Advertisement

Regulation of Angiogenesis by the Organ Microenvironment

  • Diane R. Bielenberg
  • Isaiah J. Fidler
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Most deaths from cancer are caused by metastases that are resistant to conventional therapies (1–3). The major barrier to the treatment of metastases is the biological heterogeneity of cancer cells in primary and secondary neoplasms. This heterogeneity is exhibited in a wide range of biologic characteristics, such as cell-surface receptors, enzymes, karyotypes, cell morphologies, growth properties, sensitivities to various therapeutic agents, and in the ability to induce angiogenesis, and to invade and produce metastasis (3–6).

Keywords

Nude Mouse Melanoma Cell Basic Fibroblast Growth Factor Human Melanoma Cell Human Colon Carcinoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sugarbaker, E. V. (1979) Cancer metastasis: a product of tumor-host interactions. Curr. Probl. Cancer 3, 1–59.PubMedCrossRefGoogle Scholar
  2. 2.
    Weiss, L. (1985) Principles ofMetastasis. Academic, Orlando, FL.Google Scholar
  3. 3.
    Fidler, I. J. (1990) Critical factors in the biology of human cancer metastasis: Twenty-eighth G. H. A. Clowes Memorial Award Lecture. Cancer Res. 50 6130–6138.Google Scholar
  4. 4.
    Fidler, I. J. and Poste, G. (1985) Cellular heterogeneity of malignant neoplasms: implications for adjuvant chemotherapy. Semin. Oncol. 12, 207–221.PubMedGoogle Scholar
  5. 5.
    Folkman, J. and Klagsburn, M. (1987) Angiogenic factors. Science 235, 444–447.CrossRefGoogle Scholar
  6. 6.
    Aukerman, S. L. and Fidler, I. J. (1991) Heterogeneous nature of metastatic neoplasms: relevance to biotherapy, in Principles of Cancer Biotherapy (Oldham, R. K., ed.), Marcel Dekker, New York, pp. 23–53.Google Scholar
  7. 7.
    Folkman, J. (1986) How is blood vessel growth regulated in normal and neoplastic tissue? G. H. A. Clowes Memorial Award Lecture. Cancer Res. 46, 467–473.PubMedGoogle Scholar
  8. 8.
    Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235, 442–447.PubMedCrossRefGoogle Scholar
  9. 9.
    Liotta, L. A. (1986) Tumor invasion and metastasis: role of the extracellular matrix: Rhoads Memorial Award Lecture. Cancer Res. 46, 1–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Fidler, I. J. and Kripke, M. L. (1980) Tumor cell antigenicity, host immunity and cancer metastasis. Cancer Immunol. Immunother. 7, 201–205.Google Scholar
  11. 11.
    Radinsky, R. (1993) Paracrine growth regulation ofhuman colon carcinoma organ-specific metastasis. Cancer Metastasis Rev. 12, 345–361.PubMedCrossRefGoogle Scholar
  12. 12.
    Price, J. E., Tarin, D., and Fidler, I. J. (1988) Influence of organ microenvironment on pigmentation of a metastatic murine melanoma. Cancer Res. 48, 2258–2264.PubMedGoogle Scholar
  13. 13.
    Auerbach, W. and Auerbach, R. (1994) Angiogenesis inhibition: a review. Pharmaceut. Ther. 63, 265–311.CrossRefGoogle Scholar
  14. 14.
    Ellis, L. M. and Fidler, I. J. (1996) Angiogenesis and metastasis. Eur. J. Cancer 32A, 2451–2460.CrossRefGoogle Scholar
  15. 15.
    Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Liotta, L. A., Kleinerman, J., and Saidel, G. M. (1974) Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34, 997–1003.PubMedGoogle Scholar
  17. 17.
    Weidner, N., Folkman, J., Pozza, F., Bevilacqua, P., Allred, E. N., Moore, D. H., Meli, S., and Gaspanni, G. (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early stage breast carcinoma. J. Natl. Cancer Inst. 84, 1875–1887.Google Scholar
  18. 18.
    Weidner, N., Carroll, P. R., Flax, J., Blumenfeld, W., and Folkman, J. (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol. 143, 401–409.PubMedGoogle Scholar
  19. 19.
    Weidner, N. and Folkman, J. (1996) Tumoral vascularity as a prognostic factor in cancer, in Important Advances in Oncology (DeVita, V. T., Hellman, S., and Rosenberg, S. A., eds.), Lippincott-Raven, Philadelphia, pp. 167–190.Google Scholar
  20. 20.
    Klagsbrun, M. and D’Amore, P. A. (1991) Regulators ofangiogenesis. Ann. Rev. Physiol. 53, 217–239.CrossRefGoogle Scholar
  21. 21.
    Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G. (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336.PubMedCrossRefGoogle Scholar
  22. 22.
    Gerlowski, L. E. and Jain, R. K. (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305.PubMedCrossRefGoogle Scholar
  23. 23.
    Folkman, J. and Ingber, D. (1992) Inhibition of angiogenesis. Semin. Cancer Biol. 3, 89–96.PubMedGoogle Scholar
  24. 24.
    Taraboletti, G., Roberts, D., Liotta, L. A., and Giavazzi, R. (1990) Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor. J. Cell Biol. 111, 765–772.Google Scholar
  25. 25.
    Sidky, Y. A. and Borden, E. C. (1987) Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res. 47, 5155–5161.PubMedGoogle Scholar
  26. 26.
    O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression ofmetastases by a Lewis lung carcinoma. Cell 79, 315–328.PubMedCrossRefGoogle Scholar
  27. 27.
    O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., et al. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.PubMedCrossRefGoogle Scholar
  28. 28.
    Folkman, J. (1995) Clinical applications ofresearch on angiogenesis. N. Engl. J. Med. 333,1753–1763.Google Scholar
  29. 29.
    Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.PubMedCrossRefGoogle Scholar
  30. 30.
    Bouck, N., Stellmach, V., and Hsu, S. C. (1996) How tumors become angiogenic. Adv. Cancer Res. 69, 135–174.PubMedCrossRefGoogle Scholar
  31. 31.
    Dameron, K. M., Volpert, O. V., Tanisky, M. A., and Bouk, N. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1502–1504.CrossRefGoogle Scholar
  32. 32.
    Hanahan, D., Christofori, G., Naik, P., and Arbeit, J. (1996) Transgenic mouse models of tumor angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur. J. Cancer 32A, 2386–2393.Google Scholar
  33. 33.
    Fidler, I. J. (1970) Metastasis: quantitative analysis ofdistribution and fate oftumor cell emboli labeled with 125l-5-iododeoxyuridine. J. Natl. Cancer Inst. 45, 773–782.PubMedGoogle Scholar
  34. 34.
    Price, J. E., Aukerman, S. L., and Fidler, I. J. (1986) Evidence that the process of murine melanoma metastasis is sequential and selective and contains stochastic elements. Cancer Res. 46, 5172–5178.PubMedGoogle Scholar
  35. 35.
    Fidler, I. J., Gersten, D. M., and Riggs, C. W. (1977) Relationship of host immune status to tumor cell arrest, distribution, and survival in experimental animals. Cancer 40, 46–55.PubMedCrossRefGoogle Scholar
  36. 36.
    Hart, I. R., Talmadge, J. E., and Fidler, I. J. (1981) Metastatic behavior of a murine reticulum cell sarcoma exhibiting organ-specific growth. Cancer Res. 41, 1281–1287.PubMedGoogle Scholar
  37. 37.
    Fidler, I. J. and Talmadge, J. E. (1986) Evidence that intravenously derived murine pulmonary metastases can originate from the expansion of a single tumor cell. Cancer Res. 46, 5167–5171.PubMedGoogle Scholar
  38. 38.
    Paget, S. (1889) Distribution of secondary growths in cancer of the breast. Lancet1, 571–573.CrossRefGoogle Scholar
  39. 39.
    Hart, I. R. and Fidler, I. J. (1980) Role of organ selectivity in the determination of metastatic patterns of B 16 melanoma. Cancer Res. 40, 2281–2287.PubMedGoogle Scholar
  40. 40.
    Fidler, I. J. (1973) Selection of successive tumor lines for metastasis. Nature 242, 148,149.Google Scholar
  41. 41.
    Nicolson, G. L. and Dulski, K. M. (1986) Organ specificity of metastatic tumor colonization is related to organ-selective growth properties of malignant cells. Int. J. Cancer 38, 289–294.PubMedCrossRefGoogle Scholar
  42. 42.
    Raz, A., Hanna, N., and Fidler, I. J. (1981) In vivo isolation of a metastatic tumor cell variant involving selective and nonadaptive processes. J. Natl. Cancer Inst. 66 183–194.Google Scholar
  43. 43.
    Fidler, I. J. and Hart, I. R. (1982) Biological diversity in metastatic neoplasms: origin and implications. Science 217 998–1003.Google Scholar
  44. 44.
    Fidler, I. J. and Kripke, M. L. (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197 893–895.Google Scholar
  45. 45.
    Fidler, I. J. (1994) Experimental orthotopic models of organ-specific metastasis by human neoplasms. Adv. Mol. Cell Biol. 9, 191–215.CrossRefGoogle Scholar
  46. 46.
    Fidler, I. J. (1995) Modulation of the organ microenvironment for treatment of cancer metastasis. J. Natl. Cancer Inst. 87, 1588–1592.PubMedCrossRefGoogle Scholar
  47. 47.
    Ewing, J. (1928) Neoplastic Diseases, 6th ed., Saunders, Philadelphia.Google Scholar
  48. 48.
    Tarin, D., Price, J. E., Kettlewell, M. G. W., Souter, R. G., Vass, A. C. R., and Crossley, B. (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res. 44,3584–3592.PubMedGoogle Scholar
  49. 49.
    Naito, S., von Eschenbach, A. C., Giavazzi, R., and Fidler, I. J. (1986) Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res. 46, 4109–4 115.Google Scholar
  50. 50.
    Naito, S., von Eschenbach, A. C., and Fidler, I. J. (1987) Different growth pattern and biologic behavior of human and renal cell carcinoma implanted into different organs of nude miuce. J. Natl. Cancer Inst. 78,377–385.PubMedGoogle Scholar
  51. 51.
    Singh, R. K., Bucana, C. D., Gutman, M., Fan, D., Wilson, M. R., and Fidler, I. J. (1994) Organ sitedependent expression of basic fibroblast growth factor in human renal cell carcinoma cells. Am. J. Pathol. 145, 365–374.Google Scholar
  52. 52.
    Morikawa, K., Walker, S. M., Jessup, J. M., and Fidler, I. J. (1988) In vivo selection ofhighly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res. 48, 1943–1948.PubMedGoogle Scholar
  53. 53.
    Morikawa, K., Walker, S. M., Nakajima, M., Pathak, S., Jessup, J. M., and Fidler, I. J. (1988) Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res. 48, 6863–6871.PubMedGoogle Scholar
  54. 54.
    Fidler, I. J., Naito, S., and Pathak, S. (1990) Orthotopic implantation is essential for the selection, growth and metastasis of human renal cell cancer in nude mice. Cancer Metastasis Rev. 9, 149–165.PubMedCrossRefGoogle Scholar
  55. 55.
    Fidler, I. J. (1991) Orthotopic implantation of human colon carcinoma into nude mice provides a valuable model for the biology and therapy of cancer metastasis. Cancer Metastasis Rev. 10, 229–243.PubMedCrossRefGoogle Scholar
  56. 56.
    Nakajima, M., Morikawa, K., Fabra, A., Bucana, C. D., and Fidler, I. J. (1990) Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells. J. Natl. Cancer Inst. 82, 1890–1898.Google Scholar
  57. 57.
    Fabra, A., Nakajima, M., Bucana, C. D., and Fidler, I. J. (1992) Modulation of the invasive phenotype of human colon carcinoma cells by organ specific fibroblasts of nude mice. Differentiation 52,101–110.Google Scholar
  58. 58.
    Gohji, K., Nakajima, M., Fabra, A., Bucana, C. D., von Eschenbach, A. C., Tsuruo, T., and Fidler, I. J. (1994) Regulation of gelatinase production in metastatic renal cell carcinoma by organ-specific fibroblasts. Jpn. J. Cancer Res. 85, 152–160.PubMedCrossRefGoogle Scholar
  59. 59.
    Gohji, K., Fidler, I. J., Tsan, R., Radinsky, R., von Eschenbach, A. C., Tsuruo, T., and Nakajima, M. (1994) Human recombinant interferons-3 and -γ decrease gelatinase production and invasion by human KG-2 renal-carcinoma cells. Int. J. Cancer 58, 380–384.Google Scholar
  60. 60.
    Kato, N., Nawa, A., Tamakoshi, K., Kikkawa, F., Suganuma, N., Okamoto, T., et al. (1995) Suppression of gelatinase production with decreased invasiveness of choriocarcinoma cells by human recombinant interferon-β. Am. J. Obstet. Gynecol. 172, 601–606.PubMedCrossRefGoogle Scholar
  61. 61.
    Nickoloff, B. J., Mitre, R. S., Varoni, J., Dixit, V. M., and Polverini, P. J. (1994) Aberrant production of interleukin-8 and thrombospondin-1 by psoriatic keratinocytes mediates angiogenesis. Am. J. Pathol. 144, 820–828.PubMedGoogle Scholar
  62. 62.
    Singh, R. K., Llansa, N., Bucana, C. D., Sanchez, R., Koura, A., and Fidler, I. J. (1996) Cell densitydependent regulation of basic fibroblast growth factor expression in human renal cell carcinoma cells. Cell Growth Differ. 7, 397–404.PubMedGoogle Scholar
  63. 63.
    Kitadai, Y., Ellis, L. M., Takahashi, Y., Bucana, C. D., Anzai, H., Tahara, T., and Fidler, I. J. (1995) Multiparametric in situ mRNA hybridization analysis to detect metastasis-related genes in surgical specimens of human colon carcinomas. Clin. Cancer Res. 1, 1095–1102.PubMedGoogle Scholar
  64. 64.
    Kitadai, Y., Ellis, L. M., Tucker, S. L., Green, G. F., Bucana, C. D., Cleary, K. R., et al. (1996) Multiparametric in situ mRNA hybridization analysis to predict disease recurrence in patients with colon carcinoma. Am. J. Pathol. 149, 1541–1551.PubMedGoogle Scholar
  65. 65.
    Ezekowitz, R. A. B., Mulliken, J. B., and Folkman, J. (1992) Interferon alfa-2a therapy for lifethreatening hemangiomas of infancy. N. Engl. J. Med. 326, 1456–1463.PubMedCrossRefGoogle Scholar
  66. 66.
    White, C. W., Sondheimer, H. M., Crouch, E. C., Wilson, H., and Fan, L. L. (1989) Treatment of pulmonary hemangiomatosis with recombinant interferon-a-2a. N. Engl. J. Med. 320, 1197–1200.PubMedCrossRefGoogle Scholar
  67. 67.
    Orchard, P. J., Smith, C. M., Woods, W. G., Day, D. L., Dehner, L. P., and Shapiro, R. (1989) Treatment of heamangioendotheliomas with interferon-a. Lancet 2, 565–567.Google Scholar
  68. 68.
    Ezekowitz, A., Mulliken, J., and Folkman, J. (1991) Interferon alpha therapy of haemangiomas in newborns and infants. Br. J. Haematol. 79, 67, 68.Google Scholar
  69. 69.
    Ricketts, R. R., Hatley, R. M., Corden, B. J., Sabio, H., and Howell, C. G. (1994) Interferon-a-2a for the treatment of complex hemangiomas of infancy and childhood. Ann. Surg. 6, 605–614.Google Scholar
  70. 70.
    Ohlms, L. A., Jones, D. T., McGill, T. J. I., and Healy, G. B. (1994) Interferon-α-2A therapy for airway hemangiomas. Ann. Otol. Rhinol. Laryngol. 103, 1–8.PubMedGoogle Scholar
  71. 71.
    Groopman, J. E., Gottlieb, M. S., Goodman, J., Mitsuyasu, R. T., Conant, M. A., Prince, H., et al. (1984) Recombinant alpha-2 interferon therapy for Kaposi’s sarcoma associated with the acquired immunodeficiency syndrome. Ann. Intern. Med. 100, 671–676.PubMedCrossRefGoogle Scholar
  72. 72.
    Real, F. X., Oettgen, H. F., and Krown, S. E. (1986) Kaposi’s sarcoma and the acquired immunodeficiency syndrome: treatment with high and low doses of recombinant leukocyte A interferon. J. Clin. Oncol. 4, 544–551.PubMedGoogle Scholar
  73. 73.
    Rios, A., Mansell, P. W., Newell, G. R., Reuben, J. M., Hersh, E. M., and Gutterman, J. U. (1985) Treatment of acquired immunodeficiency syndrome-related Kaposi’s sarcoma with lymphoblastoid interferon. J. Clin. Oncol. 3, 506–512.PubMedGoogle Scholar
  74. 74.
    Mitsuyasu, R. T. (1991) Interferon alpha in the treatment of AIDS-related Kaposi’s sarcoma. Br. J. Haematol. 79, 69–73.PubMedCrossRefGoogle Scholar
  75. 75.
    Legha, S. S. (1997) The role of interferon alfa in the treatment of metastatic melanoma. Semin. Oncol. 24, 24–31.Google Scholar
  76. 76.
    Tucker, S. B. (1993) Interferon-alpha treatment of basal cell and squamous cell skin tumors. Cancer Bull. 45, 270–274.Google Scholar
  77. 77.
    Stadler, W. M., Kuzel, T. M., Raghavan, D., Levine, E., Vogelzang, N. J., Roth, B., and Dorr, F. A. (1997) Metastatic bladder cancer: advances in treatment. Eur. J. Cancer 33, 23–26.CrossRefGoogle Scholar
  78. 78.
    O’Brien, T. S., Smith, K., Cranston, D., Fuggle, S., Bicknell, R., and Harris, A. L. (1995) Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br. J Urol. 76,311–314.PubMedCrossRefGoogle Scholar
  79. 79.
    Nguyen, M., Watanabe, H., Budson, A. E., Richie, J. P., Hayes, D. F., and Folkman, J. (1994) Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J. Natl. Cancer Inst. 86, 356–361.PubMedCrossRefGoogle Scholar
  80. 80.
    Singh, R. K., Gutman, M., Bucana, C. D., Sanchez, R., Llansa, N., and Fidler, I. J. (1995) Interferons alpha and beta downregulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl. Acad. Sci. USA 92, 4562–4566.PubMedCrossRefGoogle Scholar
  81. 81.
    Singh, R. K., Bucana, C. D., Llansa, N., Sanchez, R., and Fidler, I. J. (1996) Cell density-dependent modulation ofbasic fibroblast growth factor expression by human interferon-β. Int. J. Oncol. 8, 649–656.PubMedGoogle Scholar
  82. 82.
    Herlyn, M. (1990) Human melanoma: development and progression. Cancer Metastasis Rev. 9, 101–109.PubMedCrossRefGoogle Scholar
  83. 83.
    Singh, R. K., Gutman, M., Radinsky, R., Bucana, C. D., and Fidler, I. J. (1994) Expression of interleukin-8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res. 54, 3242–3247.PubMedGoogle Scholar
  84. 84.
    Gutman, M., Singh, R. K., Xie, K., Bucana, C. D., and Fidler, I. J. (1995) Regulation of IL-8 expression in human melanoma cells by the organ environment. Cancer Res. 55, 2470–2475.PubMedGoogle Scholar
  85. 85.
    Singh, R. K., Gutman, M., Llansa, N., and Fidler, I. J. (1996) Interferon-β prevents the upregulation of interleukin-8 expression in human melanoma cells. J. Interferon Cytokine Res. 16, 577–584.PubMedCrossRefGoogle Scholar
  86. 86.
    Oliveira, I. C., Sciavolino, P. J., Lee, T. H., and Vilcek, J. (1992) Downregulation of interleukin-8 gene expression in human fibroblast: unique mechanism of transcriptional inhibition by interferon. Proc. Natl. Acad. Sci. USA 89, 9049–9053.PubMedCrossRefGoogle Scholar
  87. 87.
    Schnyder-Candrian, S., Strieter, R. M., Kunkel, S. L., and Walz, A. (1995) Interferon-a and interferonγ downregulate the production of interleukin-8 and ENA-78 in human monocytes. J. Leukoc. Biol. 57, 929–935.PubMedGoogle Scholar
  88. 88.
    Sidky, Y. A. and Auerbach, R. (1976) Lymphocyte-induced angiogenesis in tumor-bearing mice. Science 192, 1237, 1238.Google Scholar
  89. 89.
    Meininger, C. J. and Zetter, B. R. (1992) Mast cells and angiogenesis. Semin. Cancer Biol. 3, 73–79.PubMedGoogle Scholar
  90. 90.
    Fidler, I. J. (1980) Lymphocytes are not only immunocytes. Biomedicine 32, 1–3.PubMedGoogle Scholar
  91. 91.
    Fidler, I. J., Gersten, D. M., and Kripke, M. L. (1979) Influence of immune status on the metastasis of three murine fibrosarcomas of different immunogenicites. Cancer Res. 39, 3816–3821.PubMedGoogle Scholar
  92. 92.
    Miguez, M., Davel, L., and deLustig, E. S. (1986) Lymphocyte-induced angiogenesis: correlation with the metastatic incidence of two murine mammary adenocarcinomas. Invasion Metastasis 6, 313–320.PubMedGoogle Scholar
  93. 93.
    Freeman, M. R., Schneck, F. X., Gagnon, M. L., Corless, C., Soker, S., Niknejad, K., Peoples, G. E., and Klagsbrun, M. (1995) Peripheral blood T-lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res. 55, 4140–4145.PubMedGoogle Scholar
  94. 94.
    Polverini, P. Cotran, R., Gimbrone, N., and Unanue, E. (1977) Activated macrophages induce vascular proliferation. Nature 269 804, 805.Google Scholar
  95. 95.
    Sunderkotter, C., Steinbrink, K., Goebeler, M., Bhardwaj, R., and Sorg, C. (1994) Macrophages and angiogenesis. J. Leukocyte Biol. 55, 410–422.PubMedGoogle Scholar
  96. 96.
    Takahashi, K., Mulliken, J. B., Kozakewich, H. P. W., Rogers, R. A., Folkman, J., and Ezekowitz, R. A. B. (1994) Cellular markers that distinguish the phases ofhemangioma during infancy and childhood. J. Clin. Invest. 93, 2357–2364.PubMedCrossRefGoogle Scholar
  97. 97.
    Glowacki, J. and Mulliken, J. B. (1982) Mast cells in hemangiomas and vascular malformations. Pediatrics 70, 48–51.PubMedGoogle Scholar
  98. 98.
    Srivastava, A., Laidler, P., Davies, R. P., Horgan, K., and Hughes, L. E. (1988) Prognostic significance of tumor vascularity in intermediate thickness (0.76–4.0 mm thick) skin melanoma: a quantitative histologic study. Am. J. Pathol. 133, 419–423.PubMedGoogle Scholar
  99. 99.
    Ruiter, D. J., Bhan, A. K., Harrris, T. J., Sober, A. J., and Mihm, M. C., Jr. (1982) Major histocompatibility antigens and the mononuclear inflammatory infiltrate inbenign nevomelanocytic proliferation and malignant melanoma. J. Immunol. 129, 2808–2815.PubMedGoogle Scholar
  100. 100.
    Brocker, E. G., Rechenbeld, C., Hamm, H., Ruiter, D. J., and Sorg, C. (1992) Macrophages in melanocytic naevi. Arch. Dermatol. Res. 284, 127–131.Google Scholar
  101. 101.
    Gutman, M., Singh, R. K., Yoon, S., Xie, K., Bucana, C. D., and Fidler, I. J. (1994) Leukocyte-induced angiogenesis and subcutaneous growth of B 16 melanoma. Cancer Biother. 9, 163–170.PubMedCrossRefGoogle Scholar
  102. 102.
    Takahashi, Y., Kitadai, Y., Bucana, C. D., Cleary, K. R., and Ellis, L. M. (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 55, 3964–3968.Google Scholar
  103. 103.
    Takahashi, Y., Bucana, C. D., Liu, W., Yoneda, J., Kitadai, Y., Cleary, K. R., and Ellis, L. M. (1996) Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells. J. Natl. Cancer Inst. 88, 1146–1151.PubMedCrossRefGoogle Scholar
  104. 104.
    Uze, G., Lutgalla, G., and Morgensen, K. E. (1995) a and β interferons and their receptor and their friends and relations. J. Interferon Cytokine Res. 15, 3–26.Google Scholar
  105. 105.
    Yaar, M., Karassik, R. L., Schnipper, L. E., and Gilchrest, B. A. (1985) Effects of alpha and beta interferons on cultured human keratinocytes. J. Invest. Dermatol. 85, 70–74.PubMedCrossRefGoogle Scholar
  106. 106.
    Tamm, I., Lin, S. L., Pfeffer, L. M., and Sehgal, P. B. (1987) Interferons a and β as cellular regulatory molecules, in Interferon9 (Gresser, I., ed.), Academic, London, pp. 13–74.Google Scholar
  107. 107.
    Rossi, G. (1985) Interferons and cell differentiation, in Interferon6 (Gresser, I., ed.), Academic, London, pp. 31–68.Google Scholar
  108. 108.
    Chatterjee, D. and Savarese, T. M. (1992) Posttranscriptional regulation of c-myc proto-oncogene expression and growth inhibition by recombinant human interferon-β ser17 in a human colon carcinoma cell line. Cancer Chemother. Pharmacol. 30, 12–20.PubMedCrossRefGoogle Scholar
  109. 109.
    Reznitzky, D., Yarden, A., Zipori, D., and Kimchi, A. (1986) Autocrine β-related interferon controls c-myc suppression and growth arrest during hematopoietic cell differentiation. Cell 46, 31–40.CrossRefGoogle Scholar
  110. 110.
    de Maeyer-Guignard, J. and de Maeyer, E. (1985) Immunomodulation by interferons: recent developments, in Interferon6 (Gresser, I., ed.), Academic, London, pp. 69–91.Google Scholar
  111. 111.
    Strander, H. (1986) Interferon treatment of human neoplasia: effects on the immune system. Adv. Cancer Res. 46 36–57.Google Scholar
  112. 112.
    Gresser, I., Carnaud, C., Maury, C., Sala, A., Eid, P., Woodrow, D., Maunoury, M.-T., and Belardelli, F. (1991) Host humoral and cellular immune mechanisms in the continued suppression of Friend erythroleukemia metastasis after interferon a/β treatment in mice. J. Exp. Med. 173, 1193–1203.PubMedCrossRefGoogle Scholar
  113. 113.
    Gresser, I. (1989) Antitumor effects of interferon. Acta Oncol. 28, 347–353.PubMedCrossRefGoogle Scholar
  114. 114.
    Ferrantini, M., Proietti, E., Santodonato, L., Gabriele, L., Peretti, M., Plavec, I., et al. (1993) αl interferon gene transfer into metastatic Friend leukemia cells abrogated tumorigenicity in immunocompetent mice: antitumor therapy by means ofinterferon-producing cells. Cancer Res. 53,1107–1112.Google Scholar
  115. 115.
    Gresser, I., Belardelli, F., Maury, C., Maunoury, M-T., and Tovey, M. G. (1983) Injection of mice with antibody to interferon enhances the growth of transplantable murine tumors. J. Exp. Med. 158, 2095–2107.PubMedCrossRefGoogle Scholar
  116. 116.
    Gutterman, J. U. (1994) Cytokine therapeutics: lessons from interferon a. Proc. Natl. Acad. Sci. USA 91, 1198–1205.PubMedCrossRefGoogle Scholar
  117. 117.
    Gresser, I. (1985) How does interferon inhibit tumor growth? in Interferon6 (Gresser, I., ed.), Academic, London, pp. 93–126.Google Scholar
  118. 118.
    Fleischmann, W. R. and Fleischmann, C. M. (1992) Mechanisms of interferons antitumor actions, in Interferon: Principles and Medical Applications (Baron, S., Coppenhaver, D. H., Dianzani, F., Fleischmann, W. R., Jr., Hughes, T. K., Jr., Klimpel, G. R., et al., eds.), University of Texas Press, UTMB-Galveston, TX, pp. 299–309.Google Scholar
  119. 119.
    Gorlach, A., Herter, P., Hentschel, H., Frosh, P. J., and Acker, H. (1994) Effects of mIFN-β and rIFN-γ on growth and morphology of two human melanoma cell lines: comparison between two- and three-dimensional cultures. Int. J. Cancer 56, 249–254.Google Scholar
  120. 120.
    Johns, T. G., Mackay, I. R., Callister, K. A., Hertzog, P. J., Devenish, R. J., and Linnane, A. W. (1992) Antiproliferative potencies of interferons on melanoma cell lines and xenografts: higher efficacy of interferon-beta. J. Natl. Cancer Inst. 84, 1185–1190.PubMedCrossRefGoogle Scholar
  121. 121.
    Sica, G., Fabbroni, L., Castagnetta, L., Cacciatore, M., and Pavone-Macaluso, M. (1989) Antiprol i ferative effect of interferons on human prostate carcinoma cell lines. Urol. Res. 17, 111–115.PubMedCrossRefGoogle Scholar
  122. 122.
    Heyns, A. P., Eldor, A., Vlodavsky, I., Kaiser, N., Fridman, R., and Panet, A. (1985) Antiproliferative effect of interferon and the mitogenic activity of growth factors are independent cell cycle events. Exp. Cell Res. 161, 297–306.PubMedCrossRefGoogle Scholar
  123. 123.
    Friesel, R., Komoriya, A., and Maciag, T. (1987) Inhibition of endothelial cell proliferation by gammainterferon. J. Cell Biol. 104, 689–696.PubMedCrossRefGoogle Scholar
  124. 124.
    Ruszczak, Z., Detmar, M., Imcke, E., and Orfanos, C. E. (1990) Effects of rIFN-alpha, -beta, and -gamma on the morphology, proliferation, and cell surface antigen expression of human dermal microvascular endothelial cells in vitro. J. Invest. Dermatol. 95, 693–699.CrossRefGoogle Scholar
  125. 125.
    Hicks, C., Breit, S. N., and Penny, R. (1989) Response of microvascular endothelial cells to biological response modifiers. Immunol. Cell Biol. 67, 271–277.PubMedCrossRefGoogle Scholar
  126. 126.
    Brouty-Boye, D. and Zetter, B. R. (1980) Inhibition ofcell motility by interferon. Science 208, 516–518.PubMedCrossRefGoogle Scholar
  127. 127.
    Fukuzawa, K. and Horikoshi, T. (1992) Inhibitory effect of human fibroblast interferon (HuIFN-β) on the growth and invasive potential of cultured human melanoma cells in vitro. Br. J. Dermatol. 126, 324–330.CrossRefGoogle Scholar
  128. 128.
    Stout, A. J., Gresser, I., and Thompson, W. D. (1993) Inhibition of wound healing in mice by local interferon a/β injection. Int. J. Exp. Pathol. 74, 79–85.Google Scholar
  129. 129.
    Dvorak, H. F. and Gresser, I. (1989). Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J. Natl. Cancer Inst. 81, 497–502.Google Scholar
  130. 130.
    Xie, K., Bielenberg, D., Huang, S., Xu, L., Salas, T., Juang, S., Dong, Z., and Fidler, I. J. (1997) Abrogation of tumorigenicity and metastasis of murine and human tumor cells by transfection with the murine interferon-beta gene: possible role of nitric oxide. Clin. Cancer Res. 3, 2283–2294.Google Scholar
  131. 131.
    Dinney, C. P. N., Bielenberg, D. R., Reich, R., Eve, B. Y., Perrotte, P., Bucana, C. D., and Fidler, I. J. (1998) Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Res. 58, 808–814.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Diane R. Bielenberg
  • Isaiah J. Fidler

There are no affiliations available

Personalised recommendations