Skip to main content

Introduction to In Vivo Voltammetry

  • Chapter

Part of the book series: Contemporary Neurosciences ((CNEURO))

Abstract

Voltammetry, a well-characterized electroanalytical technique, has recently been shown to be useful for studying the chemistry of the brain. In particular, the easily oxidizable catecholamine and indoleamine neurotransmitters, metabolites, and related compounds can be studied with this technique. Since the original report from the laboratory of R. N. Adams (Kissinger et al., 1973), more than 150 papers have been published on in vivo voltammetry and its application to the study of monoamines in the various points of view (Adams, 1976; 1978; Adams and Marsden, 1982; Hutson and Curzon, 1983; Marsden et al., 1984; Justice et al., 1985). In this introduction chapter, the theory methods, instrumentation, and interpretation of in vivo voltammetric data are discussed in a tutorial fashion in order to provide the reader with a basis for understanding the chapters that follow. Electrochemists will for obvious reasons not find an extensive treatment of voltammetry, nor will pharmacologists, neuro-chemists, and other neuroscientists find a surfeit of detail about the functioning of the central nervous system. Rather, it is hoped that the chapter will introduce the methods and concepts of voltammetry to those who may find it useful in their research on the central nervous system. Additionally, this chapter and the other chapters in the volume should provide an appreciation of some of the goals of in vivo voltammetry to electrochemists so they may become interested in contributing to the considerable work remaining to be done in developing voltammetry in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams R. N. (1969) Electrochemistry at Solid Electrodes Marcel Dekker, New York.

    Google Scholar 

  • Adams R. N. (1976) Probing brain chemistry with electroanalytical techniques. Anal. Chem. 48, 1128A - 1138A.

    Article  Google Scholar 

  • Adams R. N. (1978) In vivo electrochemical recording—a new neurophysiological approach. TINS Dec., 160–163.

    Google Scholar 

  • Adams R. N. and Marsden C. A. (1982) Electrochemical Detection Methods for Monoamine Measurements In Vitro and In Vivo, in Handbook of Psychopharmacology vol. 15 (L. L. Iverson,S. D. Iverson, and S. H. Snyder, eds.) Plenum, New York.

    Google Scholar 

  • Albery W. J., Fillenz M., and O’Neill R. D. (1983) The compartment model for chronically implanted voltammetric electrodes in the rat brain. Neurosci. Lett. 38, 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Anden N. E., Fuxe K., Hamberger B., and Hokfelt T. (1966) A quantitative study on the nigro-neostriatal dopamine neuron system in the rat. Acta Physiol. Scand. 67, 306–312.

    Article  PubMed  CAS  Google Scholar 

  • Anson F. C., Tsou Y. -M., and Savéant J. -M. (1984) Outer-sphere oxidation of ascorbate with Os(bpy)+3 incorporated in nafion coatings on graphite electrodes. J. Electroanal. Chem. 178, 113–127.

    Article  CAS  Google Scholar 

  • Armstrong-James M. and Millar J. (1979) Carbon fibre microelectrodes. J. Neurosci. Meth. 1, 279–287.

    Article  CAS  Google Scholar 

  • Armstrong-James M. and Millar J. (1984) High-Speed Cyclic Voltammetry and Unit Recording With Carbon Fibre Microelectrodes, in Measurement of Neurotransmitter Release In Vivo (C. A. Marsden, ed.) John Wiley, New York.

    Google Scholar 

  • Armstrong-James M., Fox K., and Millar J. (1980a) A method for etching the tips of carbon fibre microelectrodes. J. Neurosci. Meth. 2, 431–432.

    Article  CAS  Google Scholar 

  • Armstrong-James M., Millar J., and Kruk Z. L. (1980b) Quantification of noradrenaline iontophoresis. Nature 288, 181–183.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong-James M., Fox K., Kruk Z. L., and Millar J. (1981) Quantitative ionophoresis of catecholamines using multibarrel carbon fibre microelectrodes. J. Neurosci. Meth. 4, 385 406.

    Google Scholar 

  • Bard A. J. and Faulkner L. R. (1980) Electrochemical Methods John Wiley, New York.

    Google Scholar 

  • Baumann P. A. and Waldmeier P. C. (1984) Negative feedback control of serotonin release in vivo: Comparison of 5-hydroxyindolacetic acid levels measured by voltammetry in conscious rats and by biochemical techniques. Neuroscience 11, 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Blaha C. D. and Lane R. F. (1983) Chemically modified electrode for in vivo monitoring of brain catecholamines. Brain Res. Bull 10, 861–864.

    Article  PubMed  CAS  Google Scholar 

  • Blaha C. D. and Lane R. F. (1984) Direct in vivo electrochemical monitoring of dopamine release in response to neuroleptic drugs. Am. J. Pharmacol. 98, 113–117.

    CAS  Google Scholar 

  • Blakely R. D. and DuVarney R. C. (1983) A microcomputer controlled system for monitoring multiple voltammetric electrodes in vivo. Brain Res. Bull. 10, 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Blakely R. D., Wages S. A., Justice J. B., Herndon J. G., and Neill D. B. (1984) Neuroleptics increase striatal catecholamine metabolites but not ascorbic acid in dialyzed perfusate. Brain Res. 308, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Brazell M. P. and Marsden C. A. (1981) Identification by differential pulse voltammetry of a 5-hydroxyindoleamine oxidation peak in the striatum and frontal cortex of the anesthetized rat. Br. J. Pharmacol. 74, 219 P.

    Google Scholar 

  • Brazell M. P. and Marsden C. A. (1982a) Differential pulse voltammetry in the anesthetized rat: Identification of ascorbic acid, catechol and indoleamine oxidation peaks in the striatum and frontal cortex. Br. J. Pharmacol. 75, 539–547.

    Article  PubMed  CAS  Google Scholar 

  • Brazell M. P and Marsden C. A. (1982b) Intracerebral injection of ascorbate oxidase-effect on in vivo electrochemical recordings. Brain Res. 249, 467–472.

    Article  Google Scholar 

  • Brezina M., Koryta J., Loucka T., Marsikova D., and Pradac J. (1972) Adsorption and kinetics of oxidation of ascorbic acid at platinum electrodes. J. Electroanal. Chem. 40, 13.

    Article  CAS  Google Scholar 

  • Broderick P. A., Blaha C. D., and Lane R. F. (1983) In vivo electrochemical evidience for an enkephalinergic modulation underlying stereotyped behavior: Reversibility by naloxone. Brain Res. 269, 378–381.

    Article  PubMed  CAS  Google Scholar 

  • Broxterman H. J. and Mos J. (1980) Dopamine hypoactivity measured by in vivo voltammetry. Eur. J. Pharmacol. 68, 389–391.

    Article  PubMed  CAS  Google Scholar 

  • Buda M., Gonon F., Cespuglio R., Jouvet M., Pujol J. F. (1981) In vivo electrochemical detection of catechols in several dopaminergic brain regions of anesthetized rats. Eur. J. Pharmacol. 73, 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Buda M., De Simoni G., Gonon F., and Pujol J. (1983) Catecholamine metabolism in the rat locus coeruleus as studied by in vivo differential pulse voltammetry. I. Nature and origin of contributors to the oxidation current at +0.1 V. Brain Res. 273, 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Carslaw H. S. and Jaeger J. C. (1959) Conduction of Heat in Solids. Oxford University, Oxford.

    Google Scholar 

  • Cenas N., Rozgaite J., Pocius A., and Kulys J. (1983) Electrocatalytic oxidation of NADH and ascorbic acid on electrochemically pretreated glassy carbon electrodes. J. Electroanal. Chem. 154, 121–128.

    Article  CAS  Google Scholar 

  • Cespuglio R. (1982) In vivo measurement by differential pulse voltammetry of 5-hydroxyindole compounds. J. Histochem. Cytochem. 30, 821–823.

    Article  PubMed  CAS  Google Scholar 

  • Cespuglio R., Faradji H., and Jouvet M. (1984) Detection by Voltammetry of 5-Hydroxyindole Compounds in Rat Cerebral Cortex: Their Fluctuations During the Sleep-Waking Cycle, in Monoamine Innervation of Cerebral Cortex Alan R. Liss, New York.

    Google Scholar 

  • Cespuglio R., Faradji H., Ponchon J. L. Riou F., Buda M., Gonon F., Pujol J. -F., and Jouvet M. (1981a) In vivo measurement by differential pulse voltammetry of extracellular 5-hydroxyindoleacetic acid in the rat brain. J. Physiol. (Paris) 77, 327–332.

    CAS  Google Scholar 

  • Cespuglio R., Faradji H., Ponchon J. L., Buda M., Riou F., Gonon F., Pujol J. -F., and Jouvet M. (1981b) Differential pulse voltammetry in brain tissue. I. Detection of 5-hydroxyindoles in the rat striatum. Brain Res. 223, 287–298.

    Article  PubMed  CAS  Google Scholar 

  • Cespuglio R., Faradji H., Ponchon J. L., Buda M., Riou F., Gonon F., Pujol J. -F., and Jouvet M. (1981c) Differential pulse voltammetry in brain tissue. II. Detection of 5-hydroxyindoleacetic acid in the rat striatum. Brain Res. 223, 299–311.

    Article  PubMed  CAS  Google Scholar 

  • Cheng H. -Y. (1982) Compartment model for chronoamperometric measurement in vivo. J. Electroanal. Chem. 135, 145–51.

    Article  Google Scholar 

  • Cheng H. -Y., Schenk J. O., Huff R. M., and Adams R. N. (1979a) In vivo electrochemistry: Behavior of micro electrodes in brain tissue. J. Electroanal. Chem. 100, 23–31.

    Article  CAS  Google Scholar 

  • Cheng H. -Y., Strope E., and Adams R. N. (1979b) Electrochemical studies of the oxidation pathways of apomorphine. Anal. Chem. 51, 2243–2246.

    Article  CAS  Google Scholar 

  • Cheng H. -Y., White W., and Adams R. N. (1980) Microprocessor-controlled apparatus for in vivo electrochemical measurement. Anal. Chem. 52, 2445–2448.

    Article  CAS  Google Scholar 

  • Christie J. H., Turner J. A., and Osteryoung R. A. (1977) Square wave voltammetry at the dropping mercury electrode: Theory. Anal. Chem. 49, 1899–1903.

    Article  CAS  Google Scholar 

  • Clemens J. A. and Phebus L. A. (1983) Changes in brain chemistry produced by dopaminergic agents: In vivo electrochemical monitoring reveals opposite changes in anesthetized vs unanesthetized rats. Brain Res. 267, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Conti J. C., Strope E., Adams R. N., and Marsden C. A. (1978) Voltammetry in brain tissue: Chronic recording of stimulated dopamine and 5-hydroxytryptamine release. Life Sci. 23, 2705–2716.

    Article  PubMed  CAS  Google Scholar 

  • Cooper J. R., Bloom F. E., and Roth R. H. (1986) The Biochemical Basis of Neuropharmacology. Oxford University, Oxford.

    Google Scholar 

  • Crank J. (1975) The Mathematics of Diffusion. Oxford University Press, Oxford.

    Google Scholar 

  • Crespi F., Sharp T., Maidment N., and Marsden C. (1983) Differential pulse voltammetry in vivo—evidence that uric acid contributes to the indole oxidation peak. Neurosci. Lett. 43, 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Curzon G. and Hutson P. H. (1981) Monitoring striatal dopamine related circadian changes by automated in vivo voltammetry. J. Physiol. (London) 317, 30p - 31 p.

    Google Scholar 

  • Curzon G., Hutson P. H., and Knott P. J. (1979) Voltammetry in vivo: Effect of stressful manipulations and drugs on the caudate nucleus of the rat. Br. J. Pharmacol. 66, 127P - 128 P.

    Article  PubMed  CAS  Google Scholar 

  • Curzon G., Hutson P. H., and Knott P. J. (1980) Behavioral and voltammetric evidence for involvement of 5-hydroxytryptamine in tail pinch induced gnawing. Br. J. Pharmacol. 70, 132p - 133 p.

    Google Scholar 

  • Cussler E. L. (1984) Diffusion. Cambridge University, Cambridge.

    Google Scholar 

  • Dayton M. A., Brown J. C., Stutts K. J., and Wightman R. M. (1980a) Faradaic electrochemistry at microvoltammetric electrodes. Anal. Chem. 52, 946–950.

    Article  CAS  Google Scholar 

  • Dayton M. A., Ewing A. G., and Wightman R. M. (1980b) The response of microvoltammetric electrodes to homogeneous catalytic and slow heterogeneous charge transfer reactions. Anal. Chem. 52, 2392–2396.

    Article  CAS  Google Scholar 

  • Dayton M. A., Ewing A. G., and Wightman R. M. (1981) Evaluation of amphetamine-induced in vivo electrochemical response. Eur. J. Pharmacol. 75, 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Dayton M. A., Ewing A. G., and Wightman R. M. (1983) Diffusion processes measured at microvoltammetric electrodes in brain tissue. J. Electroanal. Chem. 146, 189–200.

    Article  CAS  Google Scholar 

  • Dautartas M. F. and Evans J. F. (1980) EC catalysis of ascorbic acid oxidation using plasma polymerized vinylferrocene film electrodes. J. Electroanal. Chem. 109, 301–312.

    Article  CAS  Google Scholar 

  • Divac I. and Oberg R. G. E., eds. (1979) The Neostriatum. Pergamon, Oxford.

    Google Scholar 

  • Dom R., Baro F., and Brucher J. M. (1973) A Cytometric Study of the Putamen in Different Types of Huntington’s Chorea, Huntington’s Chroea in (A Barbeau, T. N. Chase, and G. W. Paulson, eds.) Adv. Neurol. 1, Raven, New York.

    Google Scholar 

  • Dong S. and Kuwana T. (1984) Activation of glassy carbon electrodes by dispersed metal oxide particles. I. Ascorbic acid oxidation. J. Electrochem. Soc. 131, 813.

    Article  CAS  Google Scholar 

  • Dryhurst G. (1972) Electrochemical oxidation of uric acid and xanthine at the pyrolytic graphite electrode. J. Electrochem. Soc. 119, 1659–1664.

    Article  CAS  Google Scholar 

  • Dryhurst G. (1977) Electrochemistry of Biological Molecules. Academic, New York.

    Google Scholar 

  • Dryhurst G. and McAllister D. L. (1984) Carbon Electrodes, in Laboratory Techniques in Electroanalytical Chemistry (P. T. Kissinger and W. R. Heineman, eds.) Marcel Dekker, New York.

    Google Scholar 

  • Echizen H. and Freed C. R. (1983) In vivo electrochemical detection of extraneuronal 5-hydroxyindole acetic acid and norepinephrine in the dorsal raphe nucleus of urethane-anesthetized rats. Brain Res. 277, 55–62.

    CAS  Google Scholar 

  • Echizen H. and Freed C. R. (1984) Measurement of serotonin turnover rate in rat dorsal raphe nucleus by in vivo electrochemistry. J. Neurochem. 42, 1483–1486.

    Article  PubMed  CAS  Google Scholar 

  • Evans J. F. and Kuwana T. (1977) Radiofrequency oxygen plasma treatment of pyrolytic graphite electrode surfaces. Anal. Chem. 49, 1632–1635.

    Article  CAS  Google Scholar 

  • Ewing A. G. and Wightman R. M. (1984) Monitoring the stimulated release of dopamine with in vivo voltammetry. II. Clearance of released dopamine from extracellular fluid. J. Neurochem. 43, 570–577.

    Article  PubMed  CAS  Google Scholar 

  • Ewing A. G., Withnell R., and Wightman R. M. (1981a) Instrument design for pulse voltammetry with microvoltammetric electrodes. Rev. Sci. Instrum. 52 (3), 454.

    Article  CAS  Google Scholar 

  • Ewing A. G., Dayton M. A., and Wightman R. M. (1981b) Pulse voltammetry with microvoltammetric electrodes. Anal. Chem. 53, 1842–1847.

    Article  CAS  Google Scholar 

  • Ewing A. G., Wightman R. M., and Dayton M. A. (1982) In vivo voltammetry with electrodes that discriminate between dopamine and ascorbate. Brain Res. 249, 361–370.

    Article  PubMed  CAS  Google Scholar 

  • Ewing A. G., Bigelow J. -C., and Wightman R. M. (1983a) Direct in vivo monitoring of dopamine released from two striatal compartments in the rat. Science 221, 169–171.

    Article  PubMed  CAS  Google Scholar 

  • Ewing A. G., Alloway K. D., Curtis S. D., Dayton M. A., Wightman R. M., and Rebec G. V. (1983b) Simultaneous electrochemical and unit recording measurements: Characterization of the effects of D-amphetamine and ascorbic acid on neostriatal neurons. Brain Res. 261, 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Falat L. and Cheng H. -Y. (1982) Voltammetric differentiation of ascorbic acid and dopamine at an electrochemically treated graphite/epoxy electrode. Anal. Chem. 54, 2108–2111.

    Article  CAS  Google Scholar 

  • Fox K., Armstrong-James M., and Millar J. (1980) The electrical characteristics of carbon fibre microelectrodes. J. Neurosci. Meth. 3, 37–48.

    Article  CAS  Google Scholar 

  • Freed C. R. aand Echizen H. (1983) Factors affecting in vivo electrochemistry: Electrode modification by brain tissue and amplification of catecholamine responses by ascorbic acid. Abs. Soc. Neurosci. 9, 999.

    Google Scholar 

  • Galus Z., Schenk J. O., and Adams R. N. (1982) Electrochemical behavior of very small electrodes in solution. Double potential step, cyclic voltammetry and chronopotentiometry with current reversal. J. Electroanal. Chem. 135, 1–11.

    Article  CAS  Google Scholar 

  • Gardner-Medwin A. R. (1980) Fundamental Biophysical Issues, in Dynamics of the Brain Cell Microenvironment Neurosci. Res. Prog. Bull. vol. 18 ( C. Nicholson, ed.) MIT, Cambridge.

    Google Scholar 

  • Gerhardt G. A. and Adams R. N. (1982) Battery-powered apparatus for chronoamperometric measurements. Anal. Chem. 54, 1888–1889.

    Article  CAS  Google Scholar 

  • Gerhardt G. A., Oke A. F., Nagy G., Moghaddam B., and Adams R. N. (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res. 290, 390–395.

    Article  PubMed  CAS  Google Scholar 

  • Gonon F. G. and Buda M. J. (1985) Regulation of dopamine release by impulse flow and by autoreceptors as studied by in vivo voltammetry in the rat striatum. Neuroscience 14, 765–774.

    Article  PubMed  CAS  Google Scholar 

  • Gonon F., Cespuglio R., Ponchon J. -L., Buda M., Jouvet M., Adams R. N., and Pujol J. -F. (1978) Mesure électrochimique continue de la libération de dopamine réalisée dans le néostriatum du rat. Comptes Rendus de l’Academie des Sciences 286, 1203–1206.

    CAS  Google Scholar 

  • Gonon F., Buda M., Cespuglio R., Jouvet M., and Pujol J. -F. (1980) In vivo electrochemical detection of catechols in the neostriatum of anesthetized rats: Dopamine or DOPAC? Nature 286, 902–904.

    Article  PubMed  CAS  Google Scholar 

  • Gonon F., Buda M., Cespuglio R., Jouvet M., and Pujol J. -F. (1981a) Voltammetry in the striatum of chronic freely moving rats: Detection of catechols and ascorbic acid. Brain Res. 223, 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Gonon F. G., Fombarlet C. M., Buda M. J., and Pujol J. -F. (1981b) Electrochemical treatment of pyrolytic carbon fiber electrodes. Anal. Chem. 53, 1386–1389.

    Article  CAS  Google Scholar 

  • Gonon F., Buda M., de Simoni G., and Pujol J. -F. (1983) Catecholamine metabolism in the rat locus coeruleus as studied by in vivo differential pulse voltammetry. II. Pharmacological and behavioral study. Brain Res. 273, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Gonon F. G., Navarre F., and Buda M. J. (1984) In vivo monitoring of dopamine release in the rat brain with differential normal pulse voltammetry. Anal. Chem. 56, 573.

    CAS  Google Scholar 

  • Goto M. and Ishii D. (1975) Semidifferential electroanalysis. Electroanalyt. Chem. Interfac. Electrochem. 61, 361–365.

    Article  CAS  Google Scholar 

  • Hawley M. D., Tatawawadi S. V., Piekarski S., and Adams R. N. (1967) Electrochemical studies of the oxidation pathways of catecholamines. J. Am. Chem. Soc. 89, 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Hefti F. and Melamed E. (1981) Dopamine release in rat striatum after administration of L-DOPA as studied with in vivo electrochemistry. Brain Res. 225, 333–346.

    Article  PubMed  CAS  Google Scholar 

  • Horn A. S., Korf J., and Westerink B. H. C., eds. (1979) The Neurobiology of Dopamine, Academic, London.

    Google Scholar 

  • Hubbard A. T. and Anson F. C. (1970) The Theory and Practice of Electrochemistry With Thin Layer Cells, in Electroanalytical Chemistry vol. 4 (A. J. Bard, ed.) Marcel Dekker, New York.

    Google Scholar 

  • Huff R. M. and Adams R. N. (1980) Dopamine release in N. accumbens and striatum by clozapine: Simultaneous monitoring by in vivo electrochemistry. Neuropharmacol. 19, 587–590.

    CAS  Google Scholar 

  • Huff R. M., Adams R. N., and Rutledge C. O. (1979) Amphetamine dose-dependent changes of in vivo electrochemical signals in rat caudate. Brain Res. 173, 369–372.

    Article  PubMed  CAS  Google Scholar 

  • Hutson P. H. and Curzon G. (1983) Monitoring in vivo of transmitter metabolism by electrochemical methods. Biochem. J. 211, 1–12.

    PubMed  CAS  Google Scholar 

  • Ikeda M., Hirata Y., Fujita K., Shinzato M., Takahashi H., Yagyu S., and Nagatsu T. (1984) Effects of stress on release of dopamine and serotonin in the striatum of spontaneously hypertensive rats: An in vivo voltammetric study. Neurochem. Int. 6, 509–512.

    Article  PubMed  CAS  Google Scholar 

  • Justice Jr., J. B. and Jaramillo A. (1984) Selectivity and kinetics of catecholamine oxidation at modifed carbon paste electrodes. J. Electrochem. Soc. 131, 106C.

    Article  Google Scholar 

  • Justice Jr., J. B., Lindsay W. S., Kizzort B. L., Neill D. B., and Salamone J. D. (1980) Neurochemical monitoring with a microcomputer controlled electrochemical system. Proc. 2nd Ann. Conf. Engineer. Med. Biol. Soc. of IEEE 2, 46–50.

    Google Scholar 

  • Justice Jr., J. B., Michael A. C., and Neill D. B. (1985) In Vivo Voltammetry, in Neuromethods vol. 1 ( A. A. Boulton, G. B. Baker, J. M. Baker, eds.) Humana, New Jersey.

    Google Scholar 

  • Justice Jr., J. B., Wages S. A., Michael A. C., Blakely R. D., and Neill D. B. (1983) Interpretations of voltammetry in the striatum based on chromatography of striatal dialysate. J. Liquid Chromatogr. 6, 1873–1896.

    Article  CAS  Google Scholar 

  • Karabinas R. and Jannakoudakis D. (1984) Kinetic parameters and mechanism of the electrochemical oxidation of L-ascorbic acid on platinum electrodes in acid solutions. J. Electroanal. Chem. 160, 159–167.

    Article  CAS  Google Scholar 

  • Kato T., Ishii K., and Ikeda M. (1984) Voltammetry in unanesthetized rat: Increases of striatal dopamine turnover after unilateral haloperidol injection into the substantia nigra. Neurosci. Lett. 50, 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Keller Jr., R. W., Stricker E. M., and Zigmond M. J. (1983) Environmental stimuli but not homeostatic challenges produce apparent increases in dopaminergic activity in the striatum: An analysis by in vivo voltammetry. Brain Res. 279, 159–170.

    Article  PubMed  Google Scholar 

  • Kennett G. A. and Joseph M. H. (1982) Does in vivo voltammetry in the hippocampus measure 5-HT release? Brain Res. 236, 305–316.

    Article  PubMed  CAS  Google Scholar 

  • Kern, D. M. H. (1954) The polarographic oxidation potential of ascorbic acid. J. Am. Chem. Soc. 76, 1011.

    Article  CAS  Google Scholar 

  • Kissinger P. T. and Heineman W. R. eds. (1984) Laboratory Techniques in Electroanalytical Chemistry Marcel Dekker, New York.

    Google Scholar 

  • Kissinger P. T., Hart J. B., and Adams R. N. (1973) Voltammetry in brain tissue—a new neurophysiological measurement. Brain Res. 55, 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Kruk Z. L., Armstrong-James M., and Millar J. (1980) Measurement of the concentration of 5-hydroxytryptamine ejected during iontophoresis using multibarrel carbon fibre microelectrodes. Life Sci. 27, 2093–2098.

    Article  PubMed  CAS  Google Scholar 

  • Kuhr W. G., Ewing A. G., Caudill W. L., and Wightman R. M. (1984) Monitoring the stimulated release of dopamine with in vivo voltammetry. I. Characterization of the response observed in the caudate nucleus of the rat. J. Neurochem. 43, 560–569.

    Article  PubMed  CAS  Google Scholar 

  • Lamour Y., Rivot J. P., Pointis D., and Ory-Lavollee L. (1983) Laminar distribution of serotonergic innervation in rat somatosensory cortex, as determined by in vivo electrochemical detection. Brain Res. 259, 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Lane R. F. and Hubbard A. T. (1976) Differential double pulse voltammetry at chemically modified platinum electrodes for in vivo determination of catecholamines. Anal. Chem. 48, 1287–1293.

    Article  PubMed  CAS  Google Scholar 

  • Lane R. F. Hubbard A. T., Fukunaga K., and Blanchard R. J. (1976) Brain catecholamines: Detection in vivo by means of differential pulse voltammetry at surface-modified platinum electrodes. Brain Res. 114, 346–352.

    Google Scholar 

  • Lane R. F., Hubbard A. T., and Blaha C. D. (1978) Brain dopaminergic neurones: In vivo electrochemical information concerning storage, metabolism and release processes. Bioelectrochem. Bioenerget. 5, 504–525.

    Article  CAS  Google Scholar 

  • Lane R. F., Hubbard A. T., and Blaha C. D. (1979) Application of semidifferential electroanalysis to studies of neurotransmitters in the central nervous system. J. Electroanal. Chem. 95, 117–122.

    Article  CAS  Google Scholar 

  • Lindsay W. S., Justice Jr., J. B., and Salamone J. D. (1980a) Simulation studies of in vivo electrochemistry. Comp. Chem. 4, 19–26.

    Article  CAS  Google Scholar 

  • Lindsay W. S., Kizzort B. L., Justice Jr., J. B., Salamone J. D., and Neill D. B. (1980b) An automated electrochemical method for in vivo monitoring of catecholamine release. J. Neurosci Meth. 2, 373–388.

    Article  CAS  Google Scholar 

  • Lindsay W. S., Kizzort B. L., Justice Jr., J. B., Salamone J. D., and Neill D. B. (1980c) Microcomputer controlled multielectrode system for in vivo electrochemistry. Chem. Biomed. Environ. Instrument. 10, 311–330.

    Article  CAS  Google Scholar 

  • Lindsay W. S., Herndon Jr., J. G., Blakely R. D., Justice Jr., J. B., and Neill D. B. (1981) Voltammetric recording from neostriatum of behaving rhesus monkey. Brain Res. 220, 391–396.

    Article  PubMed  CAS  Google Scholar 

  • Louilot A., Buda M., Gonon F., Simon H., Le Moal M., and Pujol J. F. (1985) Effect of haloperidol and sulpiride on dopamine metabolism in nucleus accumbens and olfactory tubercle: A study by in vivo voltammetry. Neuroscience 14, 775–782.

    Article  PubMed  CAS  Google Scholar 

  • Marsden C. A. (1979a) Functional aspects of 5-hydroxytryptamine neurones. Application of electrochemical monitoring in vivo. Trends Neurosci. 2, 230–234.

    Article  Google Scholar 

  • Marsden C. A. (1979b) Evidence for the release of hippocampal 5-hydroxytryptamine by a-methyltryptamine. Br. J. Pharmacol. 67, 438P - 439 P.

    PubMed  CAS  Google Scholar 

  • Marsden C. A. (1980) Involvement of 5-hydroxytryptamine and dopamine neurones in the behavioural effects of a-methyltryptamine. Neuropharmacology 19, 691–698.

    Article  PubMed  CAS  Google Scholar 

  • Marsden C. A., Conti J. C., Strope E., Curzon G., and Adams R. N. (1979) Monitoring 5-hydroxytryptamine release in the brain of the freely moving unanesthetized rat using in vivo voltammetry. Brain Res. 171, 85–99.

    Article  PubMed  CAS  Google Scholar 

  • Marsden C. A., Bennett G. W., Brazell M., Sharp T., and Stolz J. F. (1981) Electrochemical monitoring of 5-hydroxytryptamine release in vitro and related in vivo measurements of indoleamines. J. Physiol. (Paris) 77, 333–337.

    CAS  Google Scholar 

  • Marsden C. A., Brazell M. P., and Maidment N. T. (1984) An Introduction to In Vivo Electrochemistry, in Measurement of Neurotransmitter Release In Vivo ( C. A. Marsden, ed.) John Wiley, New York.

    Google Scholar 

  • McCreery R. L., Dreiling R., and Adams R. N. (1974a) Voltammetry in brain tissue: Quantitative studies of drug interactions. Brain Res. 73, 23–33.

    Article  PubMed  CAS  Google Scholar 

  • McCreery R. L., Dreiling R., and Adams R. N. (1974b) Voltammetry in brain tissue: The fate of injected 6-hydroxydopamine. Brain Res. 73, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • McRae-Degueurce A., Serrano A., Sandillon F., Privat A., and Scatton B. (1984) In vivo voltammetric measurement of extracellular 5-hydroxyindoleacetic acid in the denervated striatum after transplantation of mesencephalic raphe neurons. Neurosci Lett. 48, 97–102.

    CAS  Google Scholar 

  • Michael A. C., Justice Jr., J. B., and Neill D. B. (1985) In vivo voltammetric determination of the kinetics of dopamine metabolism in the rat. Neurosci. Lett. 56, 365–369.

    CAS  Google Scholar 

  • Millar J., Armstrong-James M., and Kruk Z. L. (1981) Polargraphic assay of iontophoretically applied dopamine and low-noise unit recording using a multibarrel carbon fibre microelectrode. Brain Res. 205, 419–424.

    Article  PubMed  CAS  Google Scholar 

  • Morgan M. E. and Freed C. R. (1981) Acetaminophen as an internal standard for calibrating in vivo electrochemical electrodes. J. Pharmacol. Exp. Ther. 219, 49–53.

    PubMed  CAS  Google Scholar 

  • Mos J., Broxterman H. J., and van Bennekom W. P. (1981) In vivo voltammetric investigations into the action of HA-966 on central dopaminergic neurons. Brain Res. 207, 465–470.

    Article  PubMed  CAS  Google Scholar 

  • Mueller K., Palmour R., Andrews C. D., and Knott P. J. (1985) In vivo voltammetric evidence of production of uric acid by rat caudate. Brain Res. 335, 231–235.

    CAS  Google Scholar 

  • Nagy G., Rice M. E., and Adams R. N. (1982) A new type of enzyme electrode: The ascorbic acid eliminator electrode. Life Sci. 31, 2611–2616.

    Article  PubMed  CAS  Google Scholar 

  • Nagy G., Gerhardt G. A., Oke A. F., Rice M. E., and Adams R. N. (1985) Ion exchange and transport of neurotransmitters in nafion films on conventional and microelectrode surfaces. J. Electroanal. Chem. 188, 85–94.

    Article  CAS  Google Scholar 

  • Nicholson C. (1980) Dynamics of the brain cell microenvironment. Neurosci. Res. Prog. Bull. 18(2), MIT, Cambridge.

    Google Scholar 

  • Nicholson C. and Phillips J. M. (1979) Diffusion of anions and cations in the extracellular microenvironment of the brain. J. Physiol. 296, 66 P.

    Google Scholar 

  • Nicholson R. S. and Shain I. (1964) Theory of stationary electrode polarography. Anal. Chem. 36, 706–723.

    Article  CAS  Google Scholar 

  • O’Dea J. J., Osteryoung J., and Osteryoung R. A. (1981) Theory of square wave voltammetry for kinetic systems. Anal. Chem. 53, 695–701.

    Article  Google Scholar 

  • Oldham K. B. (1969) A new approach to the solution of electrochemical problems involving diffusion. Anal. Chem. 41, 1904–1905.

    Article  CAS  Google Scholar 

  • Oldham K. B. (1973) Semiintegral electroanalysis: Analog implementation. Anal. them. 45, 39–43.

    Article  CAS  Google Scholar 

  • Oldham K. B. (1981) An algorithm for semiintegration, semidifferentiation and other instances of differintegration. J. Electroanal. Chem. 121, 341–342.

    Article  Google Scholar 

  • O’Neill R. D. and Fillenz M. (1985) Detection of homovanillic acid in vivo using microcomputer-controlled voltammetry: Simultaneous monitoring of rat motor activity and striatal dopamine release. Neuroscience 14, 753–763.

    Article  PubMed  Google Scholar 

  • O’Neill R. D., Fillenz M., and Albery W. J. (1982a) Circadian changes in homovanillic acid and ascorbate levels in the rat striatum using microprocessor-controlled voltammetry. Neurosci. Lett. 34, 189–193.

    Article  PubMed  Google Scholar 

  • O’Neill R. D., Grunwald R. A., Fillenz M., and Albery W. J. (1982b) Linear sweep voltammetry with carbon paste electrodes in the rat striatum. Neuroscience 7, 1945–1954.

    Article  PubMed  Google Scholar 

  • O’Neill R. D., Fillenz M., and Albery W. J. (1983a) The development of linear sweep voltammetry with carbon paste electrodes in vivo. J. Neurosci. Meth. 8, 263–273.

    Article  Google Scholar 

  • O’Neill R. D., Fillenz M., Albery W. J., and Goddard N. J. (1983b) The monitoring of ascorbate and monoamine transmitter metabolites in the striatum of unanesthetized rats using microprocessor-based voltammetry. Neuroscience 9, 87–93.

    Article  PubMed  Google Scholar 

  • O’Neill R. D., Grunewald R. A., Fillenz M., and Albery W. J. (1983c) The effect of unilateral cortical lesions on the circadian changes in rat striatal ascorbate and homovanillic acid levels measured in vivo using voltammetry. Neurosci. Lett. 42, 105–110.

    Article  PubMed  Google Scholar 

  • Ory-Lavollee L., Pointis D., Lamour Y., Chiang C. Y., and Rivot J. P. (1984) In vivo electrochemical detection of 5-hydroxyindoles in rat cerebral cortex and spinal cord: Differential effects of p-chloroamphetamine, probenecid and clorgyline. Neurosci. Lett. 50, 231–237.

    CAS  Google Scholar 

  • Osteryoung J. G. and Osteryoung R. A. (1985) Square wave voltammetry. Anal. Chem. 57, 101A - 110A.

    Article  CAS  Google Scholar 

  • Papouchado L., Petrie G., and Adams R. N. (1972) Anodic oxidation pathways of phenolic compounds. I. Anodic hydroxylation reactions. J. Electroanal. Chem. 38, 389–395.

    Article  CAS  Google Scholar 

  • Pasik P., Pasik T., and DiFiglia M. (1979) The Internal Organization of the Neostriatum in Mammals, in The Neostriatum ( I. Divac and R. G. E. Oberg, eds.) Pergamon, New York.

    Google Scholar 

  • Perone S. P. and Kretlow W. J. (1966) Application of controlled potential techniques to study of rapid succeeding chemical reaction coupled to electro-oxidation of ascorbic acid. Anal. Chem. 38, 1760.

    Article  CAS  Google Scholar 

  • Plotsky P. M. and Neill J. D. (1982) The decrease in hypothalamic dopamine secretion induced by suckling: Comparison of voltammetric and radioisotopic methods of measurement. Endocrinology 110, 691–696.

    Article  PubMed  CAS  Google Scholar 

  • Plotsky P. M., DeGreef W. J., and Neill J. D. (1982) In situ voltammetric microelectrodes: Application to the measurement of median eminence catecholamine release during simulated suckling. Brain Res. 250, 251–252.

    Article  PubMed  CAS  Google Scholar 

  • Ponchon J. -L., Cespuglio R., Gonon F., Jouvet M., and Pujol J. F. (1979) Normal pulse polarography with carbon fiber electrodes for in vitro and in vivo determination of catecholamines. Anal. Chem. 51, 1483–1486.

    Article  PubMed  CAS  Google Scholar 

  • Ramaley L. and Krause Jr., M. S. (1969) Theory of square wave voltammetry. Anal. Chem. 41, 1362–1369.

    Article  CAS  Google Scholar 

  • Rice M. E., Galus Z., and Adams R. N. (1983) Graphite paste electrodes. Effects of paste composition and surface states on electron-transfer rates. J. Electroanal. Chem. 143, 89–102.

    Article  CAS  Google Scholar 

  • Rice M. E., Gerhardt G. A., Hierl P. M., Nagy G., and Adams R. N. (1985) Diffusion coefficients of neurotransmitters and their metabolites in brain extracellular fluid space. Neuroscience 15, 891–902.

    Article  PubMed  CAS  Google Scholar 

  • Rivot J. P., Chiang C. Y., and Besson J. M. (1982) Increase of serotonin metabolism within the dorsal horn of the spinal cord during nucleus raphe magnus stimulation, as revealed by in vivo electrochemical detection. Brain Res. 238, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Rivot J. P., Lamour Y., Ory-Lavollee L., Pointis D. (1983a) In vivo electrochemical detection of 5-hydroxyindoles in rat somatosensory cortex: Effect of the stimulation of the serotonergic pathways in normal and pCPA-pretreated animals. Brain Res. 275, 164–168.

    Article  PubMed  CAS  Google Scholar 

  • Rivot J. P., Ory-Lavollee L., and Chiang C. Y. (1983b) Differential pulse voltammetry in the dorsal horn of the spinal cord of the anesthetized rat: Are the voltammograms related to 5-HT and/or to 5-HIAA? Brain Res. 275, 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz J. J., Aldaz A., and Dominguez M. (1977a) Mechanism of L-ascorbic acid oxidation and dehydro-L-ascorbic acid reduction on a mercury electrode. I. Acid medium. Can. J. Chem. 55, 2799.

    Article  CAS  Google Scholar 

  • Ruiz J. J., Aldaz A., and Dominguez M. (1977b) Mechanism of L-ascorbic acid oxidation on a mercury electrode. II. Basic medium. Can. J. Chem. 56, 1533.

    Article  Google Scholar 

  • Salamone J. D., Lindsay W. S., Neill D. B., and Justice Jr., J. B. (1982) Behavioral observation and intracerebral electrochemical recording following adminstration of amphetamine in rats. Pharmacol. Biochem. Behay. 171, 445–450.

    Article  Google Scholar 

  • Salamone J. D., Hamby L. S., Neill D. B., and Justice J. B. (1984) Extra-cellular ascorbic acid increases in striatum following systemic amphetamine. Pharmacol. Biochem. Behay. 20, 609–612.

    Article  CAS  Google Scholar 

  • Schenk J. O. and Adams R. N. (1984) Chronoamperometric Measurements in the Central Nervous System, in Measurement of Neurotransmitter Release In Vivo, ( C. A. Marsden, ed.) John Wiley, New York.

    Google Scholar 

  • Schenk J. O., Miller E., Gaddis R., and Adams R. N. (1982) Homeostatic control of ascorbate concentration in CNS extracellular fluid. Brain Res. 253, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Schenk J. O., Miller E., and Adams R. N. (1983) Chronoamperometry in brain slices: Quantitative evaluation of in vivo electrochemistry. Brain Res. 277, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Seib P. A. and Tolbert B. M., eds. (1982) Ascorbic Acid: Chemistry, Metabolism and Uses, in Advances in Chemistry Series vol. 200, American Chemical Society, Washington, DC.

    Google Scholar 

  • Sharp T., Maidment N. T., Brazell M. P., Zetterstrom T., Ungerstedt U., Bennett G. W., and Marsden C. A. (1984) Changes in monoamine metabolites measured by simultaneous in vivo differential pulse voltammetry and intracerebral dialysis. Neuroscience 12, 1213–1221.

    Article  PubMed  CAS  Google Scholar 

  • Stamford J. A. and Kruk Z. L. (1984) Striatal dopamine uptake: In vivo analysis by fast cyclic voltammetry. Neurosci. Lett. 51, 133–138.

    Article  PubMed  CAS  Google Scholar 

  • Stamford J. A., Kruk Z. L., and Millar J. (1984) A double-cycle highspeed voltammetric technique allowing direct measurement of irreversibly oxidized species: Characterization and application to the temporal measurement of ascorbate in the rat central nervous system. J. Neurosci. Meth. 10, 107–118.

    Article  CAS  Google Scholar 

  • Sternson A. W., McCreery R., Feinberg B., and Adams R. N. (1973) Electrochemical studies of adrenergic neurotransmitters and related compounds. J. Electroanal. Chem. 46, 313–321.

    Article  CAS  Google Scholar 

  • Stutts K. J. and Wightman R. M. (1983) Electrocatalysis of ascorbate oxidation with electrosynthesized, surface-bound mediators. Anal. Chem. 55, 1576–1579.

    Article  CAS  Google Scholar 

  • Takamura K. and Sakamoto M. (1980) Catalytic effects of metal submonolayers formed by Faradaic adsorption on the anodic oxidation of ascorbic acid at a platinum electrode. J. Electroanal. Chem. 113, 273–283.

    Article  CAS  Google Scholar 

  • Treff W. M. (1964) Numerische and volumenzelldichte im caudatum mediale: Mit besonderer berücksichtigung des quantitativen answertungsfehlers bei zellzählung. Prog. Brain Res. 6, 139–146.

    Article  Google Scholar 

  • Tse, D. C. S., McCreery R. L., and Adams R. N. (1976) Potential oxida- tive pathways of brain catecholamines. J. Med. Chem. 19, 37.

    Article  PubMed  CAS  Google Scholar 

  • Verbiese-Genard N., Kauffmann J. M., Hanocq M., and Molle L. (1984) Study of the electrooxidative behaviour of 5-hydroxyindole-3-acetic acid, 5-hydroxytryptophan and serotonin in the presence of sodium ethylenediaminetetraacetic acid. J. Electroanal. Chem. 170, 243–254.

    Article  CAS  Google Scholar 

  • Westerink B. H. C. (1979) The Effects of Drugs on Dopamine Biosynthesis and Metabolism in the Brain, in The Neurobiology of Dopamine ( A. S. Horn, J. Korf, and B. H. C. Westerink, eds.) Academic, London.

    Google Scholar 

  • Westerink B. H. C. (1985) Sequence and significance of dopamine metabolism in the rat brain. Neurochem Int. 7, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Wightman R. M. (1981) Microvoltammetric electrodes. Anal. Chem. 53, 1125A - 1134A.

    Article  CAS  Google Scholar 

  • Wightman R. M., Strope E., Plotsky P. M., and Adams R. N. (1976) Monitoring of transmitter metabolites by voltammetry in cerebrospinal fluid following neural pathway stimulation. Nature 262, 145.

    Article  PubMed  CAS  Google Scholar 

  • Wightman R. M., Strope E., Plotsky P., and Adams R. N. (1978) In vivo voltammetry: Monitoring of dopamine metabolites in CSF following release by electrical stimulation. Brain Res. 159, 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Winograd N., Blount H. N., and Kuwana T. (1969) Spectroelectrochemical measurement of chemical reaction rates. First-order catalytic processes. J. Phys. Chem. 73, 3456–3462.

    Article  CAS  Google Scholar 

  • Wood J. H. (1982) Physiological Neurochemistry of Cerebrospinal Fluid, in Handbook of Neurochemistry vol. 1 (A Lajtha, ed.) Plenum, New York.

    Google Scholar 

  • Yamamoto B. K., Lane R. F., and Freed C. R. (1982) Normal rats trained to circle show asymmetric caudate dopamine release. Life Sci. 30, 2155–2162.

    Article  PubMed  CAS  Google Scholar 

  • Zetterstrom T., Sharp T., Marsden C. A., and Ungerstedt U. (1983) In vivo measurement of dopamine and its metabolites by intracerebral dialysis: Changes after d-amphetamine. J. Neurochem. 41, 1769–1773.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Justice, J.B. (1987). Introduction to In Vivo Voltammetry. In: Justice, J.B. (eds) Voltammetry in the Neurosciences. Contemporary Neurosciences. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-463-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-463-4_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6951-7

  • Online ISBN: 978-1-59259-463-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics