Skip to main content

Modulations in Chromatin Structure During DNA Damage Formation and DNA Repair

  • Chapter
DNA Damage and Repair

Part of the book series: Contemporary Cancer Research ((CCR))

Abstract

It has long been recognized that the “target” of DNA-damaging agents and the “substrate” of DNA repair enzymes in eukaryotes is the highly compact and dynamic structure of chromatin. Understanding the modulation of DNA damage and repair in chromatin, as well as the modulation of chromatin structure by DNA damage and its repair processing, is necessary for understanding the fate of potential mutagenic and carcinogenic lesions in DNA. The central idea to be discussed in this chapter is that DNA damage, DNA repair (as well as other DNA-processing mechanisms), and chromatin structure are intimately associated in the cell (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almagor, M. and R. D. Cole. 1989. Differential scanning calorimetry of nuclei as a test for the effects of anticancer drugs on human chromatin. Cancer Res. 49: 5561–5566.

    PubMed  CAS  Google Scholar 

  2. Althaus, F. R., L. Hofferer, H. E. Kleczkowska, M. Malanga, H. Naegeli, P. Panzeter, and C. Realini. 1993. Histone shuttle driven by the automodification cycle of poly (ADP-ribose) polymerase. Environ. Mol. Mutagen. 22: 278–282.

    Article  PubMed  CAS  Google Scholar 

  3. Arents, G. and E. N. Moudrianakis. 1993. Topography of the histone octamer surface—repeating structural motifs utilized in the docking of nucleosomal DNA. Proc. Natl. Acad. Sci. USA 90: 10,489–10, 493.

    Google Scholar 

  4. Arnold, G., A. K. Dunker, and M. J. Smerdon. 1987. Limited nucleosome migration can completely randomize DNA repair patches in intact human cells. J. Mol. Biol. 654: 433–436.

    Article  Google Scholar 

  5. Bedoyan, J., R. Gupta, F. Thoma, and M. J. Smerdon. 1992. Transcription, nucleosome stability and DNA repair in a yeast minichromosome. J. Biol. Chem. 267: 5996–6005.

    PubMed  CAS  Google Scholar 

  6. Berkowitz, E. M. L. and H. Silk. 1981. Methylation of chromosomal DNA by two alkylating agents differing in carcinogenic potential. Cancer Lett. 12: 311–321.

    Article  PubMed  CAS  Google Scholar 

  7. Brash, D. E. 1988. UV mutagenic photoproducts in Escherichia coli and human cells: amolecular genetics perspective on human skin cancer. Photochem. Photobiol. 48: 59–66.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, D. W., L. J. Libertini, C. Suquet, E. W. Small, and M. J. Smerdon. 1993. Unfolding of nucleosome cores dramatically changes the distribution of UV photoproducts. Biochemistry 32: 10, 527–10, 531.

    Google Scholar 

  9. Buttinelli, M., E. D. DiMauro, and R. Negri. 1993. Multiple nucleosome positioning with unique rotational setting for the Saccharomyces cerevisiae 5S rRNA gene in vitro and in vivo. Proc. Natl. Acad. Sci. USA 90: 9315–9319.

    Article  CAS  Google Scholar 

  10. Cadet, J., C. Anselmino, T. Douki, and L. Voituriez. 1992. Photochemistry of nucleic acids in cells. J. Photochem. Photobiol. B. 15: 277–298.

    Article  PubMed  CAS  Google Scholar 

  11. Cavalli, G. and F. Thoma. 1993. Chromatin transitions during activation and repression of galactose-regulated genes in yeast. EMBO J. 12: 4603–4613.

    PubMed  CAS  Google Scholar 

  12. Chencleland, T. A., M. M. Smith, S. Y. Le, R. Sternglanz, and V. G. Allfrey. 1993. Nucleosome structural changes during derepression of silent mating-type loci in yeast. J. Biol. Chem. 268: 1118–1124.

    CAS  Google Scholar 

  13. Christians, F. C. and P. C. Hanawalt. 1993. Lack of transcription-coupled repair in mammalian ribosomal RNA genes. Biochemistry 32: 10, 512–10, 518.

    Google Scholar 

  14. Conconi, A., R. Losa, Th. Koller, and J. M. Sogo. 1984. Psoralen-crosslinking of soluble and of H1-depleted soluble rat liver chromatin. J. Mol. Biol. 178: 920–928.

    Article  PubMed  CAS  Google Scholar 

  15. Conconi, A., R.-M. Widmer, T. Koller, and J. M. Sogo. 1989. Two different chromatin structures coexist in ribosomal RNA genes. Cell 57: 753–761.

    Article  PubMed  CAS  Google Scholar 

  16. Cosman, M., C. de los Santos, R. Fiala, B. E. Hingerty, S. B. Singh, V. Ibanez, L. A. Margulis, D. Live, N. E. Geacintov, S. Broyde, et al. 1992. Solution conformation of the major adduct between the carcinogen (+)-anti-benzo[a]pyrene diol epoxide and DNA. Proc. Natl. Acad. Sci. USA 89: 1914–1918.

    Article  PubMed  CAS  Google Scholar 

  17. Dammann, R., R. Lucchini, T. Koller, and J. M. Sogo. 1993. Chromatin structures and transcription of rDNA in yeast S. cerevisiae. Nucleic Acids Res. 21: 2321–2338.

    Google Scholar 

  18. de Murcia, G., A. Huletsky, D. Lamarre, A. Gaudreau, J. Pouyet, M. Daune, and G. G. Poirier. 1986. Modulation of chromatin superstructure induced by poly (ADP-ribose) synthesis and degradation. J. Biol. Chem. 510: 7011–7017.

    Google Scholar 

  19. Digiuseppe, J. A. and S. L. Dresler. 1989. Bleomycin-induced DNA repair synthesis in permeable human fibroblasts: Mediation of long-patch and short-patch repair by distinct DNA polymerases. Biochemistry 28: 9515–9520.

    Article  PubMed  CAS  Google Scholar 

  20. Digiuseppe, J. A., D. J. Hunting, and S. L. Dresler. 1990. Aphidicolin-sensitive DNA repair synthesis in human fibroblasts damaged with bleomycin is distinct from UV-induced repair. Carcinogenesis 11: 1021–1026.

    Article  PubMed  CAS  Google Scholar 

  21. Dresler, S. L. 1985. Stimulation of deoxyribonucleic acid excision repair in human fibroblasts pretreated with sodium butyrate. Biochemistry 287: 6861–6869.

    Article  Google Scholar 

  22. Fritz, L. K. and M. J. Smerdon. 1995. Repair of UV damage in actively transcribed ribosomal genes. Biochemistry 34: 13, 117–13, 124.

    Google Scholar 

  23. Gale, J. M. and M. J. Smerdon. 1988. Photofootprint of nucleosome core DNA in intact chromatin having different structural states. J. Mol. Biol. 204: 949–958.

    Article  PubMed  CAS  Google Scholar 

  24. Gale, J. M. and M. J. Smerdon. 1988. UV-induced pyrimidine dimers and trimethylpsoralen crosslinks do not alter chromatin folding in vitro. Biochemistry 27: 7197–7205.

    Article  CAS  Google Scholar 

  25. Gale, J. M. and M. J. Smerdon. 1990. UV induced (6–4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes. Photochem. Photobiol. 51: 411–417.

    Article  PubMed  CAS  Google Scholar 

  26. Gale, J. M., K. A. Nissen, and M. J. Smerdon. 1987. UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proc. Natl. Acad. Sci. USA 84: 6644–6648.

    Article  PubMed  CAS  Google Scholar 

  27. Grunstein, M. 1990. Histone function in transcription. Ann. Rev. Cell Biol. 6: 643–678.

    Article  PubMed  CAS  Google Scholar 

  28. Hayes, J., T. D. Tullius, and A. P. Wolffe. 1990. The structure of DNA in a nucleosome. Proc. Natl. Acad. Sci. USA 87: 7405–7409.

    Article  PubMed  CAS  Google Scholar 

  29. Hittelman, W. N. 1990. Direct measurement of chromosome repair by premature chromosome condensation. Prog. Clin. Biol. Res. 340B: 337–346.

    Google Scholar 

  30. Huletsky, A., G. de Murcia, S. Muller, M. Hengartner, L. Menard, D. Lamarre, and G. G. Poirier. 1989. The effect of poly(ADP-ribosyl)ation on native and Hl-depleted chromatin. A role of poly(ADP-ribosyl)ation on core nucleosome structure. J. Biol. Chem. 264: 8878–8886.

    PubMed  CAS  Google Scholar 

  31. Hunting, D. J., S. L. Dresler, and M. W. Lieberman. 1985. Multiple conformational states of repair patches in chromatin during DNA excision repair. Biochemistry 24: 3219–3226.

    Article  PubMed  CAS  Google Scholar 

  32. Jensen, K. A. and M. J. Smerdon. 1990. DNA repair within nucleosome cores of UV-irradiated human cells. Biochemistry 29: 4773–4782.

    Article  PubMed  CAS  Google Scholar 

  33. Kim, J -K., D. Patel, and B.-S. Choi. 1995. Contrasting structural impacts induced by cissyn cyclobutane dimer and (6–4) adduct in DNA duplex decamers: implication in mutagenesis and repair activity. Photochem. Photobiol. 62 (1): 44–50.

    Article  PubMed  CAS  Google Scholar 

  34. Kornberg, R. 1981. The location of nucleosomes in chromatin: specific or statistical? Nature 292: 579–580.

    Article  PubMed  CAS  Google Scholar 

  35. Kuo, M. T. and T. C. Hsu. 1978. Bleomycin causes release of nucleosomes from chromatin and chromosomes. Nature 271: 83, 84.

    Google Scholar 

  36. Lan, S. Y. and M. J. Smerdon. 1985. A nonuniform distribution of excision repair synthesis in nucleosome DNA. Biochemistry 24: 7771–7783.

    Google Scholar 

  37. Lang, M. C., G. deMurcia, A. Mazen, R. P. P. Fuchs, M. Leng and M. Daune. 1982. Nonrandom binding of N-acetoxy-N-2-acetylaminoflourene to chromatin subunits as visualized by immunoelectron microscopy. Chem.-Biol. Interactions 41: 83–93.

    Article  CAS  Google Scholar 

  38. Lieberman, M. W., M. J. Smerdon, T. D. Tlsty, and F. B. Oleson. 1979. The role of chromatin structure in DNA repair in human cells damaged with chemical carcinogens and ultraviolet radiation, in Environmental Carcinogenesis ( Emmelot, P. and E. Kriek, eds.), Elsevier/North Holland Biomedical Press, Amsterdam, pp. 345–363.

    Google Scholar 

  39. Losa, R., S. Omani, and F. Thoma. 1990. Poly(dA)’poly(dT) rich sequences are not sufficient to exclude nucleosome formation in a constitutive yeast promoter. Nucleic Acids Res. 18: 3495–3502.

    Article  PubMed  CAS  Google Scholar 

  40. Mann, D. B., D. L. Springer, and M. J. Smerdon. 1997. DNA damage can alter the stability of nucleosomes: effects are dependent on damage type. Proc. Natl. Acad. Sci. USA,in press.

    Google Scholar 

  41. Mathis, G. and F. R. Althaus. 1990. Uncoupling of DNA excision repair and nucleosomal unfolding in poly(ADP-ribose)-depeleted mammalian cells. Carcinogenesis 11: 1237–1239.

    Article  PubMed  CAS  Google Scholar 

  42. Matsumoto, H., A. Takakusu, and T. Ohnishi. 1994. The effects of ultraviolet C on in vitro nucleosome assembly and stability. Photochem. Photobiol. 60: 134–138.

    Article  PubMed  CAS  Google Scholar 

  43. McGhee, J. D. and G. Felsenfeld. 1979. Reaction of nucleosome DNA with dimethylsulfate. Proc. Natl. Acad. Sci. USA 76: 2133–2137.

    Article  PubMed  CAS  Google Scholar 

  44. McGhee, J. D., D. C. Rau, E. Charney, and G. Felsenfled. 1980. Orientation of the nucleo-some within the higher order structure of chromatin. Cell 22: 87–96.

    Article  PubMed  CAS  Google Scholar 

  45. Meersseman, G., S. Pennings, and E. M. Bradbury. 1992. Mobile nucleosomes-a general behavior. EMBO J. 11: 2951–2959.

    PubMed  CAS  Google Scholar 

  46. Mitchell, D. L. and R. S. Nairn. 1989. The biology of the (6–4) photoproduct. Photochem. Photobiol. 49: 805–819.

    Article  PubMed  CAS  Google Scholar 

  47. Mitchell, D. L., T. D. Nguyen, and J. E. Cleaver. 1990. Nonrandom induction of pyrimidine-pyrimidone (6–4) photoproducts in ultraviolet-irradiated human chromatin. J. Biol. Chem. 265: 5353–5356.

    PubMed  CAS  Google Scholar 

  48. Moyer, R., K. Marien, K. van Holde, and G. Bailey. 1989. Site-specific aflatoxin B 1 adduction of sequence-positioned nucleosome core particles. J. Biol. Chem. 264: 12,22612, 231.

    Google Scholar 

  49. Mueller, J. P. and M. J. Smerdon. 1995. Repair of plasmid and genomic DNA in a rad74 mutant of yeast. Nucleic Acids Res. 23: 3457–3464.

    Article  PubMed  CAS  Google Scholar 

  50. Mueller, J. P. and M. J. Smerdon. 1996. Rad23 is required for transcription coupled repair and efficient overall repair in yeast. Mol. Cell. Biol. 16: 2361–2368.

    PubMed  CAS  Google Scholar 

  51. Niggli, H. and P. Cerutti. 1982. Nucleosomal distribution of thymine photodimers following far-and near-ultraviolet irradiation. Biochem. Biophys. Res. Commun. 105: 1215–1223.

    Article  PubMed  CAS  Google Scholar 

  52. Nissen, K. A., S. Y. Lan, and M. J. Smerdon. 1986. Stability of nucleosome placement in newly repaired regions of DNA. J. Biol. Chem. 261: 8585–8588.

    PubMed  CAS  Google Scholar 

  53. Pehrson, J. R. and L. H. Cohen. 1992. Effects of DNA looping on pyrimidine dimer formation. Nucleic Acids Res. 20: 1321–1324.

    Article  PubMed  CAS  Google Scholar 

  54. Pehrson, J. R. 1989. Thymine dimer formation as a probe of the path of DNA in and between nucleosomes in intact chromatin. Proc. Natl. Acad. Sci. USA 86: 9149–9153.

    Article  PubMed  CAS  Google Scholar 

  55. Pehrson, J. R. 1995. Probing the conformation of nucleosome linker DNA in situ with pyrimidine dimer formation. J. Biol. Chem. 270(38): 22,440–22, 444.

    Google Scholar 

  56. Pennings, S., G. Meersseman, and E. M. Bradbury. 1991. Mobility of positioned nucleosomes on 5-S-rDNA. J. Mol. Biol. 220: 101–110.

    Article  PubMed  CAS  Google Scholar 

  57. Pfeifer, G. P., R. Drouin, A. D. Riggs, and G. P. Holmquist. 1992. Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol. Cell. Biol. 12: 1798–1804.

    CAS  Google Scholar 

  58. Pruss, D. J. J. Hayes, and A. P. Wolffe. 1995. Nucleosomal anatomy-where are the histones? Bioessays 17: 161–170.

    Google Scholar 

  59. Ramanathan, B. and M. J. Smerdon. 1989. Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J. Biol. Chem. 264: 11,026–11, 034.

    Google Scholar 

  60. Richmond, T. J., J. T. Finch, B. Rushton, D. Rhodes, and A. Klug. 1984. Structure of the nucleosome core particle at 7 A resolution. Nature 311: 532–537.

    Google Scholar 

  61. Richmond, T. J., T. Rechsteiner, and K. Luger. 1993. Studies of nucleosome structure. Cold Spring Harb. Symp. Quant. Biol. 58: 265–272.

    Article  PubMed  CAS  Google Scholar 

  62. Roth, S. Y., A. Dean, and R. T. Simpson. 1990. Yeast a2 repressor positions nucleosomes in TRP1/ARSI chromatin. Mol. Cell. Biol. 10: 2247–2260.

    PubMed  CAS  Google Scholar 

  63. Schieferstein, U. and F. Thoma. 1996. Modulation of cyclobutane pyrimidine dimer formation in a positioned nucleosome containing polydA•dT tracts. Biochemistry 35: 7705–7714.

    Article  PubMed  CAS  Google Scholar 

  64. Sidik, K. and M. J. Smerdon. 1990. Bleomycin-induced DNA damage and repair in human cells permeabilized with lysophosphatidylcholine. Cancer Res. 50: 1613–1619.

    PubMed  CAS  Google Scholar 

  65. Sidik, K., and M. J. Smerdon. 1990. Nucleosome rearrangement in human cells following short patch repair of DNA damaged by bleomycin. Biochemistry 29: 7501–7511.

    Article  PubMed  CAS  Google Scholar 

  66. Singer, B. and J. T. Kusmierek. 1982. Chemical mutagenesis. Ann. Rev. Biochemistry 51: 655–693.

    Article  CAS  Google Scholar 

  67. Smerdon, M. J. and M. W. Lieberman. 1980. Distribution within chromatin of deoxyribonucleic acid repair synthesis occurring at different times after ultraviolet radiation. Biochemistry 19: 2992–3000.

    Article  PubMed  CAS  Google Scholar 

  68. Smerdon, M. J. 1986. Completion of excision repair in human cells. Relationship between ligation and nucleosome formation. J. Biol. Chem. 261: 244–252.

    PubMed  CAS  Google Scholar 

  69. Smerdon, M. J. 1989. DNA excision repair at the nucleosome level of chromatin, in DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells ( Lambert, M. W., and J. Laval, eds.), Plenum, New York, pp. 271–294.

    Chapter  Google Scholar 

  70. Smerdon, M. J. and F. Thoma. 1990. Site-specific DNA repair at the nucleosome level in a yeast minichromosome. Cell 61: 675–684.

    Article  PubMed  CAS  Google Scholar 

  71. Smerdon, M. J. and M. W. Lieberman. 1978. Nucleosome rearrangement in human chromatin during UV-induced DNA repair synthesis. Proc. Natl. Acad. Sci. USA 75: 4238–4241.

    Article  PubMed  CAS  Google Scholar 

  72. Smerdon, M. J. and M. W. Lieberman. 1981. Removal of histone H1 from intact nuclei alters the digestion of nucleosome core DNA by staphylococcal nuclease. J. Biol. Chem. 256: 2480–2483.

    PubMed  CAS  Google Scholar 

  73. Smerdon, M. J., R. Gupta, and A. O. Murad. 1993. DNA repair in transcriptionally active chromatin, in DNA Repair Mechanisms ( Bohr, V. A., K. Wassermann, and K. H. Kraemer, eds.), Munksgaard, Copenhagen, pp. 258–270.

    Google Scholar 

  74. Smerdon, M. J., S. Y. Lan, R. E. Calza, and R. Reeves. 1982. Sodium butyrate stimulates DNA repair in UV-irradiated normal and xeroderma pigmentosum human fibroblasts. J. Biol. Chem. 257: 13,441–13, 447.

    Google Scholar 

  75. Smerdon, M. J., J. F. Watkins, and M. W. Lieberman. 1982. Effect of histone H1 removal on the distribution of UV-induced DNA repair synthesis within chromatin. Biochemistry 21: 3879–3885.

    Article  PubMed  CAS  Google Scholar 

  76. Smith, B. L. and M. C. Macleod. 1993. Covalent binding of the carcinogen benzo[a]pyrene diol epoxide to Xenopus laevis 5S DNA reconstituted into nucleosomes. J. Biol. Chem. 268: 20,620–20, 629.

    Google Scholar 

  77. Smith, B. L., G. B. Bauer, and L. F. Povirk. 1994. DNA damage induced by bleomycin, neocarzinostatin, and melphalan in a precisely positioned nucleosome-asymmetry in protection at the periphery of nucleosome-bound DNA. J. Biol. Chem. 269: 30,587–30, 594.

    Google Scholar 

  78. Smith, P. J. 1986. n-Butyrate alters chromatin accessibility to DNA repair enzymes. Carcinogenesis 7: 423–429.

    Google Scholar 

  79. Sogo, J. M. and R. A. Laskey. 1995. Chromatin replication and assembly, in Chromatin Structure and Gene Expression ( Elgin, S., ed. ), IRL at Oxford University Press, pp. 49–70.

    Google Scholar 

  80. Sogo, J. M., P. J. Ness, R. M. Widmer, R. W. Parish, and T. Koller. 1984. Psoralen crosslinking of DNA as a probe for the structure of active nucleolar chromatin. J. Mol. Biol. 178: 897–928.

    Article  PubMed  CAS  Google Scholar 

  81. Stevnsner, T., A. May, L. N. Petersen, F. Larminat, M. Pirsel, and V. A. Bohr. 1993. Repair of ribosomal RNA genes in hamster cells after UV irradiation, or treatment with cisplatin or alkylating agents. Carcinogenesis 14: 1591–1596.

    Article  PubMed  CAS  Google Scholar 

  82. Studitsky, V. M., D. J. Clark, and G. Felsenfeld, G. 1995. Overcoming a nucleosomal barrier to transcription. Cell 83: 19–27.

    CAS  Google Scholar 

  83. Suquet, C. and M. J. Smerdon. 1993. UV damage to DNA strongly influences its rotational setting on the histone surface of reconstituted nucleosomes. J. Biol. Chem. 268: 23,755–23, 757.

    Google Scholar 

  84. Suquet, C., D. L. Mitchell, and M. J. Smerdon. 1995. Repair of UV induced (6–4) photo-products in nucleosome core DNA. J. Biol. Chem. 270: 16,507–16, 509.

    Google Scholar 

  85. Tanaka, S., M. Livingstone, and F. Thoma. 1996. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context. J. Mol. Biol. 257: 919–934.

    Article  PubMed  CAS  Google Scholar 

  86. Thoma, F. 1991. Structural changes in nucleosomes during transcription strip, split or flip. Trends Genet. 7: 175–177.

    PubMed  CAS  Google Scholar 

  87. Thoma, F. 1992. Nucleosome positioning. Biochim. Biophys. Acta 1130: 1–19.

    Article  PubMed  CAS  Google Scholar 

  88. Thoma, F. 1986. Protein-DNA interactions and nuclease-sensitive regions determine nucleosome positions on yeast plasmid chromatin. J. Mol. Biol. 190: 177–190.

    Article  PubMed  CAS  Google Scholar 

  89. Thoma, F. 1988. The role of histone H1 in nucleosomes and chromatin fibers, in Architecture of Eukaryotic Genes ( Kahl, G., ed.), VCH, Germany, pp. 163–185.

    Google Scholar 

  90. Thoma, F. and J. M. Sogo. 1988. Structures of bulk and transcriptionally active chromatin revealed by electron microscopy, in Chromosomes and Chromatin, vol. I ( K. W. Adolph, ed.), CRC, Boca Raton, FL, pp. 85–107.

    Google Scholar 

  91. Thoma, F., T. Koller, and A. Klug. 1979. Involvement of histone H1 in the organization of the nucleosome and of the salt dependent superstructures of chromatin. J. Cell Biol. 83: 403–427.

    Article  PubMed  CAS  Google Scholar 

  92. Thrall, B. D., D. B. Mann, M. J. Smerdon, and D. L. Springer. 1994. Nucleosome structure modulates benzo[a]pyrenediol epoxide adduct formation. Biochemistry 33: 2210–2216.

    Article  PubMed  CAS  Google Scholar 

  93. Travers, A. A. and A. Klug. 1987. The bending of DNA in nucleosomes and its wider implications. Phil. Trans. R. Soc. Lond. B 317: 537–561.

    Article  CAS  Google Scholar 

  94. Van Holde, K. E. 1989. Chromatin. Springer-Verlag, New York.

    Book  Google Scholar 

  95. Van Holde, K. E., D. E. Lohr, and C. Robert. 1992. What happens to nucleosomes during transcription. J. Biol. Chem. 267: 2837–2840.

    PubMed  Google Scholar 

  96. Vos, J.-M. and E. L. Wauthier. 1991. Differential introduction of DNA damage and repair in mammalian genes transcribed by RNA polymerases I and II. Mol. Cell. Biol. 11: 2245–2252.

    PubMed  CAS  Google Scholar 

  97. Wallrath, L. L., Q. Lu, H. Granok, and S. C. R. Elgin. 1994. Architectural variations of inducible eukaryotic promoters—preset and remodeling chromatin structures. Bioessays 16: 165–170.

    Article  PubMed  CAS  Google Scholar 

  98. Wang, C. I. and J. S. Taylor. 1991. Site-specific effect of thymine dimer formation on dAn•dT„ tract bending and its biological implications. Proc. Natl. Acad. Sci. USA 88: 9072–9076.

    Article  PubMed  CAS  Google Scholar 

  99. Wang, Y. C., V. M. Maher, D. L. Mitchell, and J. J. McCormick. 1993. Evidence from mutation spectra that the UV hypermutability of xeroderma pigmentosum variant cells reflects abnormal, error-prone replication on a template containing photoproducts. Mol. Cell. Biol. 13: 4276–4283.

    PubMed  CAS  Google Scholar 

  100. Wang, Z. Q., B. Auer, L. Stingl, H. Berghammer, D. Haidacher, M. Schweiger, and E. F. Wagner. 1995. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 9: 509–520.

    Article  PubMed  CAS  Google Scholar 

  101. Watkins, J. F. and M. J. Smerdon. 1985. Nucleosome rearrangement in vitro. 2. Formation of nucleosomes in newly repaired regions of DNA. Biochemistry 24: 7288–7295.

    Article  PubMed  CAS  Google Scholar 

  102. Watkins, J. F. and M. J. Smerdon. 1985. Nucleosome rearrangement in vitro. 1. Two phases of salt-induced nucleosome migration in nuclei. Biochemistry 24: 7279–7287.

    Article  PubMed  CAS  Google Scholar 

  103. Wolffe, A. P. 1994. Transcriptional activation: switched-on chromatin. Curr. Biol. 4: 525–528.

    Google Scholar 

  104. Wolffe, A. P. 1995. Chromatin Structure and Function, Academic, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smerdon, M.J., Thoma, F. (1998). Modulations in Chromatin Structure During DNA Damage Formation and DNA Repair. In: Nickoloff, J.A., Hoekstra, M.F. (eds) DNA Damage and Repair. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-455-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-455-9_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5015-7

  • Online ISBN: 978-1-59259-455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics