Skip to main content

In Vivo Voltammetry and the Neurochemical Control of Movement and Blood Pressure

  • Chapter
Voltammetry in the Neurosciences

Part of the book series: Contemporary Neurosciences ((CNEURO))

  • 87 Accesses

Abstract

The value of in vivo electrochemistry lies in its unique ability to provide nearly continuous measurement of neurotransmitter release from the functioning nervous system. Although the push—pull cannula has yielded important insights into the neurochemistry of dynamic brain function, the physical size of the cannulae, the relatively infrequent sampling periods, and the damage produced to normal brain structures have restricted its use. The new technique of brain dialysis produces less tissue damage than the open cannula system, but it is at present limited in its sampling frequency. Electrophysiology is valuable for studying unit activity in the brain of anesthetized animals, but the technical problem of holding a cell in an awake animal reduces its value for behavioral studies. Also, electrophysiology does not provide direct information about neurochemical events taking place in the brain. We have found that in vivo electrochemistry has been an invaluable tool in our studies of the dynamic neurochemical changes associated with movement and blood pressure regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anden, N. E., Dahlstrom, A., Fuxe, K., and Larsson, K. (1966) Functional role of the nigro-neostriatal dopamine neurons. Acta Pharmacol. Toxicol. 24, 263–274.

    Article  CAS  Google Scholar 

  • Arbuthnott, G. W. and Ungerstedt, U. (1975) Turning behavior induced by electrical stimulation of the nigro-neostriatal system of the rat. Exp. Neurol. 47, 162–172.

    Article  PubMed  CAS  Google Scholar 

  • Barbeau, A. (1969) L-Dopa therapy in Parkinson’s disease: A critical review of nine years’ experience. Canad. Med. Assoc. J. 101, 791–800.

    Google Scholar 

  • Bhaskaran, D. and Freed, C. R. (1984) Changes in systemic blood pressure alter norepinephrine release and serotonin turnover in nucleus tractus solitarius as measured by in vivo electrochemistry. Soc. Neurosci. Abst. 10, 299.

    Google Scholar 

  • Bhaskaran, D. and Freed, C. R. (1985) Effect of blood pressure alterations on neurotransmitter turnover in locus coeruleus as measured by in vivo electrochemisty. Soc Neurosci. Abst. 11, 194.

    Google Scholar 

  • Bhaskaran, D. and Freed, C. R. (1986) Changes in arterial blood pressure lead to baroreceptor mediated changes in norepinephrine and 5-HIAA in rat nucleus tractus solitarius, J. Neurosci, manuscript accepted.

    Google Scholar 

  • Blaha, C. D. and Lane, R. F. (1983) Chemically modified electrodes for in vivo monitoring of brain catecholamines. Brain Res. Bull. 10, 861–864.

    Article  PubMed  CAS  Google Scholar 

  • Buda, M., DeSimoni, G., Gonon, F., and Pujol, J.-F. (1983) Catecholamine metabolism in the rat locus coeruleus as studied by in vivo differential pulse voltammetry. I. Nature and origin of contributors to the oxidation current at +0.1 V. Brain Res. 273, 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Cotzias, G. C., Van Woert, M. H., and Schiffer, L. M. (1967) Aromatic amino acids and modification of parkinsonism. N. Eng. J. Med. 276, 374–378.

    Article  CAS  Google Scholar 

  • Crespi, F., Sharp, T., Maidment, N., and Marsden, C. A. (1983) Differential pulse voltammetry in vivo—evidence that uric acid contributes to the indole oxidation peak. Neurosci. Lett. 43, 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Dayton, M. A., Ewing, A. G., and Wightman, R. M. (1980) Response of microvoltammetric electrodes to homogeneous catalytic and slow heterogeneous charge-transfer reactions. Anal. Chem. 52, 2392–2396.

    Article  CAS  Google Scholar 

  • Echizen, H. and Freed, C. R. (1982) Long-term infusion of L-5-hydroxytryptophan increases brain serotonin turnover and decreases blood pressure in normotensive rats. J. Pharmacol. Exp. Ther. 220, 579–584.

    PubMed  CAS  Google Scholar 

  • Echizen, H. and Freed, C. R. (1983) In vivo electrochemical detection of extraneuronal 5-hydroxyindole acetic acid and norepinephrine in the dorsal raphe nucleus of urethane-anesthetized rats. Brain Res. 277, 55–62.

    CAS  Google Scholar 

  • Echizen, H. and Freed, C. R. (1984a) Altered serotonin and norepinephrine metabolism in rat dorsal raphe nucleus after drug-induced hypertension. Life Sci. 34, 1581–1585.

    Article  PubMed  CAS  Google Scholar 

  • Echizen, H. and Freed, C. R. (1984b) Measurement of serotonin turnover rate in rat dorsal raphe nucleus by in vivo electrochemistry. J. Neurochem. 42, 1483–1486.

    Article  PubMed  CAS  Google Scholar 

  • Echizen, H. and Freed, C. R. (1986) Factors affecting in vivo electrochemistry: Electrode-tissue interaction and the ascorbate amplification effect. Life Sci. 39, 77–89.

    Article  PubMed  CAS  Google Scholar 

  • Ehringer, H. and Hornykiewicz, O. (1960) Verteilung von noradrenalin und dopamin (3-hydroxytyramin) im gehirn des menschen und ihr verhalten bei erkrankungen den extrapyramidalen systems. KIM. Wschr. 38, 1236–1239.

    Article  CAS  Google Scholar 

  • Freed, C. R. and Yamamoto, B. K. (1985) Regional brain dopamine metabolism: A marker for the speed, direction, and posture of moving animals. Science 229, 62–65.

    Article  PubMed  CAS  Google Scholar 

  • Freed, C. R., Wang, C. H., and U’Prichard, D. C. (1984) Regional brain metabolism of alpha-methyldopa and changes in alpha receptor number after long term alpha-methyldopa administration to spontaneously hypertensive rats. Hypertension 6 (suppl. II), 34–39.

    CAS  Google Scholar 

  • Gerhardt, G. A., Oke, A. F., Nagy, G., Moghaddam, B., and Adams, R. N. (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res. 290, 390–395.

    Article  PubMed  CAS  Google Scholar 

  • Gonon, F., Buda, M., Cespuglio, R., Jouvet, M., and Pujol, J.-F. (1980) In vivo electrochemical detection of catechols in the neostriatum of anesthetized rats. Dopamine or DOPAC? Nature 286, 902–904.

    Article  PubMed  CAS  Google Scholar 

  • Gonon, F., Buda, M., Cespuglio, R., Jouvet, M., and Pujol, J.-F. (1981) Voltammetry in the striatum of chronic freely moving rats. Detection of catechols and ascorbic acid. Brain Res. 223, 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Henning, M. and Rubenson, A. (1971) Effects of 5-hydroxytryptophan on arterial blood pressure, body temperature and tissue monoamines in the rat. Acta Pharmacol. Toxicol. 29, 145–154.

    Article  CAS  Google Scholar 

  • Kissinger, P. T., Hart, J. B., and Adams, R. N. (1973) Voltammetry in brain tissue—a new neurophysiological measure. Brain Res. 55, 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Lane, R. F., Hubbard, A. T., and Blaha, C. D. (1979) Application of semidifferential electroanalysis to studies of neurotransmitters in the central nervous system. J. Electroanalyt. Chem. 95, 117–122.

    Article  CAS  Google Scholar 

  • Langer, S. Z., Cavero, I., and Massingham, R. (1980) Recent developments in noradrenergic neurotransmission and its relevance to the mechanism of action of certain antihypertensive agents. Hypertension 2, 372–382.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, M. E. and Freed, C. R. (1981) Acetaminophen as an internal standard for calibrating in vivo electrochemical electrodes. J. Pharmacol. Exp. Ther. 219, 49–53.

    PubMed  CAS  Google Scholar 

  • Morgan, M. E., Yamamoto, B. K., and Freed, C. R. (1984) Unilateral activation of caudate tyrosine hydroxylase during voluntary circling behavior. J. Neurochem. 43, 737–741.

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon, A., Cheramy, A., and Glowinski, J. (1977) Nigral and striatal dopamine release from sensory stimuli. Nature 269, 340–342.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, R. D., Grunewald, R. A., Fillenz, M., and Albery, W. J. (1982) Linear sweep voltammetry with carbon paste electrodes in the rat striatum. Neuroscience 7, 1945–1954.

    Article  PubMed  Google Scholar 

  • O’Neill, R. D., Fillenz, M., Grunewald, R. A., Bloomfield, M. R., Albery, W. J., Jamieson, C. M., Williams, J. H., and Gray, J. A. (1984) Voltammetric carbon paste electrodes monitor uric acid and not 5-HIAA at the 5-hydroxyindole potential in the rat brain. Neurosci. Lett. 45, 39–46.

    Article  PubMed  Google Scholar 

  • Rapport, M. M. (1949) Serum vasoconstrictor (serotonin). V. The presence of creatinine in the complex. A proposed structure of the vasoconstrictor principle. J. Biol. Chem. 180, 961–969.

    PubMed  CAS  Google Scholar 

  • Reis, D. J. (1984) The brain and hypertension: Reflections on 35 years of inquiry into the neurobiology of the circulation. Circulation 70 (suppl. III), 31–45.

    Google Scholar 

  • Salamone, J. D., Lindsay, W. S., Neill, D. B., and Justice, J. B. (1982) Behavioral observation and intracerebral electrochemical recording following administration of amphetamine in rats. Pharmacol. Biochem. Behay. 17, 445–450.

    Article  CAS  Google Scholar 

  • Tadepalli, A. S., Mills, E., and Schanberg, S. M. (1977) Central depression of carotid baroreceptor pressor response, arterial pressure and heart rate by 5-hydroxytryptophan: Influence of supracollicular areas of the brain. J. Pharmacol. Exp. Ther. 202, 310–319.

    PubMed  CAS  Google Scholar 

  • Ungerstedt, U. (1971) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior. Acta. Physiol. Scand. 82, (suppl. 367 ), 49–68.

    Google Scholar 

  • Wang, R. T. and Aghajanian, G. K. (1978) Collateral inhibition of serotonergic neurones in the rat dorsal raphe nucleus: Pharmacological evidence. Neuropharmacology 17, 819–825.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, W. A., Kuhn, D. M., and Lovenberg, W. (1981) Pressor effects of dorsal raphe stimulation and intrahypothalamic application of serotonin in the spontaneously hypertensive rat. Brain. Res. 208, 192–197.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, B. K. and Freed, C. R. (1982) The trained circling rat: A model for inducing unilateral caudate dopamine metabolism. Nature 298, 467–468.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, B. K. and Freed, C. R. (1985) Asymmetric dopamine release in the substantia nigra of rats running on a curved turntable treadmill. Soc. Neurosci. Abst. 11, 1163.

    Google Scholar 

  • Yamamoto, B. K., Lane, R. F., and Freed, C. R. (1982) Normal rats trained to circle show asymmetric caudate dopamine release. Life Sci. 30, 2155–2162.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Freed, C.R. (1987). In Vivo Voltammetry and the Neurochemical Control of Movement and Blood Pressure. In: Justice, J.B. (eds) Voltammetry in the Neurosciences. Contemporary Neurosciences. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-463-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-463-4_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6951-7

  • Online ISBN: 978-1-59259-463-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics