Fibroblast Growth Factors in Tumor Progression and Angiogenesis

  • Israel Vlodavsky
  • Gerhard Christofori
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Based on their wide spectrum of target cells, FGF family members have been suspected of playing important roles in many biological events. Some members of the FGF family are potent mitogens for a large number of cell types of the mesodermal and neuroectodermal lineage, and thus could be responsible for the proliferative stimulus in tumors derived from these cells. At the same time, some of the FGFs are mitogenic for endothelial cells, and are capable of promoting tumor angiogenesis. It is therefore difficult to separate the functional role of FGFs in tumorigenesis from their role in tumor angiogenesis.


Fibroblast Growth Factor Heparan Sulfate Tumor Angiogenesis Basic Fibroblast Growth Factor Athymic Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burgess, W. H. and Maciag, T. (1989) Heparin-binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem. 58, 575–606.PubMedCrossRefGoogle Scholar
  2. 2.
    Basilico, C. and Moscatelli, D. (1992) FGF family of growth factors and oncogenes. Adv. Cancer Res. 59,115–165.PubMedCrossRefGoogle Scholar
  3. 3.
    Imamura, T., Engleka, K., Zhan, X., Tokita, Y., Forough, R., Roeder, D., et al. (1990) Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science 249, 1567–1570.PubMedCrossRefGoogle Scholar
  4. 4.
    Klagsbrun, M. (1990) Affinity of fibroblast growth factors (FGFs) for heparin: FGF—heparan sulfate interactions in cells and extracellular matrix. Curr. Opin. Cell Biol. 2, 857–863.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhu, X., Komiya, H., Chirino, A., Faham, S., Fox, G. M., Arakawa, T., Hsu, B. T., and Rees, D. C. (1991) Three-dimensional structures of acidic and basic fibroblast growth factors. Science 251, 90–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Florkiewicz, R. Z., Baird, A., and Gonzalez, A. M. (1991) Multiple forms of FGF-2: differential nuclear and cell surface localization. Growth Factors 4, 265–275.PubMedCrossRefGoogle Scholar
  7. 7.
    Eriksson, A. E., Cousens, L. S., Weaver, L. H., and Matthews, B. W. (1991) Three-dimensional structure of human basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 88, 3441–3445.PubMedCrossRefGoogle Scholar
  8. 8.
    Halaban, R., Ghosh, S., and Baird, A. (1987) FGF-2 is the putative natural growth factor for human melanocytes. In Vitro Cell Dev. Biol. 23, 47–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Yayon, A. and Klagsbrun, M. (1990) Autocrine regulation of cell growth and transformation by basic fibroblast growth factor. Cancer Metastasis Rev. 9, 191–202.PubMedCrossRefGoogle Scholar
  10. 10.
    Neufeld, G., Mitchell, R., Ponte, P., and Gospodarowicz, D. (1988) Expression of human basic fibroblast growth factor cDNA in baby hamster kidney-derived cells results in autonomous cell growth. J. Cell Biol. 106, 1385–1394.PubMedCrossRefGoogle Scholar
  11. 11.
    Rogelj, S., Weinberg, R.A., Fanning, P., and Klagsbrun, M. (1988) Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature 331, 173–175.PubMedCrossRefGoogle Scholar
  12. 12.
    Blam, S. B., Mitchell, R., Tischer, E., Rubin, J. S., Silva, M., Silver, S., et al. (1988) Addition ofgrowth hormone secretion signal to basic fibroblast growth factor results in cell transformation and secretion of aberrant forms of the protein. Oncogene 3, 129–136.PubMedGoogle Scholar
  13. 13.
    Jaye, M., Lyall, R. M., Mudd, R., Schlessinger, J., and Sarver, N. (1988) Expression of acidic fibroblast growth factor cDNA confers growth advantage and tumorigenesis to Swiss 3T3 cells. EMBO J. 7, 963–969.PubMedGoogle Scholar
  14. 14.
    Talarico, D. and Basilico, C. (1991) K-fgf/hst oncogene induces transformation through an autocrine mechanism that requires extracellular stimulation of the mitogenic pathway. Mol. Cell. Biol. 11, 1138–1145.PubMedGoogle Scholar
  15. 15.
    Takahashi, J. A., Fukumoto, M., Igarashi, K., Oda, Y., Kikuchi, H., and Hatanaka, M. (1992) Correlation of basic fibroblast growth factor expression levels with the degree of malignancy and vascularity in human gliomas. J. Neurosurg. 76, 792–798.PubMedCrossRefGoogle Scholar
  16. 16.
    Morrison, R. S., Giordano, S., Yamaguchi, F., Hendrickson, S., Berger, M. S., and Palczewski, K. (1993) Basic fibroblast growth factor expression is required for clonogenic growth of human glioma cells. J. Neurosci. Res. 34, 502–509.PubMedCrossRefGoogle Scholar
  17. 17.
    Becker, D., Lee, P. L., Rodeck, U., and Herlyn, M. (1992) Inhibition of the fibroblast growth factor receptor 1 (FGFR-1) gene in human melanocytes and malignant melanomas leads to inhibition of proliferation and signs indicative of differentiation. Oncogene7, 2303–2313.PubMedGoogle Scholar
  18. 18.
    Ensoli, B., Markham, P., Kao, V., Barillari, G., Fiorelli, V., Gendelman, R., et al. (1994) Block of AIDS-Kaposi’s sarcoma (KS) cell growth, angiogenesis, and lesion formation in nude mice by antisense oligonucleotide targeting basic fibroblast growth factor. A novel strategy for the therapy of KS. J. Clin. Invest. 94, 1736–1746.PubMedCrossRefGoogle Scholar
  19. 19.
    Christofori, G. (1997) The role of fibroblast growth factors in tumor progression and angiogenesis, in Tumor Angiogenesis (Lewis, C. E., Bicknell, R., and Ferrara, N., eds.), Oxford University Press, Oxford, pp. 201–237.Google Scholar
  20. 20.
    Smith, R., Peters, G., and Dickson, C. (1988) Multiple RNAs expressed from the int-2 gene in mouse embryonal carcinoma cell lines encode a protein with homology to fibroblast growth factors. EMBO J. 7, 1013–1022.PubMedGoogle Scholar
  21. 21.
    Muller, W. J., Lee, F. S., Dickson, C., Peters, G., Pattengale, P., and Leder, P. (1990) The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J. 9, 907–913.PubMedGoogle Scholar
  22. 22.
    Shackleford, G. M., MacArthur, C. A., Kwan, H. C., and Varmus, H. E. (1993) Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc. Natl. Acad. Sci. USA 90, 740–744.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhou, D. J., Casey, G., and Cline, M. J. (1988) Amplification of human int-2 in breast cancers and squamous carcinomas. Oncogene 2, 279–282.PubMedGoogle Scholar
  24. 24.
    Huang, Y. Q., Li, J. J., Moscatelli, D., Basilico, C., Nicolaides, A., Zhang, W. G., Poiesz, B. J., and Friedman, K. A. (1993) Expression of int-2 oncogene in Kaposi’s sarcoma lesions. J. Clin. Invest. 91, 1191–1197.PubMedCrossRefGoogle Scholar
  25. 25.
    Taira, M., Yoshida, T., Miyagawa, K., Sakamoto, H., Terada, M., and Sugimura, T. (1987) cDNA sequence of human transforming gene hst and identification of the coding sequence required for transforming activity. Proc. Natl. Acad. Sci. USA 84, 2980–2984.PubMedCrossRefGoogle Scholar
  26. 26.
    Delli, B. P., Curatola, A. M., Kern, F. G., Greco, A., Ittmann, M., and Basilico, C. (1987) An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell 50, 729–737.CrossRefGoogle Scholar
  27. 27.
    Taylor, W. R., Greenberg, A. H., Turley, E. A., and Wright, J. A. (1993) Cell motility, invasion, and malignancy induced by overexpression of K-FGF or FGF-2. Exp. Cell Res. 204, 295–301.PubMedCrossRefGoogle Scholar
  28. 28.
    McLeskey, S. W., Kurebayashi, J., Honig, S. F., Zwiebel, J., Lippman, M. E., Dickson, R. B., and Kern, F. G. (1993) Fibroblast growth factor 4 transfection of MCF-7 cells produces cell lines that are tumorigenic and metastatic in ovariectomized or tamoxifen-treated athymic nude mice. Cancer Res. 53, 2168–2177.PubMedGoogle Scholar
  29. 29.
    Talarico, D., Ittmann, M. M., Bronson, R., and Basilico, C. (1993) A retrovirus carrying the K-fgf oncogene induces diffuse meningeal tumors and soft-tissue fibrosarcomas. Mol. Cell. Biol. 13, 1998–2010.PubMedGoogle Scholar
  30. 30.
    Schofield, P. N., Ekstrom, T. J., Granerus, M., and Engstrom, W. (1991) Differentiation associated modulation of K-FGF expression in a human teratocarcinoma cell line and in primary germ cell tumors. FEBS Lett. 280, 8–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Yoshida, T., Ishimaru, K., Sakamoto, H., Yokota, J., Hirohashi, S., Igarashi, K., Sudo, K., and Terada, M. (1994) Angiogenic activity of the recombinant hst-1 protein. Cancer Lett. 83, 261–268.PubMedCrossRefGoogle Scholar
  32. 32.
    Bates, B., Hardin, J., Zhan, X., Drickamer, K., and Goldfarb, M. (1991) Biosynthesis of human fibroblast growth factor-5. Mol. Cell. Biol. 11, 1840–1145.PubMedGoogle Scholar
  33. 33.
    Li, J. J., Huang, Y. Q., Moscatelli, D., Nicolaides, A., Zhang, W. C., and Friedman, K. A. (1993) Expression of fibroblast growth factors and their receptors in acquired immunodeficiency syndromeassociated Kaposi sarcoma tissue and derived cells. Cancer 72, 2253–2259.PubMedCrossRefGoogle Scholar
  34. 34.
    Iida, S., Yoshida, T., Naito, K., Sakamoto, H., Katoh, O., Hirohashi, S., et al. (1992) Human hst-2 (FGF-6) oncogene: cDNA cloning and characterization. Oncogene7, 303–309.PubMedGoogle Scholar
  35. 35.
    Finch, P. W., Rubin, J. S., Miki, T., Ron, D., and Aaronson, S. A. (1989) Human FGF-7 is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 245, 752–755.PubMedCrossRefGoogle Scholar
  36. 36.
    Werner, S., Peters, K. G., Longaker, M. T., Fuller, P. F., Banda, M. J., and Williams, L. T. (1992) Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc. Natl. Acad. Sci. USA 89, 6896–6900.PubMedCrossRefGoogle Scholar
  37. 37.
    Tanaka, A., Miyamoto, K., Minamino, N., Takeda, M., Sato, B., Matsuo, H., and Matsumoto, K. (1992) Cloning and characterization of an androgen-induced growth factor essential for the androgendependent growth of mouse mammary carcinoma cells. Proc. Natl. Acad. Sci. USA 89, 8928–8932.PubMedCrossRefGoogle Scholar
  38. 38.
    Miyamoto, M., Naruo, K., Seko, C., Matsumoto, S., Kondo, T., and Kurokawa, T. (1993) Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol. Cell. Biol. 13, 4251–4259.PubMedGoogle Scholar
  39. 39.
    Partanen, J., Vainikka, S., Korhonen, J., Armstrong, E., and Alitalo, K. (1992) Diverse receptors for fibroblast growth factors. Prog. Growth Factor Res. 4, 69–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Johnson, D. E. and Williams, L. T. (1993) Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 60, 1–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee, P. L., Johnson, D. E., Cousens, L. S., Fried, V. A., and Williams, L. T. (1989) Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 245, 57–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Ornitz, D. M. and Leder, P. (1992) Ligand specificity and heparin dependence of fibroblast growth factor receptors 1 and 3. J. Biol. Chem. 267, 16,305–16,311.Google Scholar
  43. 43.
    Kornbluth, S., Paulson, K. E., and Hanafusa, H. (1988) Novel tyrosine kinase identified by phosphotyrosine antibody screening of cDNA libraries. Mol. Cell. Biol. 8, 5541–5544.PubMedGoogle Scholar
  44. 44.
    Partanen, J., Makela, T. P., Eerola, E., Korhonen, J., Hirvonen, H., Claesson, W. L., and Alitalo, K. (1991) FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J. 10, 1347–1354.PubMedGoogle Scholar
  45. 45.
    Ron, D., Reich, R., Chedid, M., Lengel, C., Cohen, O. E., Chan, A. M., et al. (1993) Fibroblast growth factor receptor 4 is a high affinity receptor for both acidic and basic fibroblast growth factor, but not for keratinocyte growth factor. J. Biol. Chem. 268, 5388–5394.PubMedGoogle Scholar
  46. 46.
    Cheon, H. G., LaRochelle, W. J., Bottaro, D. P., Burgess, W. H., and Aaronson, S. A. (1994) Highaffinity binding sites for related fibroblast growth factor ligands reside within different receptor immunoglobulin-like domains. Proc. Natl. Acad. Sci. USA 91, 989–993.PubMedCrossRefGoogle Scholar
  47. 47.
    Hanneken, A., Maher, P. A., and Baird, A. (1995) High-affinity immunoreactive FGF receptors in the extracellular matrix of vascular endothelial cells: implications for the modulation of FGF-2. J. Cell Biol. 128, 1221–1228.PubMedCrossRefGoogle Scholar
  48. 48.
    Levi, E., Miao, H. Q., Fridman, R., Yayon, A., and Vlodavsky, I. (1996) Matrix metalloproteinase2(MMP-2) releases active soluble ectodomain of fibroblast growth factor receptor-I. Proc. Natl. Acad. Sci. USA 96, 7069–7074.CrossRefGoogle Scholar
  49. 49.
    Kan, M., Wang, F., Xu, J., Crabb, J. W., Hou, J., and McKeehan, W. L. (1993) An essential heparinbinding domain in the fibroblast growth factor receptor kinase. Science 259, 1918–1921.PubMedCrossRefGoogle Scholar
  50. 50.
    Adnane, J., Gaudray, P., Dionne, C. A., Crumley, G., Jaye, M., Schlessinger, J., Jeanteur, P., Bir nbaum, D., and Theillet, C. (1991) BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene 6, 659–663.PubMedGoogle Scholar
  51. 51.
    Morrison, R. S., Yamaguchi, F., Saya, H., Bruner, J. M., Yahanda, A. M., Donehower, L. A., and Berger, M. (1994) Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J. Neurooncol. 18, 207–216.PubMedCrossRefGoogle Scholar
  52. 52.
    Jaakkola, S., Salmikangas, P., Nylund, S., Partanen, J., Armstrong, E., Pyrhonen, S., Lehtovirta, P., and Nevanlinna, H. (1993) Amplification of fgfr4 gene in human breast and gynecological cancers. Int. J. Cancer 54, 378–382.PubMedCrossRefGoogle Scholar
  53. 53.
    Vlodavsky, I., Korner, G., Ishai, M. R., Bashkin, P., Bar, S. R., and Fuks, Z. (1990) Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev. 9, 203–226.PubMedCrossRefGoogle Scholar
  54. 54.
    Kiefer, M. C., Stephans, J. C., Crawford, K., Okino, K., and Barr, P. J. (1990) Ligand-affinity cloning and structure of a cell surface heparan sulfate proteoglycan that binds basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 87, 6985–6989.PubMedCrossRefGoogle Scholar
  55. 55.
    Kjellen, L. and Lindahl, U. (1991) Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443–445.PubMedCrossRefGoogle Scholar
  56. 56.
    Yayon, A., Klagsbrun, M., Esko,J. D., Leder, P., and Ornitz, D. M. (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841–848.PubMedCrossRefGoogle Scholar
  57. 57.
    Guimond, S., Maccarana, M., Olwin, B. B., Lindahl, U., and Rapraeger, A. C. (1993) Activating and inhibitory heparin sequences for FGF-2 (basic FGF) Distinct requirements for FGF-1, FGF-2, and FGF-4. J. Biol. Chem. 268, 23,906–23,914.Google Scholar
  58. 58.
    Aviezer, D., Levy, E., Safran, M., Svahn, C., Buddecke, E., Schmidt, A., et al. (1994) Differential structural requirements of heparin and heparan sulfate proteoglycans that promote binding of basic fibroblast growth factor to its receptor. J. Biol. Chem. 269, 1 14–121.Google Scholar
  59. 59.
    Klagsbrun, M. and Baird, A. (1991) A dual receptor system is required for basic fibroblast growth factor activity. Cell 67, 229–231.PubMedCrossRefGoogle Scholar
  60. 60.
    Ornitz, D. M., Yayon, A., Flanagan, J. G., Svahn, C. M., Levi, E., and Leder, P. (1992) Heparin is required for cell-free binding ofbasic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol. Cell. Biol. 12, 240–247.PubMedGoogle Scholar
  61. 61.
    Miao H-Q., Ishai-Michaeli, R., Atzmon, R., Peretz, T., and Vlodavsky, I. (1996) Sulfate moieties in the subendothelial extracellular matrix are involved in FGF-2 sequestration, dimerization and stirnulation of cell proliferaion. J. Biol. Chem. 271, 4879–4886.PubMedCrossRefGoogle Scholar
  62. 62.
    Miao, H-Q., Ornitz, D. M., Eingorn, E., Ben-Sasson, S. A., and Vlodavsky, I. (1997) Modulation of fibroblast growth factor-2 receptor binding, dimerization, signaling, and angiogenic activity by a synthetic heparin-mimicking polyanionic compound. J. Clin. Invest. 99, 1565–1575.PubMedCrossRefGoogle Scholar
  63. 63.
    Rapraeger, A. (1995) In the clutches of proteoglycans: how does heparan sulfate regulate FGF binding. Curr. Biol. 2, 645–649.Google Scholar
  64. 64.
    Roghani, M., Mansukhani, A., Dell’Era, P., Bellosta, P., Basilico, C., Rifkin, D. B., and Moscatelli, D. (1994) Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J. Biol. Chem. 269, 3976–3984.PubMedGoogle Scholar
  65. 65.
    Gitay-Goren, H., Cohen, T., Tessler, S., Soker, S., Gengrinovitch, S., Rockwell, P., et al. (1996) Selective binding of VEGF 121 to one of the three VEGF receptors of vascular endothelial cells. J. Biol. Chem. 271, 5519–5523.PubMedCrossRefGoogle Scholar
  66. 66.
    Bonneh-Barkay, D., Shlissel, M., Berman, B., Shaoul, E., Admon, A., Vlodavsky, I., et al. (1997) Identification of glypican as a dual modulator of the biological activity of fibroblast growth factors. J. Biol. Chem. 272, 12,415–12,421.CrossRefGoogle Scholar
  67. 67.
    Schlessinger, J., Lax, I., and Lemmon, M. (1995) Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83, 357–360.PubMedCrossRefGoogle Scholar
  68. 68.
    Spivak, K. T., Lemmon, M. A., Dikic, I., Ladbury, J. E., Pinchasi, D., Huang, J., et al. (1994) Heparininduced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 79, 1015–1024.CrossRefGoogle Scholar
  69. 69.
    Sasisekharan, R., Moses, M. A., Nugent, M. A., Cooney, C. L., and Langer, R. (1994) Heparinase inhibits neovacularization. Proc. Natl. Acad. Sci. USA 91, 1524–1528.PubMedCrossRefGoogle Scholar
  70. 70.
    Aviezer, D., Hecht, D., Safran, M., Eisinger, M., David, G., and Yayon, A. (1994) Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79, 1005–1013.PubMedCrossRefGoogle Scholar
  71. 71.
    Aviezer, D., Iozzo, R. V., Noonan, D. M., and Yayon, A. (1997) Suppression ofautocrine and paracrine functions ofbasic fibroblast growth factor by stable expression ofperlecan antisense cDNA. Mol. Cell. Biol. 17, 1938–1946.PubMedGoogle Scholar
  72. 72.
    Moscatelli, D. (1988) Metabolism of receptor-bound and matrix-bound basic fibroblast growth factor by bovine capillary endothelial cells. J. Cell Biol. 107, 753–759.PubMedCrossRefGoogle Scholar
  73. 73.
    Roghani, M. and Moscatelli, D. (1992) Basic fibroblast growth factor is internalized through both receptor-mediated and heparan sulfate-mediated mechanisms. J. Biol. Chem. 267, 22,156–22,162.Google Scholar
  74. 74.
    Amalric, F., Baldin, V., Bosc, B. I., Bugler, B., Couderc, B., Guyader, M., et al. (1991) Nuclear translocation of basic fibroblast growth factor. Ann. NYAcad. Sci. 638, 127–138.CrossRefGoogle Scholar
  75. 75.
    Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235, 442–447.PubMedCrossRefGoogle Scholar
  76. 76.
    Sato, Y. and Rifkin, D. B. (1988) Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J. Cell Biol. 107, 1199–1205.PubMedCrossRefGoogle Scholar
  77. 77.
    Sato, Y., Shimada, T., and Takaki, R. (1991) Autocrinological role of basic fibroblast growth actor on tube formation of vascular endothelial cells in vitro. Biochem. Biophys. Res. Commun. 180,1098–1102.PubMedCrossRefGoogle Scholar
  78. 78.
    Vlodavsky, I., Fridman, R., Sullivan, R., Sasse, J., and Klagsbrun, M. (1987) Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet-derived growth factor-like protein which is secreted. J. Cell. Physiol. 131, 402–408.PubMedCrossRefGoogle Scholar
  79. 79.
    Vlodavsky, I., Folkman, J., Sullivan, R., Friedman, R., Ishai-Michaeli, R., Sasse, J., and Klagsbrun, M. (1987) Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. USA 84, 2292–2296.PubMedCrossRefGoogle Scholar
  80. 80.
    Villaschi, S. and Nicosia, R. F. (1993) Angiogenic role of endogenous basic fibroblast growth factor released by rat aorta after injury. Am. J. Pathol. 143, 181–190.PubMedGoogle Scholar
  81. 81.
    Schulze, O. K., Risau, W., Vollmer, E., and Sorg, C. (1990) In situ detection ofbasic fibroblast growth factor by highly specific antibodies. Am. J. Pathol. 137, 85–92.Google Scholar
  82. 82.
    Polverini, P. J. and Leibovich, S. J. (1984) Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages. Lab. Invest. 51, 635–642.PubMedGoogle Scholar
  83. 83.
    Folkman, J. (1992) Role of angiogenesis in tumor growth. Semin. Cancer Biol. 3, 65–71.PubMedGoogle Scholar
  84. 84.
    Brustle, O., Aguzzi, A., Talarico, D., Basilico, C., Kleihues, P., and Wiestler, O. D. (1992) Angiogenic activity of the K-fgf/hst oncogene in neural transplants. Oncogene 7, 1177–1183.PubMedGoogle Scholar
  85. 85.
    Ensoli, B., Gendelman, R., Markham, P., Fiorelli, V., Colombini, S., Raffeld, M., et al. (1994) Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma. Nature 371, 674–680.PubMedCrossRefGoogle Scholar
  86. 86.
    Chodak, G. W., Hospelhorn, V., Judge, S. M., Mayforth, R., Koeppen, H., and Sasse, J. (1988) Increased levels of fibroblast growth factor-like activity in urine of patients with bladder or kidney cancer. Cancer Res. 48, 2083–2088.PubMedGoogle Scholar
  87. 87.
    Fujimoto, K., Ichimori, Y., Kakizoe, T., Okajima, E., Sakamoto, H., Sugimura, T., and Terada, M. (1991) Increased serum levels of basic fibroblast growth factor in patients with renal cell carcinoma. Biochem. Biophys. Res. Commun. 180, 386–392.PubMedCrossRefGoogle Scholar
  88. 88.
    Jin-no, K., Tanimizu, M., Hyodo, I., Kurimoto, F., and Yamashita, T. (1997) Plasma level of basic fibroblast growth factor increases with progression of chronic liver disease. J. Gastroenterol. 32, 119–121.PubMedCrossRefGoogle Scholar
  89. 89.
    Nguyen, M., Watanabe, H., Budson, A. E., Richie, J. P., and Folkman, J. (1993) Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. J. Natl. Cancer Inst. 85, 241,242.Google Scholar
  90. 90.
    Nguyen, M., Watanabe, H., Budson, A. E., Richie, J. P., Hayes, D. F., and Folkman, J. (1994) Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers [see comments]. J. Natl. Cancer Inst. 86, 356–361.PubMedCrossRefGoogle Scholar
  91. 91.
    Li, V. W., Folkerth, R. D., Watanabe, H., Yu, C., Rupnick, M., Barnes, P., et al. (1994) Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumors. Lancet 344, 82–86.PubMedCrossRefGoogle Scholar
  92. 92.
    Lin, R. Y., Argenta, P. A., Sullivan, K. M., and Adzick, N. S. (1995) Diagnostic and prognostic role of basic fibroblast growth factor in Wilm’s tumor patients. Clin. Cancer Res. 1, 327–331.PubMedGoogle Scholar
  93. 93.
    Nanus, D. M., Schmitz-Drager, B. J., Motzer, R. J., Lee, A. C., Vlamis, V., Cordon-Cardo, C., Albino, A. P., and Reuter, V. E. (1993) Expression of basic fibroblast growth factor in primary human renal tumors: correlation with poor survival. J. Natl. Cancer Inst. 85, 1597–1599.PubMedCrossRefGoogle Scholar
  94. 94.
    Emoto, A., Nakagawa, M., Wakabayashi, Y., Hanada, T., Naito, S., and Nomura, Y. (1997) Induction of tubulogenesis of microvascular endothelial cells by basic fibroblast growth factor from human SN12C renal cancer cells. J. Urol. 157, 699–703.PubMedCrossRefGoogle Scholar
  95. 95.
    Folkman, J. (1996) Tumor angiogenesis, in Cancer Medicine, 4th ed. (Holland, J. F., Bast, R. C., Morton, D. L., Frei, E., Kufe, D. W., and Weichselbaum, R. R., eds.), Williams & Wilkens, Baltimore, MD, pp. 181–204.Google Scholar
  96. 96.
    Soutter, A. D., Nguyen, M., Watanabe, H., and Folkman, J. (1993) Basic fibroblast growth factor secreted by an animal tumor is detectable in urine. Cancer Res. 53, 5297–5299.PubMedGoogle Scholar
  97. 97.
    Thompson, W. D., Shiach, K. J., Fraser, R. A., Mintosh, L. C., and Simpson, J. G. (1987) Tumors aquire their vasculature by vessel incorporation, not vessel ingrowth. J. Pathol. 151, 323–332.PubMedCrossRefGoogle Scholar
  98. 98.
    Hondermarck, H., Courty, J., Boilly, B., and Thomas, D. (1990) Distribution of intravenously administered acidic and basic fibroblast growth factors in the mouse. Experientia 46, 973,974.Google Scholar
  99. 99.
    Yayon, A. and Klagsbrun, M. (1990) Autocrine transformation by chimeric signal peptide-basic fibroblast growth factor: reversal by suramin. Proc. Natl. Acad. Sci. USA 87, 5346–5350.PubMedCrossRefGoogle Scholar
  100. 100.
    Huang, Y. Q., Li, J. J., Nicolaides, A., Zhang, W. G., and Friedman, K. A. (1993) Increased expression of fibroblast growth factors (FGFs) and their receptor by protamine and suramin on Kaposi’s sarcomaderived cells. Anticancer Res. 13, 887–890.PubMedGoogle Scholar
  101. 101.
    Braddock, P. S., Hu, D.-E., Fan, T.-P. D., Stratford, I. J., Harris, A. L., and Bicknell, R. (1994) A structure-activity analysis of antagonism of the growth factor and angiogenic activity of basic fibroblast growth factor by suramin and related polyanions. Br. J. Cancer 69, 890–898.PubMedCrossRefGoogle Scholar
  102. 102.
    Zugmaier, G., Lippman, M. E., and Wellstein, A. (1992) Inhibition by pentosan polysulfate (PPS) of heparin-binding growth factors released from tumor cells and blockage by PPS of tumor growth in animals. J. Natl. Cancer Inst. 84, 1716–1724.PubMedCrossRefGoogle Scholar
  103. 103.
    Wellstein, A., Zugmaier, G., Califano, J., Kern, F., Paik, S., and Lippman, M. E. (1991) Tumor growth dependent on Kaposi’s sarcoma-derived fibroblast growth factor inhibited by pentosan polysulfate. J. Natl. Cancer Inst. 83, 716–720.PubMedCrossRefGoogle Scholar
  104. 104.
    Pluda, J. M., Shay, L. E., Foli, A., Tannenbaum, S., Cohen, P. J., Goldspiel, B. R., et al. (1993) Administration of pentosan polysulfate to patients with human immunodeficiency virus-associated Kaposi’s sarcoma. J. Natl. Cancer Inst. 85, 1585–1592.PubMedCrossRefGoogle Scholar
  105. 105.
    Parish, C. R., Coombe, D. R., Jakobsen, K. B., and Underwood, P. A. (1987) Evidence that sulphated polysaccharides inhibit tumor metastasis by blocking tumor cell-derived heparanase. Int. J. Cancer 40, 511–517.PubMedCrossRefGoogle Scholar
  106. 106.
    Tulpule, A., Snyder, J. C., Espina, B. M., et al. (1994) Phase I study of Tecogalan, a novel angiogenesis inhibitor in the treatment of AIDS-related Kaposi’s sarcoma and solid tumors. Blood 84, 248a (abstract).Google Scholar
  107. 107.
    Benezra, M., Bar-Shavit, R., Yayon, A., Ben-Sasson, S., and Vlodavsky, I. (1992) Reversal of basic fibroblast growth factor-mediated autocrine cell transformation by aromatic anionic compounds. Cancer Res. 52, 5656–5662.PubMedGoogle Scholar
  108. 108.
    Benezra, M., Ben-Sasson, S. A., Regan, J., Chang, M., Bar-Shavit, R., and Vlodavsky, I. (1994) Antiproliferative activity toward vascular smooth muscle cells and receptor binding of heparin-mimicking anionic aromatic compounds. Arterioscler. Thromb. 14, 1992–1999.PubMedCrossRefGoogle Scholar
  109. 109.
    Peters, K., Werner, S., Liao, X., Wert, S., Whitsett, J., and Williams, L. (1994) Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBO J. 13, 3296–3301.PubMedGoogle Scholar
  110. 110.
    Werner, S., Weinberg, W., Liao, X., Peters, K. G., Blessing, M., Yuspa, S. H., Weiner, R. L., and Williams, L. T. (1993) Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J. 12, 2635–2643.PubMedGoogle Scholar
  111. 111.
    Li, Y., Basilico, C., and Mansukhani, A. (1994) Cell transformation by fibroblast growth factors can be suppressed by truncated fibroblast growth factor receptors. Mol. Cell. Biol. 14, 7660–7669.PubMedCrossRefGoogle Scholar
  112. 112.
    Beitz, J. G., Davol, P., Clark, J. W., Kato, J., Medina, M., Frackelton, A. J., et al. (1992) Antitumor activity of basic fibroblast growth factor-saporin mitotoxin in vitro and in vivo. Cancer Res. 52, 227–230.PubMedGoogle Scholar
  113. 113.
    Lappi, D. A., Ying, W., Barthelemy, I., Martineau, D., Prieto, I., Benatti, L., Soria, M., and Baird, A. (1994) Expression and activities of a recombinant basic fibroblast growth factor-saporin fusion protein. J. Biol. Chem. 269, 12,552–12,558.Google Scholar
  114. 114.
    Siegall, C. B., Gawlak, S. L., Chace, D. F., Merwin, J. R., and Pastan, I. (1994) In vivo activities of acidic fibroblast growth factor: Pseudomonas exotoxin fusion proteins. Bioconjug. Chem. 5, 77–83.PubMedCrossRefGoogle Scholar
  115. 115.
    Merwin, J. R., Lynch, M. J., Madri, J. A., Pastan, I., and Siegall, C. B. (1992) Acidic fibroblast growth factor-Pseudomonas exotoxin chimeric protein elicits antiangiogenic effects on endothelial cells. Cancer Res. 52, 4995–5001.PubMedGoogle Scholar
  116. 116.
    Jellinek, D., Lynott, C. K., Rifkin, D. B., and Janjic, N. (1993) High-affinity RNA ligands to basic fibroblast growth factor inhibit receptor binding. Proc. Natl. Acad. Sci. USA 90, 11,227–11,231.Google Scholar
  117. 117.
    Guvakova, M. A., Yakubov, L. A., Vlodavsky, I., Tonkinson, J. L., and Stein, C. A. (1995) Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J. Biol. Chem. 270, 2620–2627.PubMedCrossRefGoogle Scholar
  118. 118.
    Bischoff, J. (1997) Cell adhesion and angiogenesis. J. Clin. Invest. 99, 373–376.PubMedCrossRefGoogle Scholar
  119. 119.
    Drake, C. J., Davis, L. A., and Little, C. D. (1992) Antibodies to beta 1—integrins cause alterations of aortic vasculogenesis, in vivo. Dev. Dvn. 193. 83–91.CrossRefGoogle Scholar
  120. 120.
    Brooks, P. C., Clark, R. A., and Cheresh, D. A. (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569–571.PubMedCrossRefGoogle Scholar
  121. 121.
    Brooks, P. C., Montgomery, A. M. P., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., and Cheresh, D. A. (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis on angiogenic blood vessels. Cell 79, 1157–1164.PubMedCrossRefGoogle Scholar
  122. 122.
    Friedlander, M., Brooks, P. C., Shaffer, R. W., Kincaid, C. M., Varner, J. A., and Cheresh, D. A. (1995) Definition of two angiogenic pathways by distinct alpha-v integrins. Science 270, 1500–1502.PubMedCrossRefGoogle Scholar
  123. 123.
    Iruela-Arispe, M. L., Hasselaar, P., and Sage, E. H. (1991) Differential expression of extracellular proteins is correlated with angiogenesis in vitro. Lab. Invest. 64, 174–176.PubMedGoogle Scholar
  124. 124.
    Iruela-Arispe, M. L., Diglio, C. A., and Sage, E. H. (1991) Modulation ofextracellular matrix proteins by endothelial cells undergoing angiogenesis in vitro. Arterioscler. Thromb. 11, 805–815.PubMedCrossRefGoogle Scholar
  125. 125.
    Rooney, P., Wang, M., Kumar, P., and Kumar, S. (1993) Angiogenic oligosaccharides of hyaluronan enhance the production of type I and type VIII collagens by endothelial cells. J. Cell. Sci. 105, 213–218.PubMedGoogle Scholar
  126. 126.
    Rooney, P., Kumar, P., Ponting, J., and Kumar, S. (1997) Role of col lagens and proteoglycans in tumor angiogenesis, in Tumor Angiogenesis (Lewis, C. E., Bicknell, R., and Ferrara, N., eds.), Oxford University Press, Oxford, pp. 125–140.Google Scholar
  127. 127.
    Rooney, P., Kumar, S., Ponting, J., and Wang, M. (1995) Role of hyaluronanin tumor neovascularization. lnt. J. Cancer 60, 632–636.CrossRefGoogle Scholar
  128. 128.
    Granot, I., Halevy, 0., Hurwitz, S., and Pines, M. (1993) Halofuginone: an inhibitor of collagen type I synthesis. Biochim. Biophys. Acta 1156, 107–112.CrossRefGoogle Scholar
  129. 129.
    Mignatti, P. and Rifkin, D. B. (1991) Release of basic fibroblast growth factor, an angiogenic factor devoid of secretory signal sequence: a trivial phenomenon or a novel secretion mechanism? J. Cell Biochem. 47 201 207.Google Scholar
  130. 130.
    Jackson, A., Tarantini, F., Gamble, S., Friedman, S., and Maciag, T. (1995) The release of fibroblast growth factor-1 from NIH 3T3 cells in response to temperature involves the function of cysteine residues. J. Biol. Chem. 270, 33–36.PubMedCrossRefGoogle Scholar
  131. 131.
    Kandel, J., Bossy, W. E., Radvanyi, F., Klagsbrun, M., Folkman, J., and Hanahan, D. (1991) Neovascularization is associated with a switch to the export of FGF-2 in the multistep development of fibrosarcoma. Cell 66, 1095–1104.PubMedCrossRefGoogle Scholar
  132. 131a.
    Christofori, G. and Luef, S. (1997) Novel forms of acidic fibroblast growth factors (FGF-1) are constitutively exported by β tumor cells lines independent from conventional secretion and apoptosis. Angiogenesis 1, 55–70.PubMedCrossRefGoogle Scholar
  133. 132.
    Czubayko, F., Smith, R. V., Chung, H. C., and Wellstein, A. (1994) Tumor growth and angiogenesis induced by a secreted binding protein for fibroblast growth factors. J. Biol. Chem. 269, 28,243–28,248.Google Scholar
  134. 133.
    Czubayko, F., Liaudet-Coopman, E. D. E., Aigner, A., Tuveson, A., Berchem, G., and Wellstein, A. (1997) A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nature Med. 3, 1137–1140.PubMedCrossRefGoogle Scholar
  135. 134.
    D’Amore, P. A. (1990) Modes of FGF release in vivo and in vitro. Cancer Metastasis Rev. 9, 227–238.Google Scholar
  136. 135.
    Baird, A. and Ling, N. (1987) Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: implications for a role ofheparinase-like enzymes in the neovascular response. Biochem. Biophys. Res. Commun. 142, 428–435.PubMedCrossRefGoogle Scholar
  137. 136.
    Folkman, J., Klagsbrun, M., Sasse, J., Wadzinski, M., Ingber, D., and Vlodavsky, I. (1988) Heparinbinding angiogenic protein–basic fibroblast growth factor–is stored within basement membrane. Am. J. Pathol. 130, 393–399.PubMedGoogle Scholar
  138. 137.
    Cordon-Cardo, C., Vlodavsky, I., Haimovitz, F. A., Hicklin, D., and Fuks, Z. (1990) Expression of basic fibroblast growth factor in normal human tissues. Lab. Invest. 63, 832–840.PubMedGoogle Scholar
  139. 138.
    Gonzalez, A. M., Buscaglia, M., Ong, M., and Baird, A. (1990) Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J. Cell Biol.110, 753–765.PubMedCrossRefGoogle Scholar
  140. 139.
    Bashkin, P., Doctrow, S., Klagsbrun, M., Svahn, C.-M., Folkman, J., and Vlodavsky, I. (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28, 1737–1743.PubMedCrossRefGoogle Scholar
  141. 140.
    Vlodavsky, I., Bar-Shavit, R., Ishai-Michaeli, R., Bashkin, P., and Fuks, Z. (1991) Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem. Sci. 16, 268–271.PubMedCrossRefGoogle Scholar
  142. 141.
    Ishai-Michaeli, R., Svahn, C.-M., Chajek-Shaul, T., Korner, G., Ekre, H.-P., and Vlodavsky, I. (1992) Importance of size and sulfation of heparin in release of basic fibroblast factor from the vascular endothelium and extracellular matrix. Biochemistry 31, 2080–2088.PubMedCrossRefGoogle Scholar
  143. 142.
    Brunner, G., Gabrilove, J., Rifkin, D. B., and Wilson, E. L. (1991) Phospholipase C release of basic fibroblast growth factor from human bone marrow cultures as a biologically active complex with a phosphatidylinositol-anchored heparan sulfate proteoglycan. J. Cell Biol. 114, 1275–1283.PubMedCrossRefGoogle Scholar
  144. 143.
    Bashkin, P., Neufeld, G., Gitay, G. H., and Vlodavsky, I. (1992) Release of cell surface-associated basic fibroblast growth factor by glycosylphosphatidylinositol-specific phospholipase C. J. Cell. Physiol. 151, 126–137.PubMedCrossRefGoogle Scholar
  145. 144.
    Medalion, B., Merin, G., Aingorn, H., Miao, H.-Q., Nagler, A., Elami, A., Ishai-Michaeli, R., and Vlodavsky, I. (1997) Endogenous basic fibroblast growth factor displaced by heparin from the luminal surface of human blood vessels is preferentially sequestered by injured regions of the vessel wall. Circulation 95, 1853–1862.PubMedCrossRefGoogle Scholar
  146. 145.
    Ishai-Michaeli, R., Eldor, A., and Vlodavsky, I. (1990) Heparanase activity expressed by platelets, neutrophils and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Reg. 1, 833–842.Google Scholar
  147. 146.
    Benezra, M., Vlodavsky, I., Ishai, M. R., Neufeld, G., and Bar-Shavit, R. (1993) Thrombin-induced release of active basic fibroblast growth factor-heparan sulfate complexes from subendothelial extracellular matrix. Blood 81, 3324–3333.PubMedGoogle Scholar
  148. 147.
    Saksela, O. and Rifkin, D. B. (1990) Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J. Cell Biol.110, 767–775.PubMedCrossRefGoogle Scholar
  149. 148.
    Vlodavsky, I., Miao, H. Q., Medalion, B., Danagher, P., and Ron, D. (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metestesis Rev. 15, 177–186.CrossRefGoogle Scholar
  150. 149.
    Rak, J. and Kerbel, R. S. (1997) FGF-2 and tumorangiogenesis: back in the limelight. Nature Med. 3, 1083,1084.Google Scholar
  151. 150.
    Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.PubMedCrossRefGoogle Scholar
  152. 151.
    Stavri, G. T., et al. (1995) Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Circulation 92, 11–14.PubMedCrossRefGoogle Scholar
  153. 152.
    Goto, F., Goto, K., Weindel, K., and Folkman, J. (1993) Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab. Invest. 69, 508–517.PubMedGoogle Scholar
  154. 153.
    Asahara, T., et al. (1995) Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92, 365–371.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Israel Vlodavsky
  • Gerhard Christofori

There are no affiliations available

Personalised recommendations