of dose to intensity of withdrawal signs in mice. J. Pharmacol. Exp. Ther. 180, 203–215.

    PubMed  CAS  Google Scholar 

  • Goldstein, D. B. and Goldstein, A. (1961) Possible role of enzyme inhibition and repression in drug tolerance and addiction. Biochem. Pharmacol. 8, 48.

    Article  Google Scholar 

  • Goudie A. J. and Demellweek C. (1986) Conditioning factors in drug tolerance, in Behavioral Analysis of Drug Dependence (Goldberg S. R. and Stolerman I. P., eds.) Academic Press Inc., pp 225–285.

    Google Scholar 

  • Gould R. J., Murphy K. M., and Snyder S. B. (1985) Autoradiographic localisation of calcium channel antagonist receptors in rat brain with [3H1-nitrendipine. Brain Res. 330, 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Gray P. and Taberner P. V. (1985) Evidence for GABA tolerance in barbiturate dependent and withdrawn mice. Neuropharmacology 24, 437–444.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg D. A., Cooper E. C., Gordon A., and Diamond I. (1984) Ethanol and the y-aminobutyric acid-benzodiazepine receptor complex. J. Neurochem. 42, 1062–1068.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero-Munoz F., De Lourdes Guerrero M., and Leong-Way E. (1979) Effect of morphine on calcium uptake by lysed synaptosomes. J. Pharmacol. Exp. Ther. 211, 370–374.

    PubMed  CAS  Google Scholar 

  • Haefely W., Pieri L., Pole P., and Schaffner R. (1981) General pharmacology and neuropharmacology of benzodiazepine derivatives, in Handbook of Experimental Pharmacology, Vol 55/II Hoffmeister F. and Stille G., eds. Springer-Verlag, Berlin, Heidelberg, New York, pp 13–262.

    Google Scholar 

  • Hansch C. and Anderson S. M. (1967) The structure—activity relationship in barbiturates and its similarity to that in other narcotics. J. Med. Chem. 10, 745–753.

    Article  PubMed  CAS  Google Scholar 

  • Harper J. and Littleton J. M. (1987) Putative alcohol dependence in adrenal cell cultures. Relationship to Cat+ channel activity. Br. J. Pharmacol. 92, 661 P.

    Google Scholar 

  • Harris R. A. (1981) Ethanol and pentobarbital inhibition of intrasynaptosomal sequestration of calcium. Biochem. Pharmacol. 30, 3209–3215.

    Article  PubMed  CAS  Google Scholar 

  • Harris R. A. and Bruno P. (1985) Membrane disordering by anaesthetic drugs: relationship to synaptosomal sodium and calcium fluxes. J. Neurochem. 44, 1274–1282.

    Article  PubMed  CAS  Google Scholar 

  • Harris R. A. and Hood W. F. (1980) Inhibition of synaptosomal calcium uptake by ethanol. J. Pharmcol. Exp. Ther. 213, 562–568.

    CAS  Google Scholar 

  • Harris R. A. and Stokes J. A. (1982) Effects of a sedative and a convulsant barbiturate on synaptosomal calcium transport. Brain Res. 242, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Harris R. A., Jones S. B., Bruno P., and Bylund D. B. (1985) Effects of dihydropyridine derivatives and anticonvulsant drugs on 13H1-nitrendipine binding and calcium and sodium fluxes in brain. Biochem. Pharmacol. 34, 2187–2191.

    Article  PubMed  CAS  Google Scholar 

  • Harris R. A., Yamamoto H., Loh H. H., and Way E. L. (1977) Discrete changes in brain calcium with morphine analgesia, tolerance-dependence, and abstinence. Life Sci. 20, 501–506.

    Article  PubMed  CAS  Google Scholar 

  • Hescheler J., Rosenthal W., Trautwein W., and Schulz G. (1987) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325, 445–447.

    Article  PubMed  CAS  Google Scholar 

  • Heyer E. J., and Macdonald R. L. (1982) Barbiturate reduction of calcium-dependent action potentials: correlation with anesthetic action. Brain Res. 236, 157–171.

    Article  PubMed  CAS  Google Scholar 

  • Himmelsbach C. K. (1942) Clinical studies of drug addiction. Arch. Int. Med. 69, 766–772.

    Article  Google Scholar 

  • Hof R. P., Hof A., Ruegg U. T., Cook N. S., and Vogel A. (1986) Stereoselectivity at the calcium channel: different profiles of the hemodynamic activity of the enantiomers of the dihydropyridine derivative PN 200–110. J. Cardivasc. Pharmacol. 8, 221–226.

    Article  CAS  Google Scholar 

  • Hoffmeister F. and Tettenborn D. (1986) Calcium agonists and antagonists of the dihydropyridine type: antinociceptive effects, interference with opiate-µ-receptor agonists and neuropharmacological actions in rodents. sychopharmacology 90, 299–307.

    CAS  Google Scholar 

  • Hoffmeister F., Benz U., Heisse A., Krause H. P., and Neuser V. (1982) Behavioral effects of nimodipine in animals. Arzneim.-Forsch.! Drug Res. 32, 347–360.

    CAS  Google Scholar 

  • Hood W. F. and Harris A. R. (1980) Effects of depressant drugs and sulfhydryl reagents on the transport of calcium by isolated nerve endings. Biochem. Pharmacol. 29, 957–959.

    Article  PubMed  CAS  Google Scholar 

  • Hudspith M. J., Brennan C. H., Charles S., and Littleton J. M. (1987) Dihydropyridine-sensitive calcium channels and inositol phospholipid metabolism in ethanol physical dependence. Ann. N. Y. Acad. Sci. 492, 156–170.

    Article  PubMed  CAS  Google Scholar 

  • Hunkeler W., Mohler H., Pieri P., Pole P., Bonetti E. P., Cumin R., Schaffner R., and Haefely W. (1981) Selective antagonists of benzodiazepines. Nature 290, 515–516.

    Article  Google Scholar 

  • Inoue M., Oomura Y., Yakushiji T., and Akaike N. (1986) Intracellular calcium ions decrease the affinity of the GABA receptor. Nature 234, 156–158.

    Article  Google Scholar 

  • Isaacson R. L., Molina J. C., Draski L. J., and Johnston J. E. (1985) Nimodipine’s interactions with other drugs: 1. Ethanol. Life Sci. 36, 2195–2199.

    Article  PubMed  CAS  Google Scholar 

  • Jahsen H. and Laursen A. M. (1981) The effects of a benzodiazepine on the hyperpolarising and the depolarising responses of hippocampal cells to GABA. Brain Res. 207, 214–217.

    Article  Google Scholar 

  • Jensen L. H., Petersen E. N., Braestrup C., Honore T., Kehr W., Stephens D. N., Schneider H. H., Siedelmann D., and Schmiechen R. (1984) Evaluation of the 13-carboline ZK93426 as a benzodiazepine antagonist. Psychopharmacology 83, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Jensen M. S. and Lambert J. D. C. (1983) The interaction of the B-carboline derivative DMCM with inhibitory amino acid responses on cultured mouse neurones. Neurosci. Lett. 40, 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Jensen M. S. and Lambert J. D. C. (1984) Modulation of the responses to the GABA-mimetics, THIP and piperidine-4-sulphonic acid, by agents which interact with benzodiazepine receptors. Neuropharmacology 23, 1441–1450.

    Article  PubMed  CAS  Google Scholar 

  • Kendall D. A. and Nahorski S. R. (1985) Dihydropyridine calcium channel activators and antagonists influence depolarisation-induced inositol phospholipid hydrolysis in brain. Eur. J. Pharmacol. 115, 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Khanna J. M. and Meyer J. M. (1982) An analysis of cross-tolerance among ethanol, other general depressants and opioids. Subst. Alc. ActionslMisuse 3, 243–257.

    CAS  Google Scholar 

  • Khanna J. M., Le A. D., Kalant H., and Leblanc A. E. (1979) Cross-tolerance between ethanol and morphine with respect to their hypothermic effects. Eur. J. Pharmacol. 59, 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Lê A. D., Poulos C. X., and Cappell H. D. (1979) Conditioned tolerance to the hypothermic effect of ethyl alcohol. Science 206, 1109–1110.

    Article  PubMed  Google Scholar 

  • Leslie S. W., Barr E., Judsen C., and Farrah R. P. (1983) Inhibition of fast and slow phase depolarisation dependent synaptosomal calcium uptake by ethanol. J. Pharmacol. Exp. Ther. 225, 571–575.

    PubMed  CAS  Google Scholar 

  • Leslie S. W., Friedman M. B., Wilcox R. E., and Elrod S. V. (1980) Acute and chronic effects of barbiturates on depolarisation-induced calcium influx into rat synaptosomes. Brain Res. 185, 409–417.

    Article  PubMed  CAS  Google Scholar 

  • Liljequist S. and Tabakoff B. (1985) Binding characteristics of [311-flunitrazepam and CL-218,872 in cerebellum and cortex of C57BL mice made tolerant to, and physically dependent on, ethanol. Alcohol 2, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Liljequist S., Culp S., and Tabakoff B. (1986) Effect of ethanol on the binding of [35S]-t-butylbicyclophosphorothionate to mouse brain membranes. Life Sci. 38, 1931–1939.

    Article  PubMed  CAS  Google Scholar 

  • Little H. J. (1984) The effects of benzodiazepine agonists, inverse agonists and Ro 15–1788 on the responses of the superior cervical ganglion to GABA, in vitro. Br. J. Pharmacol. 83, 57–68.

    Article  CAS  Google Scholar 

  • Little H. J. (1987) Chronic benzodiazepine treatment increases the effects of inverse agonists, in Chloride Channels and Their Modulation by Neurotransmitters and Drugs. Adv. Biochem. Psychopharmacol. Biggio G. and Costa E., (eds.) Raven, New York, in press.

    Google Scholar 

  • Little, H. J. and Bichard A. R. (1984) Differential effects of the benzodiazepine antagonist Ro 15–1788 on the “general anaesthetic” effects of the benzodiazepines in mice. Br. J. Anaesth. 56, 1153–1159.

    Article  PubMed  CAS  Google Scholar 

  • Little H. J. and Dolin S. J. (1987) Lack of tolerance to ethanol after concurrent administration of nitrendipine. Br. J. Pharmacol.,in press.

    Google Scholar 

  • Little H. J., Dolin S. J., and Halsey M. J. (1986) Calcium channel antagonists decrease the ethanol withdrawal syndrome. Life Sci. 39, 2059–2065.

    Article  PubMed  CAS  Google Scholar 

  • Littleton J. M. (1983) Tolerance and physical dependence on alcohol at the level of synaptic membranes: a review. J. Roy. Soc. Med. 76, 593–601.

    PubMed  CAS  Google Scholar 

  • Littleton J. M., Harper J., Hudspith M., Pagonis C., Dolin S. J., and Little H. J. (1987) Adaptation in Neuronal Calcium Channels May Cause Alcohol Physical Dependence. British Association of Psychopharmacology Series, “Oxford University Press, in press.

    Google Scholar 

  • Louvel J., Abbes S. and Godfraind J. M. (1986) Effect of organic calcium channel blockers on calcium dependent processes. Exp. Brain. Res. 14, 375–385.

    CAS  Google Scholar 

  • Lucchi L., Govoni S., Battaini F., Passinetti G., and Trabucchi M. (1985) Ethanol administration in vivo alters calcium ions control in rat striatum. Brain Res. 332, 376–379.

    Article  PubMed  CAS  Google Scholar 

  • Lynch M. and Littleton J. M. (1983). Possible association of alcohol tolerance with increased synaptic calcium sensitivity. Nature 303, 175–177.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald R. L. and Barker J. L. (1979) Anticonvulsant and anaesthetic barbiturates: different postsynaptic actions in cultured mammalian neurones. Neurology 29, 432–447.

    Article  PubMed  CAS  Google Scholar 

  • Mansfield J. G. and Cunningham C. L. (1980) Conditioning and extinction of tolerance to the hypothermic effects of ethanol in the rat. J. Comp. Physiol. Psychol. 94, 962–969.

    Article  PubMed  CAS  Google Scholar 

  • Marangos P. J., Patel J., Boulenger J-P., and Clerk-Rosenberg R. (1982) Characterisation of peripheral-type benzodiazepine binding sites in brain using [3H1-Ro 5–4864. Mol. Pharmacol. 22, 26–32.

    PubMed  CAS  Google Scholar 

  • Mathers D. A. and Barker J. L. (1980) (—)Pentobarbital opens ion channels of long duration in cultured mouse spinal neurones. Science 209, 507–509.

    Article  PubMed  CAS  Google Scholar 

  • Mayer J. M., Khanna J. M., and Kalant H. (1980) A role for calcium in the acute and chronic actions of ethanol in vitro. Eur J. Pharmacol. 68, 223–227.

    Article  CAS  Google Scholar 

  • Mayer J. M., Khanna J. M., Kalant H., and Spero L. (1980) Cross-tolerance between ethanol and morphine in the isolated guinea-pig ileum myenteric plexus preparation. Eur. J. Pharmacol. 63, 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Maze M., Mason D. M., and Kates R. E. (1983) Verapamil decreases MAC for halothane in dogs. Anesthesiology 59, 327–329.

    Article  PubMed  CAS  Google Scholar 

  • Mendelsen W. B., Skolnick P., Martin J. V., Luu M. D., Wagner R., and Paul, S. M. (1984a) Diazepam-stimulated increases in the synaptosomal uptake of 45Ca2+: reversal by dihydropyridine calcium channel antagonists. Eur. J. Pharmacol. 104, 181–183.

    Article  Google Scholar 

  • Mendelsen W. B., Owen C., Skolnick P., Paul S. M., Martin J. V., Ko G., and Wagner R. (1984b) Nifedipine blocks sleep induction by flurazepam in the rat. Sleep 7, 64–68.

    Google Scholar 

  • Messing R. O., Carpenter C. L., and Grennberg D. A. (1986) Ethanol regulates calcium channels in clonal neural cells. Proc. Natl. Acad. Sci. U.S.A. 83, 6213–6215.

    Article  PubMed  CAS  Google Scholar 

  • Mestre M., Carriot T., Belin C., Uzan A., Renault C., Dubroeucq M. C., Gueremy C., Doble A., and Le Fur G., (1986) Electrophysiological and pharmacological evidence that peripheral type benzodiazepine receptors are coupled to Cat+ channels in the heart. Life Sci. 36, 391–400.

    Article  Google Scholar 

  • Meyer H. H. (1901) Zw Theorie der Alkaholnarkose. Arch. Exp. Pathol. Pharmakol. 46, 338.

    Article  Google Scholar 

  • Meyer J. M., Khanna J. M., Kalant H., and Sper L. (1980) Cross-tolerance between ethanol and morphine on the isolated guinea-pig ileum myenteric plexus preparation. Eur. J. Pharmacol. 63, 223–227.

    Article  Google Scholar 

  • Middlemiss D. and Spedding M. (1985) A functional correlate for the dihydropyridine binding site in rat brain. Nature 314, 94–96.

    Article  PubMed  CAS  Google Scholar 

  • Miller R. J. (1987) Multiple calcium channels and neuronal function. Science 235, 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Moore J. W., Ulbright W., and Takata M. (1964) Effect of ethanol on the sodium and potassium conductances of the squid giant axon membrane. J. Gen. Physiol. 48, 279–288.

    Article  PubMed  CAS  Google Scholar 

  • Mullin M. J. and Hunt W. A. (1985) Actions of ethanol on voltage-sensitive sodium channels: effects on neurotoxin-stimulated uptake in synaptosomes. J. Pharmacol. Exp. Ther. 232, 413–420.

    PubMed  CAS  Google Scholar 

  • Nestoros J. N. (1980) Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral coflex. Science 209, 708–710.

    Article  PubMed  CAS  Google Scholar 

  • Nicholl R. A., Eccles J. C., Oshima T., and Rubia F. (1975) Prolongation of hippocampal postsynaptic potentials by barbiturates. Nature 258, 625–627.

    Article  Google Scholar 

  • Nishi K. and Oyama Y. (1983) Barbiturates increase the rate of voltage-dependent inactivation of the calcium current in snail neurones. Br. J. Pharmacol. 80, 761–765.

    Article  PubMed  CAS  Google Scholar 

  • Nowycky M. C., Fox A. P., and Tsien R. W. (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316, 440–443.

    Article  PubMed  CAS  Google Scholar 

  • Nutt D. J., Cowen P. J., and Little H. J. (1982) Unusual interactions of benzodiazepine antagonists. Nature 295, 436–439.

    Article  PubMed  CAS  Google Scholar 

  • Olsen R. W. (1982) Drug interactions at the GABA receptor-ionophore complex. Ann Rev. Pharmacol. Toxicol. 22, 245–277.

    Article  CAS  Google Scholar 

  • Overton, E. (1901) Studien uber die Narkose. Jena: Fischer.

    Google Scholar 

  • Pagonis C. and Littleton J. M. (1987) The Cat+ antagonist PN 200–110 inhibits [3H1-dopamine release from nigral but not striatal slices from ethanol-dependent rats. Br. J. harmacol. in press.

    Google Scholar 

  • Panza G., Grebb J. A., Sanna E., Wright A. G., and Hanbauer F. I. (1985) Evidence for down-regulation of [3H1-nitrendipine recognition sites in mouse brain after long-term treatment with nifedipine or verapamil. Neuropharmacology 24, 1113–1117.

    Article  PubMed  CAS  Google Scholar 

  • Paul S. M. and Skolnick P. (1982) Comparative neuropharmacology of antianxiety drugs. Pharmacol. Biochem. Behay. 17, (Suppl.), 37–40.

    Article  CAS  Google Scholar 

  • Paul S. M., Luu M. D., and Skolnick P. (1982) The effects of benzodiazepines on presynaptic calcium transport. In: Pharmacology of Benzodiazepines Usdin E., Skolnick P., Tallman J. F., Greenblatt D., and Paul S. M., eds. Macmillan, London, pp 87–92.

    Google Scholar 

  • Petersen E. N. (1986) BAY K 8644 induces a reversible spasticity-like syndrome in rats. Eur. J. Pharmacol. 130, 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Peyton J. C. and Borowitz J. L. (1979) Chlordiazepoxide and theophylline alter calcium levels in subcellular fractions of rat brain cortex. Proc. Soc. Exp. Biol. Med. 161, 178–182.

    PubMed  CAS  Google Scholar 

  • Pillai N. P. and Ross D. H. (1986) Interaction of K-receptor agonists with Cat+ channel antagonists in the modulation of hypothermia. Eur. J. Pharmacol. 132, 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Polc P., Laurent J. P., Scherschlicht R., and Haefely W. (1981) Electrophysiological studies on the specific benzodiazepine antagonist Ro 15–1788. Naunyn-Schmiedeberg’ s Arch. Pharmacol. 316, 317–325.

    Article  CAS  Google Scholar 

  • Ramajaneyulu R. and Ticku M. K. (1984) Binding characteristics and interactions of depressant drugs with [35S1-butylbicyclophosphorothionate, a ligand that binds to the picrotoxin site. J. Neurochem. 42, 221–229.

    Article  Google Scholar 

  • Ramkumar V. and El-Fakahany E. E. (1984) Increase in [3H]-nitrendipine binding sites in the brain in morphine-tolerant mice. Eur. J. Pharmacol. 102, 371–372.

    Article  PubMed  CAS  Google Scholar 

  • Rampe D. and Triggle D. J. (1986) Benzodiazepine and calcium channel function. Trends Pharmacol. Sci. 7, 461–463.

    Article  CAS  Google Scholar 

  • Ritzmann R. F. and Tabakoff B. (1976) Dissociation of alcohol tolerance and dependence. Nature 263, 418–419.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg H. C. and Chiu T. H. (1979) Decreased [3H]-diazepam binding is a specific response to chronic benzodiazepine treatment. Life Sci. 24, 803–808.

    Article  PubMed  CAS  Google Scholar 

  • Ross D. H., Kibler B. and Cardenas H. L. (1977) Modification of glycoprotein residues as Cat+ receptor sites after chronic ethanol exposure. Drug & Alc. Dep. 2, 305–315.

    Article  CAS  Google Scholar 

  • Rottenberg H., Waring A., and Rubin E. (1981) Tolerance and cross-tolerance in chronic alcoholics: reduced membrane binding of ethanol and other drugs. Science 213, 583–585.

    Article  PubMed  CAS  Google Scholar 

  • Schoemaker H., Smith T. L., and Yamamura H. L. (1983a) Effect of chronic ethanol consumption on central and peripheral type benzodiazepine receptors in the mouse brain. Brain Res. 258, 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Schoemaker H., Lee R., Roeske W. R., and Yamamura H. I. (1983b) In vivo identification of calcium antagonist binding sites using [3H]-nitrendipine. Eur. J. Pharmacol. 88, 275–276.

    Google Scholar 

  • Schon F. and Iversen L. L. (1974) The use of autoradiographic techniques for the identification and mapping of transmitter-specific neurones in the brain. Life Sci. 15, 157–175.

    Article  PubMed  CAS  Google Scholar 

  • Schramm M., Thomas G., Towert R., and Franckowiak G. (1983) Novel dihydropyridines with positive inotropic action through activation of Cat+ channels. Nature 303, 535–537.

    Article  PubMed  CAS  Google Scholar 

  • Schramm M., Towert R., Lamp B., and Thomas G. (1985) Modulation of calcium ion influx by the 1,4-dihydropyridines, nifedipine and BAY K 8644. J. Cardiovasc. Pharmacol. 7, 493–496.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin P. A. and Slawsky M. (1977) Probable calcium spikes in hippocampal neurones. Brain Res. 135, 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Siegel S. (1975) Evidence from rats that morphine tolerance is a learned response. J. Comp. Physiol. Psychol. 5, 498–506.

    Article  Google Scholar 

  • Simmonds M. (1988) Barbiturates and excitatory amino acid interactions, in Excitatory Amino Acids in Health and Disease Lodge D., ed. John Wiley & Sons, Chichester, in press.

    Google Scholar 

  • Sinclair J. D., Adkins J., and Walker S. (1973) Morphine-induced suppression of voluntary alcohol drinking in rats. Nature 246, 425–427.

    Article  PubMed  CAS  Google Scholar 

  • Skerritt J. H., Werz M. A., McLean M. J., and Macdonald R. L. (1984) Diazepam and its anomolous p-chloro-derivative Ro 5–4864: comparitive effects on mouse neurons in cell culture. Brain Res. 310, 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Squires R. F. and Braestrup C. (1977) Benzodiazepine receptors in rat brain. Nature 266, 732–734.

    Article  PubMed  CAS  Google Scholar 

  • Squires R. F., Casida J. E., Richardson M., and Saederup E. (1983) [35S]t-butylbicyclophosphoithionate binds with high affinity to brain specific sites coupled to -y-aminobutyric acid-A and ion recognition sites. Mol. Pharmacol. 23, 326–336.

    PubMed  CAS  Google Scholar 

  • Stephens D. N. and Schneider H. H. (1986) Tolerance to the benzodiazepines in an animal model of anxiolytic activity. Psychopharmacology 87, 322–327.

    Article  Google Scholar 

  • Study R. E. and Barker J. L. (1981) Diazepam and (—)pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of y-aminobutyric acid responses in cultured central neurones. Proc. Natl. Acad. Sci. 78, 7180–7184.

    Article  PubMed  CAS  Google Scholar 

  • Suzdak P., Glowa J. R., Crawley J. N., Schwartz R. D., Skolnick P., and Paul S. M., (1986) A selective imidazodiazepine antagonist of ethanol in the rat. Science 234, 1243–1247.

    Article  PubMed  CAS  Google Scholar 

  • Suetake K., Kojima H., Inanaga K., and Koketsu K. (1981) Catecholamine is released from non-synaptic cell-soma membrane: histochemical evidence in bullfrog sympathetic ganglion cells. Brain Res. 205, 436–440.

    Article  PubMed  CAS  Google Scholar 

  • Supervilai P. and Karobath M. (1984) The interaction of [3H]-PY 108–068 and of [3H1-PN 200–110 with calcium channel binding sites in the rat brain. J. Neural. Trans. 60, 149–167.

    Article  Google Scholar 

  • Sziksay M., Snyder F. R., and London E. D. (1986) Interactions between verapamil and morphine on physiological parameters in rats. J. Pharmacol. Exp. Ther. 238, 192–197.

    Google Scholar 

  • Taft W. C. and de Lorenzo R. J. (1984) Micromolar-affinity benzodiazepine receptors regulate voltage-sensitive calcium channels in rat brain. Proc. Natl. Acad. Sci. U.S.A. 81, 3118–3122.

    Article  PubMed  CAS  Google Scholar 

  • Tambourska E. and Marangos P. J. (1986) Brain benzodiazepine binding sites in ethanol dependent and withdrawn states. Life Sci. 38,. 465–472.

    Article  Google Scholar 

  • Thayer S. A., Murphy S. N., and Miller R. J. (1986) Widespread distribution of dihydropyridine-sensitive calcium channels in the central nervous system. Mol. Pharmacol. 30, 505–509.

    PubMed  CAS  Google Scholar 

  • Thomson T. D. and Turkanis S. A. (1973) Barbiturate-induced release at a frog neuromuscular junction. Br. J. Pharmacol. 48, 48–58.

    Article  PubMed  CAS  Google Scholar 

  • Ticku M. K. (1980) The effects of acute and chronic ethanol administration and its withdrawal on y-aminobutyric acid receptor binding in rat brain. Br. J. Pharmacol. 70, 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Ticku M. K. (1987) Behavioural and functional studies indicate a role for GABAAergic transmission in the actions of ethanol, in Advances in Biomedical Alcohol Research Lindros K. O., Ylikahri R., and Kiianmaa, K. (eds.) Suppl. 1. Alcohol & Alcoholism. Pergamon Press, Oxford, New York, pp 657–662.

    Google Scholar 

  • Ticku M. K. and Burch T. (1980) Alterations in y-aminobutyric acid receptor sensitivity following acute and chronic ethanol treatments. J. Neurochem. 34, 417–423.

    Article  PubMed  CAS  Google Scholar 

  • Turner T. J. and Goldin S. M. (1985) Calcium channels in rat brain synaptosomes: identification and pharmacological characterisation. J. Neurosci. 5, 841–849.

    PubMed  CAS  Google Scholar 

  • Ventham P., Dolin S. J., and Little H. J. (1987) Interactions between morphine and nitrendipine; analgesic and respiratory actions. Br. J. Anaesth,in press.

    Google Scholar 

  • Werz M. A. and Macdonald R. L. (1985) Barbiturates decrease voltage-dependent calcium conductance of mouse neurones in dissociated cell culture. Mol. Pharmacol. 28, 269–277.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Littleton, J.M., Little, H.J. (1989). Adaptation in Neuronal Calcium Channels as a Common Basis for Physical Dependence on Central Depressant Drugs. In: Goudie, A.J., Emmett-Oglesby, M.W. (eds) Psychoactive Drugs. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-464-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-464-1_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6323-2

  • Online ISBN: 978-1-59259-464-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics