Contribution of the Extracellular Matrix and Macrophages in Angiogenesis

  • Peter J. Polverini
Part of the Cancer Drug Discovery and Development book series (CDD&D)


The formation of new capillary blood vessels, or angiogenesis, is one of the most fundamental processes encountered in mammalian organisms (1–4). Angiogenesis is driven by a diverse array of soluble mediators, matrix molecules, and accessory cells that function to coordinate the growth, differentiation, and maturation of new capillaries in a strictly defined temporal and spatial pattern. In recent years, the role ofthe extracellular matrix (ECM) in angiogenesis and the enzyme systems responsible for its continuous remodeling have received considerable attention (5–9). In addition to providing a scaffold for the transmission of essential morphogenetic signals during capillary development, the ECM, by virtue of its ability to transmit biomechanical forces to cells, has been shown to exert complex local controls on the functions of endothelial cells. Depending on the composition and the local activity of proteolytic enzymes, the ECM is able to regulate the availability of soluble angiogenic mediators to endothelial cells and specify the nature and type of interactions that endothelial cells have with integrins and cellular adhesion molecules (10–16). By exerting mechanical forces along the course of developing blood vessels, the ECM is also able to alter signaling patterns of growth and differentiation factors and promote coordinated changes in the endothelial cytoskeleton and nuclear architecture and function (17–19).


Endothelial Cell Angiogenic Activity Endothelial Cell Culture Normal Endothelial Cell Phenotypic Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folkman, J. and Cotran, R. S. (1976) Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Pathol. 16, 207–248.PubMedGoogle Scholar
  2. 2.
    Folkman, J. (1985) Toward an understanding of angiogenesis: search and discovery. Perspect. Biol. Med. 9, 10–36.Google Scholar
  3. 3.
    Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235, 442–447.PubMedCrossRefGoogle Scholar
  4. 4.
    Polverini, P. J. (1995) The pathophysiology of angiogenesis. Crit. Rev. Oral. Biol. Med. 6, 230–247.PubMedCrossRefGoogle Scholar
  5. 5.
    Madri, J. A. and Williams, S. K. (1983) Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell. Biol. 97, 153–165.PubMedCrossRefGoogle Scholar
  6. 6.
    Ingber, D. E. and Folkman, J. (1989) Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell. Biol. 109, 317–330.PubMedCrossRefGoogle Scholar
  7. 7.
    Klagsbrun, M. (1991) Regulators of angiogenesis: stimulators, inhibitors, and extracellular matrix. J. Cell Biochem. 47, 199, 200.Google Scholar
  8. 8.
    Ingber, D. E. (1992) Extracellular matrix as a solid-state regulator in angiogenesis: identification of new targets for anti-cancer therapy. Cancer Biol. 3, 57–63.Google Scholar
  9. 9.
    Ingber, D. (1991) Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J. Cell Biochem. 47, 236–241.PubMedCrossRefGoogle Scholar
  10. 10.
    Ausprunk, D. H. and Folkman, J. (1982) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvas. Res. 14, 53.CrossRefGoogle Scholar
  11. 11.
    Vlodavsky, I., Fuks, Z., Ashai-Michaeli, R., Bashkin, P., Levi, E., Korner, G., Bar-Shavit, R., and Klagsbrun, M. (1991) Extracellular matrix-resident basic fibroblast growth factor: implications for control of angiogenesis. J. Cell Biochem. 45, 167–176.PubMedCrossRefGoogle Scholar
  12. 12.
    Falcone, D. J., McCaffrey, T. A., Haimovitz-Friedman, A., and Garcia, M. (1993) Transforming growth factor Beta 1 stimulates macrophage urokinase expression and release of matrix-bound basic fibroblast growth factor. J. Cell. Physiol. 155, 595–605.PubMedCrossRefGoogle Scholar
  13. 13.
    Plopper, G. E., McNamee, H. P., Dike LE’ Bojanowski, K., and Ingber, D. E. (1995) Convergence of integrin and growth factor receptor signaling pathways within focal adhesion complex. Mol. Biol. Cell. 6, 1349–1365.PubMedGoogle Scholar
  14. 14.
    Brooks, P. C., Stromblad, S., Sanders, L. C., von Schalscha, T. L., Aimes, R. T., Stetler-Stevenson, W. G., Quigley, J. P., and Cherish, D. A. (1996) Localization of matrix metalloproteinase MMP-2 tc, the surface of invasive cells by interaction with integrin avβ3. Cell 85, 1–20.CrossRefGoogle Scholar
  15. 15.
    Merwin, J. R., Anderson, J. M., Kocher, O., Van Itallie, C. M., and Madri, J. A. (1990) Transforming growth factor beta 1 modulates extracellular matrix organization and cell—cell junctional complex formation during in vitro angiogenesis. J. Cell. Physiol. 142, 117–128.PubMedCrossRefGoogle Scholar
  16. 16.
    Frank, R., Adelmann-Grill, B. C., Herrmann, K., Haustein, U. F., Petri, J. B., Heckmann, M. (1996) Transforming growth factor-β controls cell—matrix interactions of microvascular dermal endothelial cells by downregulation of integrin expression. J. Invest. Derm. 106, 36–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Ingber, D. E., Madri, J. A., and Folkman, J. (1987) Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro Cell Dev. Biol. 23, 387–394.PubMedCrossRefGoogle Scholar
  18. 18.
    Singhvi, R., Kumar, A., Lopez, G. P., Stephanopoulos, G. N., Wang, D. I. C., Whitesides, G. M., Ingber, D. E. (1994) Engineering cell shape and function. Science 264, 696–698.PubMedCrossRefGoogle Scholar
  19. 19.
    Ingber, D. E., Prusty, D., Sun, Z., Betensky, H., and Wang, N. (1995) Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J. Biomechanics 28, 1471–1484.CrossRefGoogle Scholar
  20. 20.
    Ingber, D. E. and Folkman, J. (1989) How does extracellular matrix control capillary morphogenesis. Cell 58, 803–805.PubMedCrossRefGoogle Scholar
  21. 21.
    Montesano, R. (1992) Regulation of angiogenesis in vitro. Eur. J. Clin. Invest. 22, 504–515.PubMedCrossRefGoogle Scholar
  22. 22.
    Montesano, R., Orci, L., and Vassalli, P. (1983) In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell. Biol. 97, 1648–1652.PubMedCrossRefGoogle Scholar
  23. 23.
    Montesano, R., Pepper, M. S., Belin, D., Vassalli, J. D., and Orci, L. (1987) Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J. Cell. Physiol. 132, 509–516.PubMedCrossRefGoogle Scholar
  24. 24.
    Iruela-Arispe, M. L. and Hasselaar, S. H. (1991) Differential expression of extracellular proteins is correlated with angiogenesis in vitro. Lab. Invest. 64, 174–185.PubMedGoogle Scholar
  25. 25.
    Iruela-Arispe, M. L., Diglio, C. A., and Sage, E. H. (1991) Modulation of extracellular matrix proteins by endothelial cells undergoing angiogenesis in vitro. Arterioscler. Thromb. 11, 805–815.PubMedCrossRefGoogle Scholar
  26. 26.
    Crum, R., Szabo, S., and Folkman, J. (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science, 230, 1375–1378.PubMedCrossRefGoogle Scholar
  27. 27.
    Ingber, D. E., Madri, J. A., and Folkman, J. (1986) A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119, 1768–1775.PubMedCrossRefGoogle Scholar
  28. 28.
    Ingber, D. E. and Folkman, J. (1988) Inhibition of angiogenesis through inhibition of collagen metabolism. Lab. Invest. 59, 44–51.PubMedGoogle Scholar
  29. 29.
    Kubota, Y., Kleinman, H. K., Martin, G. R., and Lawley, T. J. (1988) Role of laminin and basement membrane in morphological differentiation of human endothelial cells into capillary like structures. J. Cell. Biol. 107, 1589–1598.PubMedCrossRefGoogle Scholar
  30. 30.
    Jaye, M., McConathy, E., Drohan, W., Tong, B., Deuel, T., and Maciag, T. (1985) Modulation of the sis gene transcript during endothelial cell differentiation in vitro. Science 228, 882–884.PubMedCrossRefGoogle Scholar
  31. 31.
    Moses, M. A., Sudhalter, J., and Langer, R. (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248, 1408–1410.PubMedCrossRefGoogle Scholar
  32. 32.
    Mignatti, P., Tusboi, R., Robbins, E., and Rifkin, D. B. (1988) In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J. Cell. Biol. 108, 671–682. Google Scholar
  33. 33.
    Levin, K. G. and Santell, N. (1987) Association of plasminogen activator inhibitor (PAI 1) with the growth substratum of human endothelial cells. J. Cell. Biol. 105, 2543–2549.PubMedCrossRefGoogle Scholar
  34. 34.
    Pepper, M. S., Belin, D., Montesano R., Orci, L., and Vassalli J.-D. (1990) Transforming growth factorbeta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J. Cell. Biol. 111, 743–755.Google Scholar
  35. 35.
    Johnson, M. D., Kim, H.-R. C., Chesler, L., Tsao-Wu, G., Bouck, N., and Polverini, P. J. (1994) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J. Cell. Physiol. 160, 194–202.PubMedCrossRefGoogle Scholar
  36. 36.
    Fisher, C., Gilbertson-Beadling, S., Powers, E. A., Petzold, G., Poorman, R., and Mitchell, M. A. (1994) Interstitial collagenase is required for angiogenesis in vitro. Devel. Biol. 162, 499–510.CrossRefGoogle Scholar
  37. 37.
    Brem, S. S., Jensen, H. M., and Gullino, P. M. (1978) Angiogenesis as a marker ofpreneoplastic lesions of the breast. Cancer 41, 239–244.PubMedCrossRefGoogle Scholar
  38. 38.
    Gimbrone, M. A., Jr. and Gullino, P. M. (1976) Neovascularization induced by intraoccular xenographs of normal, preneoplastic, and neoplastic mouse mammary tissue. J. Natl. Cancer Inst. 55, 305–318.Google Scholar
  39. 39.
    Gimbrone M, A., Jr. and Gullino, P. M. (1976) Angiogenic capacity of preneoplastic lesions of murine mammary gland as a marker of neoplastic transformation. Cancer Res. 36, 2611–2620.PubMedGoogle Scholar
  40. 40.
    Polverini, P. J. and Solt, D. B. (1988) Expression of the angiogenic phenotype by a subpopulation of keratinocytes from 7,12-Dimethylbenz(a)anthracene-initiated hamster pouch epithelium. Carcinogenesis 9, 117–122.PubMedCrossRefGoogle Scholar
  41. 41.
    Jensen, H. M., Chen, I., DeVault, M. R., and Lewis, A. E. (1982) Angiogenesis induced by normal breast tissue: a probable marker for precancer. Science 218, 293–295.PubMedCrossRefGoogle Scholar
  42. 42.
    Chodak, G. W., Haudenschild, C. C., Gittes, R. F., and Folkman, J. (1980) Angiogenesis activity as a marker of neoplastic and preneoplastic lesions of the human bladder. Ann. Surg. 192, 762–771.PubMedCrossRefGoogle Scholar
  43. 43.
    Polverini, P. J. and Nickoloff, B. J. (1995) Role of scatter factor and the c-met protooncogenes in the pathogenesis of AIDS-associated Kaposi’s sarcoma. Adv. Cancer Res. 66, 235–253.PubMedCrossRefGoogle Scholar
  44. 44.
    Rutgers, J. L., Weiczorek, R., Bonetti, F., Kaplan, K., Posnett, D. N., Friedman-Kien, A. K., and Knowles, D. M., II (1986) The expression of endothelial cell surface antigens by AIDS-associated Kaposi’s sarcoma: evidence for a vascular endothelial cell origin. Am. J. Pathol. 122, 493–499.PubMedGoogle Scholar
  45. 45.
    Roth, W. K., Werner, S., Risau, W., Remberger, K., and Hofschneider, P. H. (1988) Cultured, AIDSrelated Kaposi’s sarcoma cells express endothelial cell markers and are weakly malignant in vitro. Int. J. Cancer 42, 767–773.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang, Y.-M., Bachmann, S., Hemmer, C., van Luzen, J., von Stemm, A., Kern, P., Detrich, M., Zeigler, R., Waldherr, S. A., and Narwroth, P. P. (1994) Vascular origin of Kaposi’s sarcoma. Expression of leukocyte adhesion molecule-1, thrombomodulin, and tissue factor. Am. J. Pathol. 144, 51–59.PubMedGoogle Scholar
  47. 47.
    Naidu, Y. M., Rosen, E. M., Zitnick, R., Goldberg, I., Park, M., Naujokas, M., Polverini, P. J., and Nickoloff, B. J. (1994) Role of scatter factor in the pathogenesis of AIDS-related Kaposi’s sarcoma. Proc. Natl. Acad. Sci. USA 91, 5281–5285.PubMedCrossRefGoogle Scholar
  48. 48.
    Polverini P, J., Cotran, R. S., Gimbrone, M. A., Jr., and Unanue, E. R. (1977) Activated Mø induce vascular proliferation. Nature 269, 804–806.PubMedCrossRefGoogle Scholar
  49. 49.
    Sunderkotter, C., Goebeler, M., Schultze-Osthoff, K., Bhardwaj, R., and Sorg, C. (1991) Macrophage derived angiogenesis factors. Pharmac. Ther. 51, 195–216.CrossRefGoogle Scholar
  50. 50.
    DiPietro, L. A. and Polverini, P. J. (1993) Role of the macrophage in the positive and negative regulation of wound neovascularization. Behring Inst. Mitt. 92, 238–247.PubMedGoogle Scholar
  51. 51.
    Sunderkotter, C., Steinbrink, K., Goebeler, M., Bhardwaj, R., and Sorg, C. (1994) Mø and angiogenesis. J. Leuk. Biol. 55, 410–422.Google Scholar
  52. 52.
    Polverini, P. J. and Leibovich, S. J. (1984) Induction of neovascularization in vivo and endothelial cell proliferation in vitro by tumor-associated Mø. Lab. Invest. 51, 635–642.PubMedGoogle Scholar
  53. 53.
    Polverini, P. J. (1989) Macrophage-induced angiogenesis: a review, in Macrophage-Derived Regulatory Factors (Sorg, C., ed.), Karger, Basel, Switzerland, pp. 54–73.Google Scholar
  54. 54.
    Lawler, J. (1986) The structural and functional properties of thrombospondin. Blood 67, 1197–1209.PubMedGoogle Scholar
  55. 55.
    Sage, H. and Bornstein, P. (1991) Extracellular proteins that modulate cell-matrix interactions. J. Biol. Chem. 266, 14,831–14,834.Google Scholar
  56. 56.
    Frazier, W. A. (1987) Thrombospondin: a modular adhesive glycoprotein of platelets and nucleated cells. J. Cell. Biol. 105, 625–632.PubMedCrossRefGoogle Scholar
  57. 57.
    Frazier, W. A. (1991) Thrombospondin. Curr. Opin. Cell. Biol. 3, 792–799.PubMedCrossRefGoogle Scholar
  58. 58.
    Bornstein, P. (1995) Diversity of function is inherent in matrix proteins: an appraisal ofthrombospondin 1. J. Cell. Biol. 130, 503–506.PubMedCrossRefGoogle Scholar
  59. 59.
    Good, D. J., Polverini, P. J., Rastinejad, F., Le Beau, M. M., Lemons, R. S., Frazier, W. A., and Bouck, N. P. (1990)A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 87, 6624–6628.Google Scholar
  60. 60.
    Rastinejad, F., Polverini, P. J., and Bouck N, P. (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56, 345–355.PubMedCrossRefGoogle Scholar
  61. 61.
    O’Shea, K. S. and Dixit, V. M. (1988) Unique distribution of the extracellular matrix component thrombospondin in the developing mouse embryo. J. Cell. Biol. 107, 2737–2748.PubMedCrossRefGoogle Scholar
  62. 62.
    Sage, H. and Bornstein, P. (1982) Endothelial cells from umbilical vein and a hemangioendothelioma secrete basement membrane largely to the exclusion of interstitial procollagens. Arteriosclerosis 2,27–36.Google Scholar
  63. 63.
    DiPietro, L. A., Nebgen, D. R., and Polverini, P. J. (1994) Downregulation of endothelial cell thrombospondin 1 enhances in vitro angiogenesis. J. Vas. Res. 31, 178–185.CrossRefGoogle Scholar
  64. 64.
    DiPietro, L. A., Nissen, N. N., Gamelli, R. L., Koch, A. K., Pyle, J. M., and Polverini, P. J. (1996) Thrombospondin 1 synthesis and function in wound repair. Am. J. Pathol. 148, 1851–1860.PubMedGoogle Scholar
  65. 65.
    Polverini, P. J., DiPietro, L. A., Dixit, V. M., Hynes, R. O., and Lawler, J. (1990) Thrombospondin 1 knockout mice show delayed organization and neovascularization of skin wounds. FASEB 9, 272a.Google Scholar
  66. 66.
    DiPietro, L. A. and Polverini, P. J. (1994) Angiogenic Mø produce the angiogenesis inhibitor thrombospondin 1. Am. J. Pathol. 143, 678–684.Google Scholar
  67. 67.
    Mantovani, A. (1994) Biology of disease. Tumor-associated Mø in neoplastic progression: a paradigm for the in vivo function of chemokines. Lab. Invest. 71, 5–16.PubMedGoogle Scholar
  68. 68.
    Lingen, M. W., Polverini, P. J., and Bouck, N. (1996) Inhibition of squamous cell carcinoma angiogenesis by direct interaction of retinoic acid with endothelial cells. Lab. Invest. 74, 476–483.PubMedGoogle Scholar
  69. 69.
    Lingen, M. W., Polverini, P. J., and Bouck, N. (1996) Retinoic acid induces cells cultured from oral squamous cell carcinomas to become anti-angiogenic. Am. J. Pathol. 149, 247–258.PubMedGoogle Scholar
  70. 70.
    Van Meir, K. G., Polverini, P. J., Chazin, V. R., Su Huan, H.-J., de Tribolet, N., and Cavanee, W. K. (1994) Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nature Genet. 8, 171–176.PubMedCrossRefGoogle Scholar
  71. 71.
    Polverini, P. J. (1996) How the extracellular matrix and macrophages contribute to angiogenesis and vasoproliferative dependent diseases. Eur. J. Cancer 32A, 2430–2438.CrossRefGoogle Scholar
  72. 72.
    Farber, E. M., Nall, M. L., and Watson, W. (1974) Natural history of psoriasis in 61 twin pairs. Arch. Dermatol. 109, 207–211.PubMedCrossRefGoogle Scholar
  73. 73.
    Nickoloff, B. J. (1991) The cytokine network in psoriasis. Arch. Dermatol. 127, 871–884.PubMedCrossRefGoogle Scholar
  74. 74.
    Wolfe, J. E., Jr. and Hubler, W. R., Jr. (1976) Angiogenesis in psoriasis, in Psoriasis: Proceedings of the Second International Symposium (Farber, E. and Cox, A., eds.), York Medical Books, New York, pp. 375–377.Google Scholar
  75. 75.
    Wolfe, J. E. (1989) Angiogenesis in normal and psoriatic skin. Lab. Invest. 61, 139–142.Google Scholar
  76. 76.
    Malhotra, R., Stenn, K. S., Fernandez, L. A., and Braverman, I. M. (1989) Angiogenic properties of normal and psoriatic skin associated with epidermis, not dermis. Lab. Invest. 61, 162–165.Google Scholar
  77. 77.
    Nickoloff, B. J., Mitra, R. S., Varani, J., Dixit, V. M., and Polverini, P. J. (1994) Aberrant production of interleukin-8 and thrombospondin-1 by psoriatic keratinocytes mediates angiogenesis. Am. J. Pathol. 144, 820–828.PubMedGoogle Scholar
  78. 78.
    Nickoloff, B. J., Riser, B. L., Mitra, R. S., Dixit, V. M., and Varani, J. (1988) Inhibitory effect of gamma interferon on cultured keratinocytes thrombospondin production, distribution, and biological activity. J. Invest. Dermatol. 91, 213–218.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Peter J. Polverini

There are no affiliations available

Personalised recommendations