Skip to main content

DNA Photolyases

  • Chapter
DNA Damage and Repair

Part of the book series: Contemporary Cancer Research ((CCR))

Abstract

Photoreactivation was discovered by chance in 1949 during a study of UV-induced mutagenesis when unexpected results were obtained that could be attributed to a greatly enhanced survival of UV-irradiated Streptomyces griseus conidia after illumination with visible light (38). A similar phenomenon was found for the survival of UV-irradiated bacteriophages in Escherichia coli (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, M., and A. R. Cashmore. 1993. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162–166.

    CAS  Google Scholar 

  2. Ahmad, M., C. Lin, and A. R. Cashmore. 1995. Mutations throughout an Arabidopsis blue-light photoreceptor impair bluelight-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant. J. 8: 653–658.

    Article  PubMed  CAS  Google Scholar 

  3. Batschauer, A. 1993. A plant gene for photolyase: an enzyme catalyzing the repair of UV-light-induced DNA damage. Plant J. 4: 705–709.

    Article  PubMed  CAS  Google Scholar 

  4. Baer, M. E., and G. B. Sancar. 1993. The role of conserved amino acids in substrate binding and discrimination by photolyase. J. Biol. Chem. 268: 16,717–16, 724.

    Google Scholar 

  5. Brash, D. E., W. A. Franklin, G. B. Sancar, A. Sancar, and W. A. Haseltine. 1985. Escherichia coli DNA photolyase reverses cyclobutane pyrimidine dimers but not pyrimidine-pyrimidone (6–4) photoproducts. J. Biol. Chem. 260: 11,438–11,441.

    Google Scholar 

  6. Chao, C. C.-K., and S. Lin-Chao. 1987. Regulation of photorepair in growing and arrested frog cells in response to ultraviolet light. Mutat. Res. 192: 211–216.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, J.-J., D. L. Mitchell, and A. B. Britt. 1994. A light-dependent pathway for the elimination of UV-induced pyrimidine (6–4) pyrimidinone photoproducts in Arabidopsis. Plant Ce 116: 1311–1317.

    Google Scholar 

  8. Chiang, T., and C. S. Rupert 1979. Action spectrum for photoreactivation of ultraviolet-irradiated marsupial cells in tissue culture. Photochem. Photobiol. 30: 525–528.

    Article  PubMed  CAS  Google Scholar 

  9. Cook, J. S. 1967. Direct demonstration of the monomerization of thymine-containing dimers in U.V.-irradiated DNA by yeast photoreactivating enzyme and light. Photochem. Photobiol. 6: 97–101.

    Article  PubMed  CAS  Google Scholar 

  10. Cox, J. L., and G. D. Small. 1985. Isolation of a photoreactivation-deficient mutant of Chlamydomonas. Mutat. Res. 146: 249–255.

    Article  PubMed  CAS  Google Scholar 

  11. Dulbecco, R. 1949. Reactivation of ultra-violet-inactivated bacteriophage by visible light. Nature 163: 949–950.

    Article  PubMed  CAS  Google Scholar 

  12. Eker, A. P. M. 1980. Photoreactivating enzyme from Streptomyces griseus III. Evidence for the presence of an intrinsic chromophore. Photochem. Photobiol. 32: 593–600.

    Article  PubMed  CAS  Google Scholar 

  13. Eker, A. P. M., R. H. Dekkor, and W. Berends. 1981. Photoreactivating enzyme from Streptomyces griseus IV. On the nature of the chromophoric cofactor in Streptomyces griseus photoreactivating enzyme. Photochem. Photobiol. 33: 65–72.

    Article  PubMed  CAS  Google Scholar 

  14. Eker, A. P. M. 1985. Evidence for the presence of an essential arginine residue in photo-reactivating enzyme from Streptomyces griseus. Biochem. J. 229: 469–476.

    CAS  Google Scholar 

  15. Eker, A. P. M., J. K. C. Hessels, and R. H. Dekker. 1986. Photoreactivating enzyme from Streptomyces griseus-VI. Action spectrum and kinetics of photoreactivation. Photochem. Photobiol. 44: 197–205.

    Article  PubMed  CAS  Google Scholar 

  16. Eker, A. P. M., J. K. C. Hessels, and J. van de Velde. 1988. Photoreactivating enzyme from the green alga Scenedesmus acutus. Evidence for the presence of two different flavin chromophores. Biochemistry 27: 1758–1765.

    Article  CAS  Google Scholar 

  17. Eker, A. P. M., P. Kooiman, J. K. C. Hessels, and A. Yasui. 1990. DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J. Biol. Chem. 265: 8009–8015.

    CAS  Google Scholar 

  18. Eker, A. P. M., L. Formenoy, and L. E. A. de Wit. 1991. Photoreactivation in the extreme halophilic archaebacterium Halobacterium cutirubrum. Photochem. Photobiol. 53: 643–651.

    Google Scholar 

  19. Eker, A. P. M., and A. Yasui. 1991. Probing the chromophore binding site of 8-hydroxy5-deazaflavin type photolyase. Photochem. Photobiol. 53: 17S,18 S.

    Google Scholar 

  20. Eker, A. P. M., H. Yajima, and A. Yasui. 1994. DNA photolyase from the fungus Neuro-spora crassa. Purification, characterization and comparison with other photolyases. Photochem. Photobiol. 60: 125–133.

    Article  PubMed  CAS  Google Scholar 

  21. Felsenatein, J. 1993. PHYLIP. Department of Genetics, University of Washington, Seattle, WA, version 3. 5c.

    Google Scholar 

  22. Fleischmann, R. D., et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.

    Article  PubMed  CAS  Google Scholar 

  23. Fox, M. E., B. J. Feldman, and G. Chu. 1994. A novel role for DNA photolyase: binding to DNA damaged by drugs is associated with enhanced cytotoxicity in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 8071–8077.

    CAS  Google Scholar 

  24. Fraser, C. M., et al. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403.

    CAS  Google Scholar 

  25. Funayama, T., H. Mitani, and A. Shima. 1996. Overexpression of medaka (Oryzias latipes) photolyase gene in medaka cultured cells and early embryos. Photochem. Photobiol. 63: 633–638.

    Article  PubMed  CAS  Google Scholar 

  26. Hamm-Alvarez, S., A. Sancar, and K. V. Rajagopalan. 1989. Role of enzyme-bound 5,10-methenyltetrahydropteroylpolyglutamate in catalysis by Escherichia coli DNA photolyase. J. Biol. Chem. 264: 9649–9656.

    PubMed  CAS  Google Scholar 

  27. Heelis, P. F., G. Payne, and A. Sancar. 1987. Photochemical properties of Escherichia coli DNA photolyase: selective photodecomposition of the second chromophore. Biochemistry 26: 4634–4640.

    Article  PubMed  CAS  Google Scholar 

  28. Heelis, P. F., S.-T. Kim, T. Okamura, and A. Sancar. 1993. The photorepair ofpyrimidine dimers by DNA photolyase and model systems. J. Photochem. Photobiol. B: Biol. 17: 219–228.

    Article  CAS  Google Scholar 

  29. Hélène, C., and M. Charlier. 1977. Photosensitized splitting of pyrimidine dimers by indole derivatives and by tryptophan-containing oligopeptides and proteins. Photochem. Photobiol. 25: 429–434.

    Article  PubMed  Google Scholar 

  30. Hsu, D. S., X. D. Zhao, S. Y. Zhao, A. Kazantsev, R. P. Wang, T. Todo, Y. F. Wei, and A. Sancar. 1996. Putative human blue-light photoreceptors hCRY 1 and hCRY2 are flavoproteins. Biochemistry 35: 13, 871–13, 877.

    Google Scholar 

  31. Hurter, J., M. P. Gordon, J. P. Kirwan, and A. D. McLaren. 1974. In vitro photoreactivation of ultraviolet-inactivated ribonucleic acid from tobacco mosaic virus. Photochem. Photobiol. 19: 185–190.

    CAS  Google Scholar 

  32. Husain, I., and A. Sancar. 1987. Binding of E. coli DNA photolyase to a defined substrate containing a single TT dimer. Nucleic Acids Res. 15: 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  33. Ishizaki, K., and H. Takebe. 1985. Comparative studies on photoreactivation of ultraviolet light-induced T4 endonuclease susceptible sites and sister-chromatid exchanges in Potorous cells. Mutat. Res. 150: 91–97.

    Article  PubMed  CAS  Google Scholar 

  34. Jaeckle, H., and K. Kalthoff. 1978. Photoreactivation of RNA in UV-irradiated insect eggs (Smittia sp., Chironomidae, Diptera) I. Photosensitized production and light-dependent disappearance of pyrimidine dimers. Photochem. Photobiol. 27: 309–315.

    Article  CAS  Google Scholar 

  35. Johnson, J. L., S. Hamm-Alvarez, G. Payne, G. B. Sancar, K. V. Rajagopalan, and A. Sancar. 1988. Identification of the second chromophore in Escherichia coli and yeast DNA photolyases as 5,10-methenyltetrahydrofolate. Proc. Natl. Acad. Sci. USA 85: 2046–2050.

    Article  PubMed  CAS  Google Scholar 

  36. Jorns, M. S., G. B. Sancar, and A. Sancar. 1985. Identification of oligothymidylates as new simple substrates for Escherichia coli DNA photolyase and their use in a rapid spectrophotometric enzyme assay. Biochemistry 24: 1856–1861.

    Article  PubMed  CAS  Google Scholar 

  37. Jorns, M. S., B. Wang, S. P. Jordan, and L. P. Chanderkar. 1990. Chromophore function and interaction in Escherichia coli DNA photolyase: reconstitution of the apoenzyme with pterin and/or flavin derivatives. Biochemistry 29: 552–561.

    Article  PubMed  CAS  Google Scholar 

  38. Kato, T., T. Todo, H. Ayaki, K. Ishizaki, T. Morita, S. Mitra, and M. Ikenaga. 1994. Cloning of a marsupial DNA photolyase gene and the lack of related nucleotide sequences in placental mammals. 1994. Nucleic Acids Res. 22: 4119–4124.

    Article  PubMed  CAS  Google Scholar 

  39. Kelner, A. 1949. Effect of visible light on the recovery of Streptomyces griseus conidia from ultra-violet irradiation injury. Proc. Natl. Acad. Sci. USA 35: 73–79.

    Article  PubMed  CAS  Google Scholar 

  40. Kiener, A., I. Hussain, A. Sancar, and C. Walsh. 1989. Purification and properties of Methanobacterium thermoautotrophicum DNA photolyase. J. Biol. Chem. 264: 13,8801–3, 887.

    Google Scholar 

  41. Kim, S -T, R. F. Hartman, and S. D. Rose. 1990. Solvent dependence of pyrimidine dimer splitting in a covalently linked dimer-indole system. Photochem. Photobiol. 52: 789–794.

    Article  PubMed  CAS  Google Scholar 

  42. Kim, S -T, and A. Sancar. 1991. Effect of base, pentose, and phosphodiester backbone structures on binding and repair of pyrimidine dimers by Escherichia coli DNA photolyase. Biochemistry 30: 8623–8630.

    Article  PubMed  CAS  Google Scholar 

  43. Kim, S.-T., P. F. Heelis, T. Okamura, Y. Hirata, N. Mataga, and A. Sancar. 1991. Determination of rates and yields of interchromophore (folate -* flavin) energy transfer and intermolecular (flavin -* DNA) electron transfer in Escherichia coli photolyase by time-resolved fluorescence and absorption spectroscopy. Biochemistry 30: 11, 262–11, 270.

    Google Scholar 

  44. Kim, S.-T., Y. F. Li, and A. Sancar. 1992. The third chromophore of DNA photolyase: Trp-277 of Escherichia coli DNA photolyase repairs thymine dimers by direct electron transfer. Proc. Natl. Acad. Sci. USA 89: 900–904.

    Article  PubMed  CAS  Google Scholar 

  45. Kim, S -T, P. F. Heelis, and A. Sancar. 1992. Energy transfer (deazaflavin -* FADH2) and electron transfer (FADH2 - TT) kinetics in Anacystis nidulans photolyase. Biochemistry 31: 11, 244–11, 248.

    Google Scholar 

  46. Kim, S.-T., A. Sancar, C. Essenmacher, and G. T. Babcock. 1993. Time-resolved EPR studies with DNA photolyase: excited-state FADH• abstracts an electron from Trp-306 to generate FADH-, the catalytically active form of the cofactor. Proc. Natl. Acad. Sci. USA 90: 8023–8027.

    Article  PubMed  CAS  Google Scholar 

  47. Kim, S.-T., K. Malhotra, C. A. Smith, J.-S. Taylor, and A. Sancar. 1993. DNA photolyase repairs the trans-syn cyclobutane thymine dimer. Biochemistry 32: 7065–7068.

    Article  PubMed  CAS  Google Scholar 

  48. Kim, S.-T., K. Malhotra, C. A. Smith, J.-S. Taylor, and A. Sancar. 1994. Characterization of (6–4) photoproduct DNA photolyase. J. Biol. Chem. 269: 8535–8540.

    PubMed  CAS  Google Scholar 

  49. Kim, S.-T., K. Malhotra, J.-S. Taylor, and A. Sancar. 1996. Purification and partial characterization of (6–4)photoproduct DNA photolyase from Xenopus laevis. Photochem. Photobiol. 63: 292–295.

    Article  CAS  Google Scholar 

  50. Klimasauskas, S., S. Kumar, R. J. Roberts, and X. Cheng. 1994. HhaI methyltransferase flips its target base out of the DNA helix. Cell 76: 357–369.

    Article  PubMed  CAS  Google Scholar 

  51. Kobayashi, T., M. Takao, A. Oikawa, and A. Yasui. 1989. Molecular characterization of a gene encoding a photolyase from Streptomyces griseus. Nucleic Acids Res. 17: 4731–4744.

    Article  CAS  Google Scholar 

  52. Kobayashi, T., M. Takao, A. Oikawa, and A. Yasui. 1990. Increased UV sensitivity of Escherichia coli cells after introduction of foreign photolyase genes. Mutat. Res. 236: 27–34.

    Article  PubMed  CAS  Google Scholar 

  53. Lamola, A. A. 1972. Photosensitization in biological systems and the mechanism of photoreactivation. Mol. Photochem. 4: 107–133.

    CAS  Google Scholar 

  54. Li, Y. F., and A. Sancar. 1990. Active site of Escherichia coli DNA photolyase: mutations at Trp277 alter the selectivity of the enzyme without affecting the quantum yield of photorepair. Biochemistry 29: 5698–5706.

    Article  PubMed  CAS  Google Scholar 

  55. Li, Y. F., and A. Sancar. 1991. Cloning, sequencing, expression and characterization of DNA photolyase from Salmonella typhimurium. Nucleic Acids Res. 19: 4885–4890.

    Article  CAS  Google Scholar 

  56. Li, Y. F., P. F. Heelis, and A. Sancar. 1991. Active site of DNA photolyase: Tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. Biochemistry 30: 6322–6329.

    Google Scholar 

  57. Li, Y. F., S.-T. Kim, and A. Sancar. 1993. Evidence for lack of DNA photoreactivating enzyme in humans. Proc. Natl. Acad. Sci. USA 90: 4389–4393.

    Article  PubMed  CAS  Google Scholar 

  58. Lin, C., D. E. Robertson, M. Ahmad, A. A. Raibekas, M. S. Jorns, P. L. Button, and A. R. Cashmore. 1995. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269: 968–970.

    Article  PubMed  CAS  Google Scholar 

  59. Lin, C., N. Ahmad, D. Gordon, and A. R. Cashmore. 1995. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco plants results in hypersensitivity to blue, UV-A, and green light. Proc. Natl. Acad. Sci. USA 92: 8423–8427.

    Article  PubMed  CAS  Google Scholar 

  60. Lipman, R. S. A., and M. S. Joms. 1992. Direct evidence for singlet-singlet energy transfer in Escherichia coli DNA photolyase. Biochemistry 31: 786–791.

    Article  PubMed  CAS  Google Scholar 

  61. Malhotra, K., S.-T. Kim, C. Walsh, and A. Sancar. 1992. Roles of FAD and 8-hydroxy5-deazaflavin chromophores in photoreactivation by Anacystis nidulans DNA photolyase. J. Biol. Chem. 267: 15,406–15, 411.

    Google Scholar 

  62. Malhotra, K., S.-T. Kim, and A. Sancar. 1994. Characterization of a medium wavelength type DNA photolyase: purification and properties of photolyase from Bacillus firmus. Biochemistry 33: 8712–8718.

    Article  CAS  Google Scholar 

  63. Malhotra, K., S.-T. Kim, A. Batschauer, L. Dawut, and A. Sancar. 1995. Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry 34: 6892–6899.

    Article  PubMed  CAS  Google Scholar 

  64. Miki, K., T. Tamada, H. Nishida, K. Inaka, A. Yasui, P. E. de Ruiter, and A. P. M. Eker. 1993. Crystallization and preliminary X-ray diffraction studies of photolyase (photo-reactivating enzyme) from the cyanobacterium Anacystis nidulans. J. Mol. Biol. 233: 167–169.

    Google Scholar 

  65. Mitani, H., and A. Shima. 1995. Induction of cyclobutane pyrimidine dimer photolyase in cultured fish cells by fluorescent light and oxygen stress. Photochem. Photobiol. 61: 373–377.

    Article  PubMed  CAS  Google Scholar 

  66. Mitchell, D. L., J. T. Scoggins, and D. C. Morizot. 1993. DNA repair in the variable platyfish (Xiphophorus variatus) irradiated in vivo with ultraviolet B light. Photochem. Photobiol. 58: 455–459.

    Article  PubMed  CAS  Google Scholar 

  67. Muraoka, N., A. Okuda, and M. Ikenaga. 1980. DNA photoreactivating enzyme from silkworm. Photochem. Photobiol. 32: 193–197.

    Article  CAS  Google Scholar 

  68. O’Connnor, K. A., M. J. McBride, M. West, H. Yu, L. Trinh, K. Yuan, T. Lee, and D. R. Zusman. 1996. Photolyase of Myxococcus xanthus, a gram-negative eubacterium, is more similar to photolyases found in archae and “higher” eukaryotes than to photolyases of other eubacteria. J. Biol. Chem. 271: 6252–6259.

    Article  Google Scholar 

  69. Oezer, Z., J. T. Reardon, D. S. Hsu, K. Malhotra, and A. Sancar. 1995. The other function of DNA photolyase: stimulation of excision repair of chemical damage to DNA. Biochemistry 34: 15, 886–15, 889.

    Google Scholar 

  70. Pang, Q., and J. B. Hays. 1991. UV-B-inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol. 95: 536–543.

    Article  CAS  Google Scholar 

  71. Park, 11.-W., A. Sancar, and J. Deisenhofer. 1993. Crystallization and preliminary crystallographic analysis of Escherichia coli photolyase. J. Mol. Biol. 231: 1122–1125.

    Article  Google Scholar 

  72. Park, H.-W., S.-T. Kim., A. Sancar, and J. Deisenhofer. 1995. Crystal structure of DNA photolyase from Escherichia coli. Science 268: 1866–1872.

    CAS  Google Scholar 

  73. Payne, G., P. F. Heelis, B. R. Rohrs, and A. Sancar. 1987. The active form of Escherichia coli DNA photolyase contains a fully reduced flavin and not a flavin radical, both in vivo and in vitro. Biochemistry 26: 7121–7127.

    Article  PubMed  CAS  Google Scholar 

  74. Payne, G., M. Wills, C. Walsh, and A. Sancar. 1990 Reconstitution of Escherichia coli photolyase with flavins and flavin analogues. Biochemistry 29: 5706–5711.

    Article  PubMed  CAS  Google Scholar 

  75. Payne, G., and A. Sancar. 1990. Absolute action spectrum of E-FADH2 and E-FADH2MTHF forms of Escherichia coli DNA photolyase. Biochemistry 29: 7715–7727.

    Article  PubMed  CAS  Google Scholar 

  76. Prakash, L. 1975. Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light. J. Mol. Biol. 98: 781–795.

    Article  PubMed  CAS  Google Scholar 

  77. Rupert, C. S. 1962. Photoenzymatic repair of ultraviolet damage in DNA. J. Gen. Physiol. 45: 703–724.

    Article  PubMed  CAS  Google Scholar 

  78. Rupert, C. S. 1975. Enzymatic photoreactivation: overview, inMolecularMechanismsforRepair of DNA, part A (Hanawalt, P. C. and Setlow, R. B., eds.), Plenum, New York, pp. 73–87.

    Google Scholar 

  79. Sabourin, C. L. K., and R. D. Ley. 1988. Isolation and characterization of a marsupial DNA photolyase. Photochem. Photobiol. 47: 719–723.

    Article  PubMed  CAS  Google Scholar 

  80. Saito, N., and H. Werbin. 1969. Action spectrum for a DNA-photoreactivating enzyme isolated from higher plants. Photochem. Photobiol. 9: 421–424.

    Article  CAS  Google Scholar 

  81. Sancar, A., K. A. Franklin, and G. B. Sancar. 1984. Escherichia coli DNA photolyase stimulates uvrABC excision nuclease in vitro. Proc. Natl. Acad. Sci. USA 81: 7379–7401.

    Google Scholar 

  82. Sancar, A. 1994. Structure and function of DNA photolyase. Biochemistry 33: 2–9.

    Article  PubMed  CAS  Google Scholar 

  83. Sancar, G. B., F. W. Smith, M. C. Lorence, C. S. Rupert, and A. Sancar. 1984. Sequences of the Escherichia coli photolyase gene and protein. J. Biol. Chem. 259: 6033–6038.

    PubMed  CAS  Google Scholar 

  84. Sancar, G. B. 1985. Sequence of the Saccharomyces cerevisiae PHR1 gene and homology of the PHR1 photolyase to E. coli photolyase. Nucleic Acids Res. 13: 8231–8246.

    Article  PubMed  CAS  Google Scholar 

  85. Sancar, G. B., F. W. Smith, and P. F. Heelis. 1987. Purification of the yeast PHR1 photolyase from an Escherichia coli overproducing strain and characterization of the intrinsic chromophores of the enzyme. J. Biol. Chem. 262: 15,457–15, 465.

    Google Scholar 

  86. Sancar, G. B., and F. W. Smith. 1989. Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli. Mol. Cell. Biol. 9: 4767–4776.

    CAS  Google Scholar 

  87. Sancar, G. B., R. Ferris, F. W. Smith, and B. Vandeberg. 1995. Promoter elements of the PHR1 gene of Saccharomyces cerevisiae and their roles in the response to DNA damage. Nucleic Acids Res. 23: 4320–4328.

    Article  PubMed  CAS  Google Scholar 

  88. Savva, R., K. McAuley-Hecht, T. Brown, and L. Pearl. 1995. The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 373: 487–493.

    Article  PubMed  CAS  Google Scholar 

  89. Sebastian, J., B. Kraus, and G. B. Sancar. 1990. Expression of the yeast PHRI gene is induced by DNA-damaging agents. Mol. Cell. Biol. 10: 4630–4637.

    PubMed  CAS  Google Scholar 

  90. Setlow, R. B. and W. L. Carrier. 1966. Pyrimidine dimers in ultraviolet-irradiated DNA’s. J. Mol. Biol. 17: 237–254.

    Article  PubMed  CAS  Google Scholar 

  91. Small, G. D., B. Min, and P. A. Lefebvre. 1995. Characterization of a Chlamydomonas reinhardtii gene encoding a protein of the DNA photolyase/blue light receptor family. Plant Mol. Biol. 28: 443–454.

    Article  PubMed  CAS  Google Scholar 

  92. Spek, P. J. van der, K. Kobayashi, D. Bootsma, N. Takao, A. P. M. Eker, and A. Yasui. 1996. Cloning, tissue expression, and mapping of a human photolyase homolog with similarity to plant blue-light receptors. Genomics 37: 177–182.

    Article  PubMed  Google Scholar 

  93. Sutherland, B. M., and P. V. Bennett. 1995. Human white blood cells contain cyclobutyl pyrimidine dimer photolyase. Proc. Natl. Acad. Sci. USA 92: 9732–9736.

    Article  PubMed  CAS  Google Scholar 

  94. Takao, M., T. Kobayashi, A. Oikawa, and A. Yasui. 1989. Tandem arrangement of photolyase and superoxide dismutase genes in Halobacterium halobium. J. Bacteriol. 171: 6323–6329.

    CAS  Google Scholar 

  95. Takao, M., A. Oikawa, A. P. M. Eker, and A. Yasui. 1989. Expression of an Anacystis nidulans photolyase gene in Escherichia coli; functional complementation and modified action spectrum of photoreactivation. Photochem. Photobiol. 50: 633–637.

    Article  PubMed  CAS  Google Scholar 

  96. Takao, M., R. Yonemasu, K. Yamamoto, and A. Yasui. 1996. Characterization of a UV endonuclease gene from the fission yeast Schizosaccharomyces pombe and its bacterial homolog. Nucleic Acids Res. 24: 1267–1271.

    Article  PubMed  CAS  Google Scholar 

  97. Tamada, T., H. Nishida, K. Inaka, A. Yasui, P. E. de Ruiter, A. P. M. Eker, and K. Miki. 1995. A new crystal form of photolyase (photoreactivating enzyme) from the cyanobacterium Anacystis nidulans. J. Struct. Biol. 115: 37–40.

    Article  CAS  Google Scholar 

  98. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. Clustal W: improving the sensivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  99. Todo, T., H. Takemori, H. Ryo, M. Ihara, T. Matsunaga, O. Nikaido, K. Sato, and T. Nomura. 1993. A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6–4)photoproducts. Nature 361: 371–374.

    Article  PubMed  CAS  Google Scholar 

  100. Todo, T., H. Ryo, H. Takemori, H. Toh, T. Nomura, and S. Kondo. 1994. High-level expression of the photorepair gene in Drosophila ovary and its evolutionary implications. Mutat. Res. 315: 213–228.

    Article  PubMed  CAS  Google Scholar 

  101. Todo, T., H. Ryo, K. Yamamoto, H. Toh, T. Inui, H. Ayaki, T. Nomura, and M. Ikenaga. 1996. Similarity among the Drosophila (6–4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science 272: 109–112.

    Article  PubMed  CAS  Google Scholar 

  102. Uchida, N., H. Mitani, and A. Shima. 1995. Multiple effects of fluorescent light on repair of ultraviolet-induced DNA lesions in cultured goldfish cells. Photochem. Photobiol. 61: 79–83.

    Article  CAS  Google Scholar 

  103. Wang, B., S. P. Jordan, and M. S. Jorns. 1988. Identification of a pterin derivative in Escherichia coli DNA photolyase. Biochemistry 27: 4222–4226.

    Article  PubMed  CAS  Google Scholar 

  104. Wang, B. and M. S. Jorns. 1989. Reconstitution of Escherichia coli DNA photolyase with various folate derivatives. Biochemistry 28: 1148–1152.

    Article  PubMed  CAS  Google Scholar 

  105. Waters, R. and E. Moustacchi. 1974. The fate of ultraviolet-induced pyrimidine dimers in the mitochondrial DNA of Saccharomyces cerevisiae following various post-irradiation cell treatments. Biochim. Biophys. Acta 366: 241–250.

    Article  PubMed  CAS  Google Scholar 

  106. Wulff, D. L. and C. S. Rupert. 1962. Disappearance of thymine photodimer in ultraviolet irradiated DNA upon treatment with a photoreactivating enzyme from baker’s yeast. Biochem. Biophys. Res. Commun. 7: 237–240.

    Article  PubMed  CAS  Google Scholar 

  107. Yajima, H., H. Inoue, A. Oikawa, and A. Yasui. 1991. Cloning and functional characterization of a eucaryotic DNA photolyase gene from Neurospora crassa. Nucleic Acids Res. 19: 5359–5362.

    Article  CAS  Google Scholar 

  108. Yajima, H., M. Takao, S. Yasuhira, J. H. Zhao, C. Ishii, H. Inoue, and A. Yasui. 1995. A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light. EMBO J. 14: 2393–2399.

    PubMed  CAS  Google Scholar 

  109. Yamamoto, K., M. Satake, H. Shinagawa, and Y. Fujiwara. 1983. Amelioration of ultraviolet sensitivity of an Escherichia coli recA mutant in the dark by photoreactivating enzyme. Mol. Gen. Genet. 190: 511–515.

    Article  PubMed  CAS  Google Scholar 

  110. Yasuhira, S., H. Mitani, and A. Shima. 1991. Enhancement of photorepair of ultraviolet-damage by preillumination with fluorescent light in cultured fish cells. Photochem. Photobiol. 53: 211–215.

    Article  PubMed  CAS  Google Scholar 

  111. Yasuhira, S. and A. Yasui. 1992. Visible light-inducible photolyase gene from the goldfish Carassius auratus. J. Biol. Chem. 267: 25,644–25, 647.

    Google Scholar 

  112. Yasui, A. and S. A. Langeveld. 1985. Homology between the photoreactivation genes of Saccharomyces cerevisiae and Escherichia coli. Gene 26: 349–355.

    Google Scholar 

  113. Yasui, A., M. Takao, A. Oikawa, A. Kiener, C. T. Walsh, and A. P. M. Eker. 1988. Cloning and characterization of a photolyase gene from the cyanobacterium Anacystis nidulans. Nucleic Acids Res. 16: 4447–4463.

    Article  CAS  Google Scholar 

  114. Yasui. A., A. P. M. Eker, and M. Koken. 1989. Existence and expression of photoreactivation repair genes in various yeast species. Mutat. Res. 217: 3–10.

    Article  Google Scholar 

  115. Yasui, A., H. Yajima, T. Kobayashi, A. P. M. Eker, and A. Oikawa. 1992. Mitochondrial DNA repair by photolyase. Mutat. Res. 273: 231–236.

    Article  PubMed  CAS  Google Scholar 

  116. Yasui, A., A. P. M. Eker, S. Yasuhira, H. Yajima, T. Kobayashi, M. Takao, and A. Oikawa. 1994. A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J. 13: 6143–6151.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yasui, A., Eker, A.P.M. (1998). DNA Photolyases. In: Nickoloff, J.A., Hoekstra, M.F. (eds) DNA Damage and Repair. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-455-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-455-9_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5015-7

  • Online ISBN: 978-1-59259-455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics