Skip to main content

In Vitro Models of Epilepsy

  • Chapter
  • 227 Accesses

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

In this chapter, we shall review what is known about the cellular mechanisms of epileptic events in vitro. Our main concern is to understand the electrical events that neurons generate during a fit, and to understand what kinds of interactions (synaptic and nonsynaptic) between neurons underlie the fit. We further seek to comprehend which intrinsic properties of neurons are required for epilepsy or that at least facilitate epileptogenesis. Our method consists of making experimental observations of seizure phenomena in the hippocampal slice, attempting to reproduce the observations with simulation models on a large computer, and testing the models with further experiments. We shall emphasize underlying mechanisms that are as independent as possible of physiological and pharmacological details. This provides a clear conceptual framework in which to interpret diverse experiments. Such an approach is necessary because epilepsy involves understanding the behavior of a population of neurons. Our work has lead to models that illuminate the underlying mechanisms of two types of epileptic events: interictal spikes and tonic seizures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajmone Marsan, C. and O’Connor, M.: Electrocorticography. Handbook of Electroencephalography and Clinical Neurophysiology vol. 10-C (A. Remond, ed.) pp. 3–49, Elsevier, Amsterdam, 1973.

    Google Scholar 

  • Alger, B. E. and Nicoll, R. A.: Epileptiform burst afterhyperpolarization: Calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science 210: 1122–1124, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Alger, B. E. and Nicoll, R. A.: Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J. Physiol. 328: 105–123, 1982.

    PubMed  CAS  Google Scholar 

  • Allen, G. I., Eccles, J.; Nicoll, R. A., Oshima, T., and Rubia, F. J.: The ionic mechanisms concerned in generating the i.p.s.ps of hippocampal pyramidal cells. Proc. Royal Soc. Lond. B 198: 363–384, 1977.

    Article  CAS  Google Scholar 

  • Andersen, P.: Organization of Hippocampal Neurons and Their Interconnections, In: The Hippocampus, vol. 1: Sructure and Development (R. L. Isaacson and K. H. Pribram, eds.) Plenum, New York, 1975.

    Google Scholar 

  • Andersen, P., Bliss, T. V. P., and Skrede, K. K.: Lamellar organization of hippocampal excitatory pathways. Exp. Brain Res. 13: 222–238, 1971.

    PubMed  CAS  Google Scholar 

  • Andrew, R. D., Taylor, C. P., Snow, R. W., and Dudek, F. E.: Coupling in rat hippocampal slices: Dye transfer between CA1 pyramidal cells. Brain Res. Bull. 8: 211–222, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Barron, D. H. and Matthews, B. C.: Intermittent conduction in the spinal cord. J. Physiol. 85: 73–103, 1935.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S. and Prince, D. A.: Cholinergic excitation of mammalian hippocampal pyramidal cells. Brain Res. 249: 315–333, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari, Y., Krnjevic, K., and Reinhardt, W.: Lability of synaptic inhibition of hippocampal pyramidal cells. J. Physiol. 298: 36P–37P, 1980.

    Google Scholar 

  • Brenner, R. P. and Atkinson, R.: Generalized paroxysmal fast activity: Electroencephalographic and clinical features. Ann. Neurol. 11: 386–390, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. A. and Griffith, W. H.: Persistent slow inward calcium current in voltage-clamped hippocampal neurones of the guinea-pig. J. Physiol. 337: 303–320, 1983.

    PubMed  CAS  Google Scholar 

  • Brown, T. H. and Johnston, D.: Voltage-clamp analysis of mossy fiber s ynaptic input to hippocampal neurons. J. Neurophysiol. 50: 487–507, 1983.

    PubMed  CAS  Google Scholar 

  • Brown, T. H., Fricke, R. A., and Perkel, D. A.: Passive electrical constants in three classes of hippocampal neurons. J. Neurophysiol. 46: 812–827, 1981.

    PubMed  CAS  Google Scholar 

  • Brown, T. H., Wong, R. K. S.., and Prince, D. A.: Spontaneous miniature synaptic potentials in hippocampal neurons. Brain Res. 177: 194–199, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Chatrian, G. E. and Petersen, M. C.: The convulsive patterns provoked by Indoklon, Metrazol, and electroshock: Some depth electrographic observations in human patients. Electroenceph. Clin. Neurophysiol. 12: 715–725, 1960.

    Article  PubMed  CAS  Google Scholar 

  • Chung, S.-H., Raymond, S. A., and Lettvin, J. Y. Multiple meaning in single visual units. Brain Behav. Evol. 3: 72–101, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. B. and Wong, R. K. S.: Three components of outward current in isolated mammalian cortical neurons. Soc. Neurosci. Abs. 9: 601, 1983.

    Google Scholar 

  • Connors, B. W., Gutnick, M. J., and Prince, D. A.: Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 48: 1302–1320, 1982.

    PubMed  CAS  Google Scholar 

  • Courtney, K. R. and Prince, D. A.: Epileptogenesis in neocortical slices. Brain Res. 127: 191–196, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Currie, S., Heathfield, K. W. G., Henson, R. A., and Scott, D. F.: Clinical course and prognosis of temporal lobe epilepsy. A survey of 666 patients. Brain 94: 173–190, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Dichter, M. and Spencer, W. A.: Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features. J. Neurophysiol. 32: 649–662, 1969a.

    PubMed  CAS  Google Scholar 

  • Dichter, M. and Spencer, W. A.: Penicillin-induced interictal discharges from the cat hippocampus. II. Mechanisms underlying origin and restriction. J. Neurophysiol. 32: 663–687, 1969b.

    PubMed  CAS  Google Scholar 

  • Dichter, M., Herman, C., and Selzer, M.: Penicillin epilepsy in isolated islands of hippocampus. Electroenceph. Clin. Neurophysiol. 34: 631–638, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Dingledine, R. and Gjerstad, L.: Penicillin blocks hippocampal IPSPs, unmasking prolonged EPSPs. Brain Res. 168: 205–209, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Dingledine, R. and Gjerstad, L.: Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J. Physiol. 305: 297–313,1980.

    PubMed  CAS  Google Scholar 

  • Finch, D. M. Nowlin, N. L., and Babb, T. L.: Demonstration of axonal projection of neurons in the rat hippocampus and subiculum by intracellular injection of HRP. Brain Res. 271: 201–216, 1983.

    Article  PubMed  Google Scholar 

  • Gastaut, H. and Tassinari, C. A.: Ictal Discharges in Different Types of Seizures, In: Handbook of Electroencephalography and Clinical Neurophysiology vol. 13, part A: pilepsies (H. Gastaut and C. A. Tassinari, eds.) Elsevier, Amsterdam, 1975.

    Google Scholar 

  • Gastaut, H., Roger, J., Ouachi, S., Timsit, M., and Broughton, R.: An electro-clinical study of generalized epileptic seizures of tonic expression. Epilepsia4: 15–44, 1963.

    Article  PubMed  CAS  Google Scholar 

  • George, C. P. and Connors, B. W.: Initiation of synchronized bursting in neocortex. Soc. Neurosci. Abs. 9: 396, 1983.

    Google Scholar 

  • Goldensohn, E. S. and Purpura, D. P.: Intracellular potentials of cortical neurons during focal epileptogenic discharges. Science 139: 840–842, 1963.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, Y., Parnas, I., and Spira, M. E.: Differential conduction block in branches of a bifurcating axon. J. Physiol. 295: 283–305, 1979a.

    PubMed  CAS  Google Scholar 

  • Grossman, Y., Parnas, I., and Spira, M. E.: Ionic mechanisms involved in differential conduction of action potentials at high frequency in a branching axon. J. Physiol. 295: 307–322, 1979b.

    PubMed  CAS  Google Scholar 

  • Gustafsson, B. and Wigstrom, H.: Shape of frequency-current curves in CA1 pyramidal cells in the hippocampus. Brain Res. 223: 417–421, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson, B., Galvan, M., Grafe, P., and Wigstrom, H.: A transient outward current in a mammalian central neurone blocked by 4-aminopyridine. Nature 299: 252–254, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Gutnick, M. J. and Prince, D. A.: Thalamocortical relay neurons: Antidromic invasion of spikes from a cortical epileptogenic focus. Science 176: 424–426, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Gutnick, M. J., Connors, B. W., and Prince, D. A.: Mechanisms of neocortical epileptogenesis in vitro. J. Neurophysiol. 48: 1321–1335, 1982.

    PubMed  CAS  Google Scholar 

  • Hablitz, J. J.: Effects of intracellular injections of chloride and EGTA on postepileptiform burst hyperpolarizations in hippocampal neurons. Neurosci. Lett. 22: 159–163, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Hablitz, J. J.: Picrotoxin-induced epileptiform activity in the hippocampus: Role of endogenous versus synaptic factors. J. Neurophysiol. 51: 1011–1027, 1984.

    PubMed  CAS  Google Scholar 

  • Hablitz, J. J. and Johnston, D.: Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons. Cell. Molec. Neurobiol. 1: 325–334, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, J. V. and Adams, P. R.: Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res. 250: 71–92, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Heyer, E., Nowak, L. M., and MacDonald, R. L.: Membrane depolarization and prolongation of calcium-dependent action potentials of mouse neurons in cell culture by two convulsants: Bicuculline and penicillin. Brain Res. 232: 41–56, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Hotson, J. R. and Prince, D. A.: A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J. Neurophysiol. 43: 409–419, 1980.

    PubMed  CAS  Google Scholar 

  • Jackson, J. H.: On the Scientific and Empirical Investigation of Epileptics, In: Selected Writings of John Hughlings Jackson vol. I: On Epilepsy and Epileptiform Convulsions (J. Taylor, ed.), Hodder and Stoughton, London, 1931.

    Google Scholar 

  • Jefferys, J. G. R. and Haas, H. L.: Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300: 448–450, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D.: Passive cable properties of hippocampal CA3 pyramidal neurons. Cell.Molec.Neurobiol.1: 41–55, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D. and Brown, T. H.: Giant synaptic potential hypothesis for epileptiform activity. Science 211: 294–297, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D., Hablitz, J. J., and Wilson, W. A.: Voltage clamp discloses slow inward current in hippocampal burst-firing neurones. Nature 286: 391–393, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E. R. and Spencer, W. A.: Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. J. Neurophysiol. 24: 243–259, 1961.

    PubMed  CAS  Google Scholar 

  • Knowles, W. D. and Schwartzkroin, P. A.: Local circuit synaptic interactions in hippocampal brain slices. J. Neurosci.1: 318–322, 1981.

    PubMed  CAS  Google Scholar 

  • Kocsis, J. D., Malenka, R. C., and Waxman, S. G.: Enhanced parallel fiber frequency following after reduction of postsynaptic activity. Brain Res. 207: 321–331, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Kocsis, J. D., Malenka, R. C., and Waxman, S. G.: Effects of extracellular potassium concentration on the excitability of the parallel fibres of the rat cerebellum. J. Physiol. 334: 225–244, 1983.

    PubMed  CAS  Google Scholar 

  • Kocsis, J. D., Ruiz, J. A., and Cummins, K. L.: Modulation of axonal excitability mediated by surround electric activity: an intraaxonal study. Exp. Brain Res. 47: 151–153, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Kriegstein, A. R., Suppes, T., and Prince, D. A.: Cholinergic enhancement of penicillin-induced epileptiform discharges in pyramidal neurons of the guinea pig hippocampus. Brain Res. 266: 137–142, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Lebeda, F. J., Hablitz, J. J., and Johnston, D.: Antagonism of GABA-mediated responses by d-tubocurarine in hippocampal neurons. J. Neurophysiol. 48: 622–632, 1982.

    PubMed  CAS  Google Scholar 

  • Lorente De No, R.: Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J. Psychol. Neurol. 46: 113–177, 1934.

    Google Scholar 

  • Lothman, E. W., Collins, R. C., and Ferrendelli, J. A.: Kainic acid-induced limbic seizures: Electrophysiologic studies. Neurology 31: 806–812, 1981.

    Article  PubMed  CAS  Google Scholar 

  • MacVicar, B. A. and Dudek, F. E.: Local synaptic circuits in rat hippocampus: Interactions between pyramidal cells. Brain Res. 184: 220–223, 1980.

    Article  PubMed  CAS  Google Scholar 

  • MacVicar, B. A. and Dudek, F. E.: Electrotonic coupling between pyramidal cells: A direct demonstration in rat hippocampal slices. Science 213: 782–785, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Madison, D. V. and Nicoll, R. A.: Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299: 636–638, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R. C., Kocsis, J. D., Ransom, B. R., and Waxman, S. G.: Modulation of parallel fiber excitability by postsynaptically mediated changes in extracellular potassium. Science 214: 339–341, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, H. and Ajmone Marsan, C.: Cortical cellular phenomena in experimental epilepsy: Interictal manifestations. Exp. Neurol. 9: 286–304, 1964a.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, H. and Ajmone Marsan, C.: Cortical cellular phenomena in experimental epilepsy: Ictal manifestations. Exp. Neurol. 9: 305–326, 1964b.

    Article  PubMed  CAS  Google Scholar 

  • Mesher, R. A. and Schwartzkroin, P. A.: Can CA3 epileptiform burst discharge induce bursting in normal CA1 hippocampal neurons? Brain Res. 183: 472–476, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Miles, R. and Wong, R. K. S.: Single neurones can influence synchronized population discharge in the CA3 region of the guinea pig hippocampus. Nature 306: 371–373, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Miles, R. and Wong, R. K. S.: Unitary inhibitory synaptic potentials in the guinea-pig hippocampus in vitro. J. Physiol. 356: 97–113, 1984.

    PubMed  CAS  Google Scholar 

  • Miles, R. and Wong, R. K. S.: Excitatory synaptic connexions between guinea-pig CA3 hippocampal cells are revealed when synaptic inhibition is suppressed in vitro. J. Physiol. 372: 14P, 1986a.

    Google Scholar 

  • Miles, R. and Wong, R. K. S.: Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. J. Physiol. 373: 397–418, 1986b.

    PubMed  CAS  Google Scholar 

  • Miles, R., Wong, R. K. S., and Traub, R. D.: Synchronized afterdischarges in the hippocampus: Contribution of local synaptic interaction. Neuroscience 12: 1179–1189, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Newberry, N. R. and Nicoll, R. A.: A bicuculline-resistant inhibitory postsynaptic potential in rat hippocampal pyramidal cells in vitro. J. Physiol. 348: 239–254, 1984.

    CAS  Google Scholar 

  • Niedermeyer, E.: Depth Electroencephalography, In: Electroencephalography. Basic Principles, Clinical Applications and Related Fields (E. Niedermeyer and F. Lopes da Silva, eds.) Urban and Schwarzenberg, Baltimore, 1982.

    Google Scholar 

  • Noebels, J. L. and Prince, D. A.: Development of focal seizures in cerebral cortex: Role of axon terminal bursting. J. Neurophysiol. 41: 1267–1281, 1978.

    PubMed  CAS  Google Scholar 

  • Numann, R., Wong, R. K. S., and Clark, R.: Electrophysiology of single dissociated cortical neurones. Soc. Neurosci. Abs. 8: 413, 1982.

    Google Scholar 

  • Ogata, N.: Possible explanation for interictal-ictal transition: Evolution of epileptiform activity in hippocampal slice by chloride depletion. Experientia 34: 1035–1036, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Ogata, N., Hori, N., and Katsuda, N.: The correlation between extracellular potassium concentration and hippocampal epileptic activity in vitro. Brain Res. 110: 371–375, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, A. P., Hoffer, B. J., and Wyatt, R. J.: Interaction of potassium and calcium in penicillin-induced interictal spike discharge in the hippocampal slice. Exp. Neurol. 62: 510–520, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Pedley, T. A. and Traub, R. D.: Physiology of Epilepsy, In: Scientific Basis of Clinical Neurology (M. Swash and C. Kennard, eds.) Churchill Livingstone, London, 1985.

    Google Scholar 

  • Pedley, T. A., Fisher, R. S., Futamachi, K., and Prince, D. A.: Regulation of extracellular potassium concentration in epileptogenesis. Fed. Proc. 35: 1254–1259, 1976.

    PubMed  CAS  Google Scholar 

  • Prince, D. A.: The depolarization shift in “epileptic” neurons. Exp. Neurol. 21: 467–485, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Prince, D. A.: Mechanisms of Epileptogenesis in Brain-Slice Model Systems, In: Epilepsy (A. A. Ward, Jr., J. K. Penry, and D. Purpura, eds.) Raven, New York, 1983.

    Google Scholar 

  • Prince, D. A. and Futamachi, K. J.: Intracellular recordings in chronic focal epilepsy. Brain Res. 11: 681–684, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Prince, D. A. and Wong, R. K. S.: Human epileptic neurons studied in vitro. Brain Res. 210: 323–333, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W.: Theory of physiological properties of dendrites. Ann. NY Acad. Sci. 96: 1071–1092, 1962.

    Article  PubMed  CAS  Google Scholar 

  • Ribak, C. E., Harris, A. B., Vaughn, J. E., and Roberts, E.: Inhibitory, GABAergic nerve terminals decrease at sites of focal epilepsy. Science 205: 211–214, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, T. L., Turner, R. W., and Miller, J. J.: Extracellular fields influence transmembrane potentials and synchronization of hippocampal neuronal activity. Brain Res. 294: 255–262, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Rutecki, P. A. and Johnston, D.: Extracellular potassium controls the frequency of spontaneous interictal discharges in hippocampal slices. Soc. Neurosci. Abs. 9: 396, 1983.

    Google Scholar 

  • Sawa, M., Nakamura, K., and Naito, H.: Intracellular phenomena and spread of epileptic seizure discharges. Electroenceph. Clin. Neurophysiol. 24: 146–154, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A.: Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res. 85: 423–436, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A.: Further characteristics of hippocampal CA1 cells in vitro. Brain Res. 128: 53–68, 1977.

    Article  CAS  Google Scholar 

  • Schwartzkroin, P. A.: Secondary range rhythmic spiking in hippocampal neurons. Brain Res. 149: 247–250, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Knowles, W. D.: Intracellular study of human epileptic cortex: In vitro maintenance of epileptiform activity. Science 223: 709–712, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Prince, D. A.: Penicillin-induced epileptiform activity in the hippocampal in vitro preparation. Ann. Neurol. 1: 463–469, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Prince, D. A.: Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res. 147: 117–130, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Prince, D. A.: Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity. Brain Res. 183: 61–76, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Strafstrom, C. E.: Effects of EGTA on the calcium-activated afterhyperpolarization in hippocampal CA3 cells. Science 210: 1125–1126, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Sloper, J. J., Johnson, P., and Powell, T. P. S.: Selective degeneration of interneurons in the motor cortex of infant monkeys following controlled hypoxia: A possible cause of epilepsy. Brain Res. 198: 204–209, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. O.: Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. J. Physiol. 301: 243–259, 1980.

    PubMed  CAS  Google Scholar 

  • Snow, R. W. and Dudek, F. E.: Electrical fields directly contribute to action potential synchronization during convulsant-induced epileptiform bursts. Brain Res. 323: 114–118, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Snow, R. W., Taylor, C. P., and Dudek, F. E.: Electrophysiological and optical changes in slices of rat hippocampus during spreading depression. J. Neurophysiol. 50: 561–572, 1983.

    PubMed  CAS  Google Scholar 

  • Spray, D. C., White, R. L., Campos De Carvalho, A., Harris, A. L., and Bennett, M. V. L.: Gating of gap junction channels. Biophys. J. 45: 219–230, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Swann, J. W. and Brady, R. J.: Penicillin-induced epileptogenesis in immature rat CA3 hippocampal cells. Dev. Brain Res. 314: 243–254,1984.

    Article  CAS  Google Scholar 

  • Swann, J. W., Brady, R. J., Friedman, R. J., and Smith, E. J.: Penicillininduced epileptiform discharges in CA3 hippocampal pyramidal cells: A current source density analysis. Soc. Neurosci. Abs. 9: 395, 1983.

    Google Scholar 

  • Taylor, C. P. and Dudek, F. E.: Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 218: 810–812, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C. P. and Dudek, F. E.: Excitation of hippocampal pyramidal cells by an electrical field effect. J. Neurophysiol. 52: 126–142, 1984a.

    PubMed  CAS  Google Scholar 

  • Taylor, C. P. and Dudek, F. E.: Synchronization without active chemical synapses during hippocampal afterdischarges. J. Neurophysiol. 52: 143–155, 1984b.

    PubMed  CAS  Google Scholar 

  • Traub, R. D.: Simulation of intrinsic bursting in CA3 hippocampal neurons. Neuroscience 7: 1233–1242, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R. D. and Wong, R. K. S.: Synchronized burst discharge in disinhibited hippocampal slice. II. Model of cellular mechanism. J. Neurophysiol. 49: 442–458, 1983a.

    PubMed  Google Scholar 

  • Traub, R. D. and Wong, R. K. S.: Synaptic mechanisms underlying interictal spike initiation in a hippocampal network. Neurology 33: 257–266, 1983b.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R. D. and Wong, R. K. S.: Cellular mechanism of neuronal synchronization in epilepsy. Science 216: 745–747, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R. D., Dudek, F. E., Taylor, C. P., and Knowles, W. D.: Simulation of hippocampal afterdischarges synchronized by electrical interactions. Neuroscience 14: 1033–1038, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R. D., Dudek, F. E., Snow, R. W., and Knowles, W. D.: Computer simulations indicate that electrical field effects contribute to the shape of the epileptiform field potential. Neuroscience 15: 947–958, 1985a.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R. D., Knowles, W. D., Miles, R., and Wong; R. K. S.: Synchronized afterdischarges in the hippocampus: Simulation studies of the cellular mechanism. Neuroscience 12: 1191–1200, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Turner, D. A. and Schwartzkroin, P. A.: Electrical characteristics of dendrites and dendritic spines in intracellularly-stained CA3 and dentate neurons. J. Neuroscience 3: 2381–2394, 1983.

    CAS  Google Scholar 

  • Wong, R. K. S. and Prince, D. A.: Dendritic mechanisms underlying penicillin-induced epileptiform activity. Science 204: 1228–1231, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R. K. S. and Prince, D. A.: Afterpotential generation in hippocampal pyramidal cells. J. Neurophysiol. 45: 86–97, 1981.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S. and Traub, R. D.: The dendrites and somata of hippocampal pyramidal cells generate different action potential patterns. Soc. Neurosci. Abs. 8: 412, 1982.

    Google Scholar 

  • Wong, R. K. S. and Traub, R. D.: Synchronized burst discharge in the disinhibited hippocampal slice. I. Initiation in the CA2-CA3 region. J. Neurophysiol. 49: 459–471, 1983.

    PubMed  Google Scholar 

  • Wong, R. K. S. and Watkins, D. J.: Cellular factors influencing GABA response in hippocampal pyramidal cells. J. Neurophysiol. 48: 938–951, 1982.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., Prince, D. A., and Basbaum, A. I.: Intradendritic recordings from hippocampal neurons. Proc. Nat. Acad. Sci. USA 76: 986–990, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Wyler, A. R., Ojemann, G. A., and Ward, A. A., Jr.: Neurons in human epileptic cortex: Correlation between unit and EEG activity. Ann. Neurol.11: 301–308, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Yaari, Y., Konnerth, A., and Heinemann, U.: Spontaneous epileptiform activity of CA1 hippocampal neurons in low extracellular calcium solutions. Exp. Brain Res. 51: 153–156, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Traub, R.D., Wong, R.K.S., Miles, R. (1987). In Vitro Models of Epilepsy. In: Jobe, P.C., Laird, H.E. (eds) Neurotransmitters and Epilepsy. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-462-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-462-7_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5982-2

  • Online ISBN: 978-1-59259-462-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics