Advertisement

Role of Inflammatory Mediators in Angiogenesis

  • Federico Bussolino
  • Alberto Mantovani
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Infiltrating leukocytes and angiogenesis are commonly observed in solid tumors and in chronic and acute inflammatory diseases. The endothelium of the vascular bed near the injured tissues actively participates to create this picture, through the formation of an interlaced network with circulating blood and/or neighboring cells and tissues. An impressive repertoire of molecules (cytokines, autacoids, growth stimulators and inhibitors, vasoactive peptides, pro- and anticoagulants, and fibrinolytic factors), with activities often partially overlapping, represent the “area codes” used to control this network, and can address endothelial cells to assume an inflammatory and/or an angiogenic phenotype (1–4).

Keywords

Nitric Oxide Endothelial Cell Vascular Endothelial Growth Factor Nitric Oxide Hepatocyte Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mantovani, A., Bussolino, F., and Introna, M. (1997) Cytokine regulation ofendothelial cell function: from molecular level to the bedside. Immunol. Today 18, 231–239.PubMedGoogle Scholar
  2. 2.
    Mantovani, A., Bussolino, F., and Dejana, E. (1992) Cytokine regulation of endothelial cell function. FASEB J. 6, 2591–2599.PubMedGoogle Scholar
  3. 3.
    Bussolino, F., Mantovani, A., and Persico, G. (1997) Molecular mechanism of blood vessel formation. Trends Biochem. Sci. 22, 251−256.Google Scholar
  4. 4.
    Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S., and Ruco, L. (1992) Origin and function oftumorassociated macrophages. Immunol. Today 13, 265–270.PubMedGoogle Scholar
  5. 5.
    Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., Elner, V. M., Elner, S. G., and Strieter, R. M. (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258, 1798–1801.PubMedGoogle Scholar
  6. 6.
    Strieter, R. M., Kunkel, S. L., Elner, V. M., Martonyi, C. L., Koch, A. E., Polverini, P. J., and Elner, S. G. (1992) Interleukin-8. A corneal factor that induces neovascularization. Am. J. Pathol. 141, 1279–1284.PubMedGoogle Scholar
  7. 7.
    Wen, D. Rowland, A., and Derynck, R. (1989) Expression and secretion ofgro/MGSA by stimulated human endothelial cells. EMBO J. 8 1761–1766.Google Scholar
  8. 8.
    Schonbeck, U., Brandt, E., Petersen, F., Flad, H. D., and Loppnow, H. (1995) IL-8 specifically binds to endothelial but not to smooth muscle cells. J. Immunol. 154, 2375–2383.PubMedGoogle Scholar
  9. 9.
    Petzelbauer, P., Watson, C. A., Pfau, S. E., and Pober, J. S. (1995) IL-8 and angiogenesis: evidence that human endothelial cells lack receptors and do not respond to IL-8 in vitro. Cytokine 7, 267–272.PubMedGoogle Scholar
  10. 10.
    Maione, T. E., Gray, G. S., Petro, J., Hunt, A. J., Donner, A. L., Bauer, S. I., Carson, H. F., and Sharpe, R. J. (1990) Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247, 77–79.PubMedGoogle Scholar
  11. 11.
    Luster, A. D., Greenberg, S. M., and Leder, P. (1995) IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J. Exp. Med. 182, 219–231.PubMedGoogle Scholar
  12. 12.
    Angiolillo, A. L., Sgadari, C., Taub, D. D., Liao, F., Farber, J. M., Maheshwari, S., et al. (1995) Human interferon-inducible protein 10 is a potent inhibitor ofangiogenesis in vivo. J. Exp. Med. 182, 155–162.PubMedGoogle Scholar
  13. 13.
    Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., Kasper, J., et al. (1995) Functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem. 270, 27,348–27,357.Google Scholar
  14. 14.
    Keane, M. P. Arenberg, D. A., Lynch, J. P., III, Whyte, R. I., Iannettoni, M. D., Burdick, M. D., et al. (1997) The CXC chemokines, IL-8 and IP-10, regulates angiogenic activity in idiopahic pulmonary fibrosis. J. Immunol. 159, 1437–1443.PubMedGoogle Scholar
  15. 15.
    Cao, Y. H., Chen, C., Weatherbee, J. A., Tsang, M., and Folkman, J. (1995) gro-beta, a-C-X-Cchemokine, is an angiogenesis inhibitor that suppresses the growth of Lewis lung carcinoma in mice. J. Exp. Med. 182, 2069–2077.Google Scholar
  16. 16.
    Mantovani, A., Allavena, P., Colotta, F., and Sozzani, S. (1996) Chemokines in vascular pathophysiology, in Immune Functions of the Vessel Wall (Hansson, G. K. and Libby, P., eds.), Harwood, Amsterdam, pp. 65–76.Google Scholar
  17. 17.
    Peiper, S. C., Wang, Z. X., Neote, K., Martin, A. W., Showell, H. J., Conklyn, M. J., et al. (1995) Duffy antigen receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J. Exp. Med. 181, 1311–1317.PubMedGoogle Scholar
  18. 18.
    Rot, A. (1992) Endothelial cell binding ofNAP-1/IL-8: role in neutrophil emigration. Immunol. Today 13, 291–294.PubMedGoogle Scholar
  19. 19.
    Heinrich, J. N., Ryseck, R. P., Macdonald-Bravo, H., and Bravo, R. (1993) Product of a novel growth factor-activated gene, fic, is a biologically active C-C-type cytokine. Mol. Cell Biol. 13, 2020–2030.PubMedGoogle Scholar
  20. 20.
    Strieter, R. M., Kunkel, S. L., Showell, H. J., Remick, D. G., Phan, S. H., Ward, P. A., and Marks, R. M. (1989) Endothelial cell gene expression of a neutrophil chemotactic factor by TNF-alpha, LPS, and IL-1 beta. Science 243, 1467–1469.PubMedGoogle Scholar
  21. 21.
    Schroder, J. M. and Christophers, E. (1989) Secretion of novel and homologous neutrophil-activating peptides by LPS-stimulated human endothelial cells. J. Immunol. 142, 244–251.PubMedGoogle Scholar
  22. 22.
    Sica, A., Matsushima, K., Van Damme, J., Wang, J. M., Polentarutti, N., Dejana, E., Colotta, F., and Mantovani, A. (1990) IL-1 transcriptionally activates the neutrophil chemotactic factor/IL-8 gene in endothelial cells. Immunology 69, 548–553.PubMedGoogle Scholar
  23. 23.
    Dixit, V. M., Green, S., Sarma, V., Holzman, L. B., Wolf, F. W., O’Rourke, K., et al. (1990) Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells, including a macrophage-specific chemotaxin. J. Biol. Chem. 265, 2973–2978.PubMedGoogle Scholar
  24. 24.
    Sica, A., Wang, J. M., Colotta, F., Dejana, E., Mantovani, A., Oppenheim, J. J., et al. (1990) Monocyte chemotactic and activating factor gene expression induced in endothelial cells by IL-1 and tumor necrosis factor. J. Immunol. 144, 3034–3038.PubMedGoogle Scholar
  25. 25.
    Rollins, B. J., Yoshimura, T., Leonard, E. J., and Pober, J. S. (1990) Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE.Am. J. Pathol. 136, 1229–1233.PubMedGoogle Scholar
  26. 26.
    Kaplanski, G., Farnarier, C., Kaplanski, S., Porat, R., Shapiro, L., Bongrand, P., and Dinarello, C. A. (1994) Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism. Blood 84, 4242–4248.PubMedGoogle Scholar
  27. 27.
    Korpelainen, E. I., Gamble, J. R., Smith, W. B., Goodall, G. J., Qiyu, S., Woodcock, J. M., et al. (1993) The receptor for interleukin 3 is selectively induced in human endothelial cells by tumor necrosis factor alpha and potentiates interleukin 8 secretion and neutrophil transmigration. Proc. Natl. Acad. Sci. USA 90, 11,137–11,141.Google Scholar
  28. 28.
    Colotta, F., Sironi, M., Borre, A., Luini, W., Maddalena, F., and Mantovani, A. (1992) Interleukin 4 amplifies monocyte chemotactic protein and interleukin 6 production by endothelial cells. Cytokine 4, 24–28.PubMedGoogle Scholar
  29. 29.
    Sironi, M., Sciacca, F. L., Matteucci, C., Conni, M., Vecchi, A., Bernasconi, S., et al. (1994) Regulation of endothelial and mesothelial cell function by interleukin-13: selective induction of vascular cell adhesion molecule-1 and amplification of interleukin-6 production. Blood 84, 1913–1921.PubMedGoogle Scholar
  30. 30.
    Jeannin, P., Delneste, Y., Gosset, P., Molet, S., Lassalle, P., Hamid, Q., Tsicopoulos, A., and Tonnel, A. B. (1994) Histamine induces interleukin-8 secretion by endothelial cells. Blood 84, 2229–2233.PubMedGoogle Scholar
  31. 31.
    Kaplanski, G., Porat, R., Aiura, K., Erban, J. K., Gelfand, J. A., and Dinarello, C. A. (1993) Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin- 1 -mediated event. Blood 81, 2492–2495.PubMedGoogle Scholar
  32. 32.
    Karakurum, M., Shreeniwas, R., Chen, J., Pinsky, D., Yan, S. D., Anderson, M., et al. (1994) Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J. Clin. Invest. 93, 1564–1570.PubMedGoogle Scholar
  33. 33.
    Qi, J. F. and Kreutzer, D. L. (1995) Fibrin activation of vascular endothelial cells: Induction of IL-8 expression. J. Immunol. 155, 867–876.PubMedGoogle Scholar
  34. 34.
    Baggiolini, M., Dewald, B., and Moser, B. (1994) Interleukin-8 and related chemotactic cytokines: CXC and CC chemokines. Adv. Immunol. 55, 99–179.Google Scholar
  35. 35.
    Hebert, C. A., Luscinskasl, F. W., Kielyl, J. M., Luisl, E. A., Darbonne, W. C., Bennett, G. L., Liu, J. C., et al. (1990) Endothelial and leukocyte forms of IL-8. Conversion by thrombin and interactions with neutrophils. J. Immunol. 145, 3033–3040.PubMedGoogle Scholar
  36. 36.
    Carveth, H. J., Bohnsack, J. F., McIntyre, T. M., Baggiolini, M., Prescott, S. M., and Zimmerman, G. A. (1989) Neutrophil activating factor (NAF) induces polymorphonuclear leukocyte adherence to endothelial cells and to subendothelial matrix proteins. Biochem. Biophys. Res. Commun. 162, 387–393.PubMedGoogle Scholar
  37. 37.
    Gimbrone, M. A. J., Obin, M. S., Brock, A. F., Luis, E. A., Hass, P. E., Hebert, C. A., et al. (1989) Endothelial interleukin-8: a novel inhibitor of leukocyte-endothelial interactions. Science 246, 1601–1603.PubMedGoogle Scholar
  38. 38.
    Ley, K., Baker, J. B., Cybulsky, M. I., Gimbrone, M. A., and Luscinskas, F. W. (1993) Intravenous interleukin-8 inhibits granulocyte emigration from rabbit mesenteric venules without altering L-selectin expression or leukocyte rolling. J. Immunol. 151, 6347–6357.PubMedGoogle Scholar
  39. 39.
    Schwartz, D., Andalibi, A., Chaverrialmada, L., Berliner, J. A., Kirchgessner, T., Fang, Z. T., et al. (1994) Role of the GRO family of chemokines in monocyte adhesion to MM-LDL-stimulated endothelium. J. Clin. Invest. 94, 1968–1973.PubMedGoogle Scholar
  40. 40.
    Narumi, S., Wyner, L. M., Stoler, M. H., Tannenbaum, C. S., and Hamilton, T. A. (1992) Tissuespecific expression of murine IP-10 mRNA following systemic treatment with interferon-gamma. J. Leukoc. Biol. 52, 27–33.PubMedGoogle Scholar
  41. 41.
    Gómez-Chiarri, M., Hamilton, T. A., Egido, J., and Emancipator, S. N. (1993) Expression of IP-10, a lipopolysaccharide- and interferon-gamma-inducible protein, in murine mesangial cells in culture. Am. J. Pathol. 142, 433–439.PubMedGoogle Scholar
  42. 42.
    Brown, Z., Gerritsen, M. E., Carley, W. W., Strieter, R. M., Kunkel, S. L., and Westwick, J. (1994) Chemokine gene expression and secretion by cytokine-activated human microvascular endothelial cells: differential regulation of monocyte chemoattractant protein-1 and interleukin-8 in response to interferon-gamma. Am. J. Pathol. 145, 913–921.PubMedGoogle Scholar
  43. 43.
    Cushing, S. D., Berliner, J. A., Valente, A. J., Territo, M. C., Navab, M., Parhami, F., et al. (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc. Natl. Acad. Sci. USA 87, 5134–5138.PubMedGoogle Scholar
  44. 44.
    Colotta, F., Sciacca, F. L., Sironi, M., Luini, W., Rabiet, M. J., and Mantovani, A. (1994) Expression of monocyte chemotactic protein-1 by monocytes and endothelial cells exposed to thrombin. Am. J. Pathol. 144, 975–985.PubMedGoogle Scholar
  45. 45.
    Marfaingkoka, A., Devergne, O., Gorgone, G., Portier, A., Schall, T. J., Galanaud, P., and Emilie, D. (1995) Regulation of the production of the RANTES chemokine by endothelial cells: synergistic induction by IFN-gamma plus TNF-alpha and inhibition by IL-4 and IL-13. J. Immunol. 154, 1870–1878.Google Scholar
  46. 46.
    Bazan, J. F., Bacon, K. B., Hardiman, G., Wang, W., Soo, K., Rossi, D., et al. (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640–644.PubMedGoogle Scholar
  47. 47.
    Bradley, J. R., Thiru, S., and Pober, J. S. (1995) Disparate localization of 55-kd and 75—kd tumor necrosis factor receptors in human endothelial cells. Am. J. Pathol. 146, 27–32.PubMedGoogle Scholar
  48. 48.
    Bradley, J. R., Johnson, D. R., and Pober, J. S. (1993) Four different classes of inhibitors of receptormediated endocytosis decrease tumor necrosis factor-induced gene expression in human endothelial cells. J. Immunol. 150, 5544–5555.PubMedGoogle Scholar
  49. 49.
    Paleolog, E. M., Delasalle, S. A., Buurman, W. A., and Feldmann, M. (1994) Functional activities of receptors for tumor necrosis factor-alpha on human vascular andothelial cells. Blood 84, 2578–2590.PubMedGoogle Scholar
  50. 50.
    Slowik, M. R., De Luca, L. G., Fiers, W., and Pober, J. S. (1993) Tumor necrosis factor activates human endothelial cells through the p55 tumor necrosis factor receptor, but the p75 receptor contributes to activation at low tumor necrosis factor concentration. Am. J. Pathol. 143, 1724–1730.PubMedGoogle Scholar
  51. 51.
    Van de Kar, N. C., Kooistra, T., Vermeer, M., Lesslauer, W., Monnens, L. A., and van Hinsbergh, V. W. (1995) Tumor necrosis factor alpha induces endothelial galactosyl transferase activity and verocytotoxin receptors. Role of specific tumor necrosis factor receptors and protein kinase C. Blood 85, 734–743.PubMedGoogle Scholar
  52. 52.
    Holzaman, L. B., Marks, R. M., and Dixit, V. M. (1990) A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol. Cell. Biol. 10, 5830–5838.Google Scholar
  53. 53.
    Pandey, A., Shao, H., Marks, R. M., Polverini P. J., and Dixit, V. M. (1995) Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science 268, 567–569.Google Scholar
  54. 54.
    Montrucchio, G., Lupia, E., Battaglia, E., Passerini, G., Bussolino, F., Emanuelli, G., and Camussi, G. (1994) Tumor-necrosis factora-induced angiogenesis depends on in situ platelet activating factor biosynthesis. J. Exp. Med. 180, 377–382.PubMedGoogle Scholar
  55. 55.
    Montrucchio, G., Lupia, E., DeMartino, A., Battaglia, E., Tizzani, A., Arese, M., Bussolino, F., and Camussi, G. (1997) Nitric oxide mediates angiogenesis induced in vivo by platelet activating factor and tumor necrosis factor but not by basic growth factor. Am. J. Pathol. 151, 557–563.PubMedGoogle Scholar
  56. 56.
    Koolwijk, P., van Erck, M. G. M., de Vree, W. J. A., Vermeer, M., Weich, H. A., Hanemaaijer, R., and van Hinsberg, V. W. M. (1996) Cooperative effect of TNFa, bFGF, VEGF on the formation of tubular structures ofhuman microvascular endothelial cells in a fibrin matrix. Role ofurokinase activity. J. Cell Biol. 132, 1177–1188.PubMedGoogle Scholar
  57. 57.
    Sarma, V., Wolf, F. W., Marks, R. M., Shows, T. B., and Dixit, V. M. (1992) Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro. J. Immunol. 148, 3302–3312.PubMedGoogle Scholar
  58. 58.
    Gasson, J. C. (1991) The molecular physiology of GM-CSF. Blood 77, 1131–1145.PubMedGoogle Scholar
  59. 59.
    Miyajima, A, Mui, A. L. F., Ogorochi, T., and Sakamaki, K. (1993) Receptors for granulocytemacrophage colony-stimulating factor, interleukin-3 and interleukin-5. Blood 82, 1960–1974.PubMedGoogle Scholar
  60. 60.
    Bussolino, F., Wang, J. M., Defilippi, P., Turrini, F., Sanavio, F., Edgell, C. J. S., Aglietta, M., Arese, P., and Mantovani, A. (1989) Granulocyte and granulocyte-macrophage colony stimulating factor induce human endothelial cells to migrate and proliferate. Nature 337, 471–473.PubMedGoogle Scholar
  61. 61.
    Colotta, F., Bussolino, F., Polentarutti, N., Guglielmetti, A., Sironi, M., Bocchietto, E., De Rossi, M., and Mantovani, A. (1993) Differential expression of the common a and specific 1β chains of the receptors for GM-CSF, IL-3 and IL-5 in endothelial cells. Exp. Cell. Res. 206, 311–317.PubMedGoogle Scholar
  62. 62.
    Detmar, M., Tenorio, A., Hettmannsperger, U., Ruszczak, Z., and Orfanos, C. E. (1992) Cytokine regulation of proliferation and ICAM-1 expression of human dermal microvascular endothelial cells in vitro. J. Invest. Dermatol. 98, 147–153.PubMedGoogle Scholar
  63. 63.
    Barillari, G., Buonauguro, L., Fiorelle, V., Hoffman, J., Michaels, F., Gallo, R. C., and Ensoli, B. (1992) Effects of cytokines from activated immune cells on vascular cell growth and HIV-1 gene expression. Implications for AIDS-Kaposi’s sarcoma pathogenesis. J. Immunol. 149, 3727–3734.PubMedGoogle Scholar
  64. 64.
    Fei, R., Penn, P. E., and Wolf, N. S. (1990) A method to establish pure fibroblast and endothelial cell colony cultures from murine bone marrow. Exp. Hematol. 18, 953–959.PubMedGoogle Scholar
  65. 65.
    Bussolino, F., Ziche, M., Ming Wang, J., Alessi, D. Morbidelli, L., Cremona, O., et al. (1991) In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J. Clin. Invest. 87 986–995.Google Scholar
  66. 66.
    Bussolino, F., Wang, J. M., Turrini, F., Alessi, D., Ghigo, D., Costamagna, C., et al. (1988) Stimulation of the NA+/H+ exchanger in human endothelial cells activated by granulocyte granulocyte-macrophage-colony-stimulating factor. Evidence for a role in proliferation migration. J. Biol. Chem. 264, 18,284–18,287.Google Scholar
  67. 67.
    Soldi, R., Primo, L., Brizzi, M. F., Sanavio, F., Polentarutti, N., Pegoraro, L., Mantovani, A., and Bussolino, F. (1997) Activation ofJAK2 in human vascular endothelial cells by granulocyte-macrophage colony stimulating factor. Blood 89, 863–872.PubMedGoogle Scholar
  68. 68.
    Brizzi, M. F., Garbarino, G., Rossi, P. R., Pagliardi, G. L., Arduino, C., Avanzi, G. C., and Pegoraro, L. (1993) Interleukin 3 stimulates proliferation and triggers endothelial-leukocyte adhesion molecule 1 gene activation on human endothelial cells. J. Clin. Invest. 91, 2887–2892.PubMedGoogle Scholar
  69. 69.
    Khew-Goodall, Y., Butcher, C. M., Litwin, M. S., Newlands, S., Korpelainen, E. I., Noack, L. M., et al. (1996) Chronic expression of P-selectin on endothelial cells stimulated by the T-cell cytokine, interleukin-3. Blood 87, 1432–1438.Google Scholar
  70. 70.
    Bikfalvi, A. and Han, Z. C. (1994) Angiogenic factors are hematopoietic growth factors and vice versa. Leukemia 8, 523–529.PubMedGoogle Scholar
  71. 71.
    Bussolino, F. and Camussi, G. (1995) Platelet-activating factor produced by endothelial cells. A molecule with autocrine and paracrine properties. Eur. J. Biochem. 229, 327–337.PubMedGoogle Scholar
  72. 72.
    Korth, R., Hirafuji, M., Lalau Keraly, C., Delautier, D., Bidault, J., and Benveniste, J. (1989) Interaction of the antagonist WEB 2086 and its hetrazepine analogue with human platelets and endothelial cells. Br. J. Pharmacol. 89, 653–661.Google Scholar
  73. 73.
    Soldi, R., Sanavio, F., Aglietta, M., Primo, L., Defilippi, P., Marchisio, P. C., and Bussolino, F. (1996) Platelet-activating factor (PAF) induces the early tyrosine phosphorylation of focal adhesion kinase (p125F A K) in human endothelial cells. Oncogene 13, 515–525.PubMedGoogle Scholar
  74. 74.
    Bussolino, F., Camussi, G., Aglietta, M., Braquet, M., Bosia, A., Pescarmona, G., et al. (1987) Human endothelial cells are target for platelet-activating factor. I. Platelet-activating factor induces changes in cytoskeleton structure and promotes albumin diffusion across endothelial monolayer. J. Immunol. 139, 2439–2446.PubMedGoogle Scholar
  75. 75.
    Camussi, G., Montrucchio, G., Lupia, E., De Martino, A., Perona, L., Arese, M., et al. (1995) Plateletactivating fcator directly stimulates in vitro migration of endothelial cells and promotes in vivo angiogenesis by an heparin-dependent mechanism. J. Immunol. 154, 6492–6501.PubMedGoogle Scholar
  76. 76.
    Nauck, M., Roth, M., Tamm, M., Eickelberg, O., Wieland, H., Stulz, P., and Perruchod, A. P. (1997) Induction ofvascular endothelial growth factor by platelet-activating factor and platelet-derived growth factor is downregulated by corticosteroids. Am. J. Respir. Cell. Moll. Biol. 16, 398–406.Google Scholar
  77. 77.
    Montrucchio, G., Lupia, E., Battaglia, E., Passerini, G., Bussolino, F., Emanuelli, G., and Camussi, G. (1994) Tumor necrosis factor a-induced angiogenesis depends on in situ platelet-activating factor biosynthesis. J. Exp. Med. 180, 377–382.PubMedGoogle Scholar
  78. 78.
    Bussolino, F., Di Renzo, M. F., Ziche, M., Bocchietto, E., Olivero, M., Naldini, L., et al. (1992) Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119, 629–641.PubMedGoogle Scholar
  79. 79.
    Camussi, G., Montrucchio, G., Lupia, E., Soldi, R., Comoglio, P. M., and Bussolino, F. (1997) Angiogenesis induced in vivo by hepatocyte growth factor is mediated by platelet-activating factor synthesis from macrophages. J Immunol. 158, 1302–1309.PubMedGoogle Scholar
  80. 80.
    Sirois, G. M. and Edelman, E. R. (1997) VEGF effect on vascular permeability is mediated by the synthesis of platelet activating factor. Am. J. Physiol. 272, H2746—H2756.Google Scholar
  81. 81.
    Im, S. Y., Ko, H. M., Kim, J. W., Lee, H. K., Ha, T. Y., Lee, H. B., et al. (1996) Augmentaion of tumor metastasis by platelet-activating factor. Cancer Res. 56, 2662–2665.PubMedGoogle Scholar
  82. 81a.
    Montrucchio, G., Sapino, A., Bussolati, B., Ghjsolfi, G., Rizzea-Savu, S., Lupia, E., and Camussi, G. (1998) Potential angiogenic role of platelet activating factor in human breast cancer. Am. J. Pathol., in press.Google Scholar
  83. 82.
    Moncada, S., Palmer, R. M. J., and Higgs, A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142.Google Scholar
  84. 83.
    Morbidelli, L., Masini, E., Amerini, S., Granger, H. J., Maggi, C. A., Geppetti, P., and Ledda, F. (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J. Clin. Invest. 94, 2036–2044.PubMedGoogle Scholar
  85. 84.
    Ziche, M., Parenti, A., Ledda, F., Dell’Era, P., Granger, H. J., Maggi, C. A., and Presta, M. (1997) Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Cir. Res. 80, 845–852.Google Scholar
  86. 85.
    RayChaudury, A., Frischer, H., and Malik, A. B. (1996) Inhibition of endothelial cell proliferation and bFGF-induced phenotypic modulation by nitric oxide. J. Cell. Biochem. 63, 125–134.Google Scholar
  87. 86.
    Papapetropoulos, A., Desai, K. M., Rudic, R. D., Mayer, B., Zhang, R., Ruiz-Torres, M. P., et al. (1997) Nitric oxide synthase inhibitors attenuate transforming-growth factor-beta- 1 -stimulated capillary organization in vitro. Am. J. Pathol. 150, 1835–1844.PubMedGoogle Scholar
  88. 87.
    Ziche, M., Morbidelli, L., Choudhurt, R., Zhang, H., Donnini, S., and Granger, H. J. (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced, but not basic fibroblast growth-factor-induced angiogenesis. J. Clin. Invest. 99, 2625–2634.PubMedGoogle Scholar
  89. 88.
    van der Zee, R., Murohara, T., Luo, Z., Zollmann, F., Passeri, J., Lekutat, C., and Isner, J. M. (1997) Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation 18, 1030–1037.Google Scholar
  90. 89.
    Tsurumi, Y., Murohara, T., Krasinski, K., Chen, D., Witzenbichler, B., Kearney, M., Couffinhal, T., and Isner, M. J. (1997) Reciprocal relation between VEGF and NO in the regulation of endothelial activity. Nature Med. 3, 879–886.PubMedGoogle Scholar
  91. 90.
    Leibovicz, J. S., Polverini, P. J., Fong, T. W., Harlow, L. A., and Kock, A. E. (1997) Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism. Proc. Natl. Acad. Sci. USA 91, 4190–4194.Google Scholar
  92. 91.
    Brzozowski, T., Kounturek, S. J., Drozdowicz, D., Dembinski, A., and Stachura, J. (1995) Healing of chronic gastric ulcerations by L-arginine. Digestion 56, 463–471.PubMedGoogle Scholar
  93. 92.
    Ghigo, D. Arese, M., Todde, R., Vecchi, A., Silvagno, F., Costamagna, C., et al. (1995) Middle T antigen-transformed endothelial cells exhibit an increased activity of nitric oxide synthase. J. Exp. Med. 181 9–19.Google Scholar
  94. 93.
    Pipili-Synetos, E., Sakkoula, E., Haralabopoulos, G., Andiopuolou, P., Peristeris, P., and Maragoudakis, M. E. (1994) Evidence that nitric oxide is an endogenous antiangiogenic mediator. Br. J. Pharmacol. 111, 894–902.Google Scholar
  95. 94.
    Andrade, S. P., Bakhle, Y. S., Hart, I., and Piper, P. J. (1992) Effect of tumour cells on angiogenesis and vasoconstrictor response in sponge implants in mice. Br. J. Cancer 66, 821–826.PubMedGoogle Scholar
  96. 95.
    Jenkins, D. C., Charles, I. G., Thomsen, L. L., Moss, D. W., Holmes, L. S., Baylis, S. A., et al. (1995) Role of nitric oxide in tumor growth. Proc. Natl. Acad. Sci. USA 92, 4392–4396.PubMedGoogle Scholar
  97. 96.
    Kennovin, G. D., Hirst, D. G., Stratford, M. R. L., and Flitney, F. W. (1996) Inducible nitric oxidesynthase is expressed in tumour associated vasculature; inhibition retards tumour growth in vivo. Immunol. Inflam. 473–479.Google Scholar
  98. 97.
    Browning P. J., Sechler, J. M. G., Kaplan, M., Washington, R. H., Gendelman R., Yarchoan, R., Ensoli, B., and Gallo, R. C. (1994) Identification and culture of Kaposi’s sarcoma-like spindle cells from the peripheral blood and human immunodeficiency virus-1-infected individuals and normal controls. Blood 84, 2711–2720.PubMedGoogle Scholar
  99. 98.
    Rabkin, C. S., Janz, S., Lash, A., Coleman, A. E., Musaba, E., Liotta, L., Biggar, R. J., and Zhuang, Z. (1997) Monoclonal origin of multicentric Kaposi’s sarcoma lesions. New Engl. J. Med. 336, 988–993.Google Scholar
  100. 99.
    Ensoli, B., Barillari, G., and Gallo, R. C. (1991) Pathogenesis of AIDS-related Kaposi’s sarcoma. Hemat. Oncol. Clin. North Am. 5, 281–295.Google Scholar
  101. 100.
    Uccini, S., Siriani, M. C., Vincenzi, L., Topino, S., Stopacciaro, A., Lesnoi LaParola, I., et al. (1997) Kaposi’s sarcoma cells express the macrophage-associated antigen mannose receptor and develop in peripheral blood cultures of Kaposi’s sarcoma patients. Am. J. Pathol. 150, 929–937.PubMedGoogle Scholar
  102. 101.
    Chang, Y., Cesarman, E., Pessin, M. S., Lee, F., Culpepper, J., Knowles, D. M., and Moore, P. S. (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266, 1865–1869.PubMedGoogle Scholar
  103. 102.
    Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C., and Cesarman, E. (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385, 347–350.PubMedGoogle Scholar
  104. 103.
    Nicholas, J., Ruvolo, V. R., Burns, W. H., Sandford, G., Wan, X., Ciufo, D., et al. (1997) Kaposi’s sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein1 and interleukin-6. Nature Med. 3, 287–292.PubMedGoogle Scholar
  105. 104.
    Miles, S. A., Rezai, A., Salazar-Gonzales, J. F., Meyden, M. V., Stevens, H., Logan, D. M., et al. (1990) AIDS-Kaposi’s sarcoma derived cells produce and respond to interleukn 6. Proc. Natl. Acad. Sci. USA 87, 4068–4071.PubMedGoogle Scholar
  106. 105.
    Albini, A., Soldi, R., Giunciuglio, D., Giraudo, E., Benelli, R., Primo, L., et al. (1996) The angiogenesis induced by HIV-1 Tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nature Med. 2, 1371–1375.PubMedGoogle Scholar
  107. 106.
    Mitola, S., Sozzani, S., Luini, W., Primo, L., Borstatti, A., Weich, H., and Bussolino, F. (1997) TatHIV-1 induces human monocyte chemotaxis by activation of vascular endothelial growth factor receptor-1. Blood, 90, 1365–1372.PubMedGoogle Scholar
  108. 107.
    Ensoli, B., Barillari, G., Salahuddin, S. Z., Gallo, R. C., and Wong-Staal, F. (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345, 84–86.PubMedGoogle Scholar
  109. 108.
    Dhawan, S., Puri, R. K., Kumar, A., Duplan, H., Masson, J., and Aggarwal, B. B. (1997) Human immunodeficiency virus-l-Tat protein induces the cell surface expression of endothelial leukocytes adhesion molecule-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells. Blood 90, 1535–1544.Google Scholar
  110. 109.
    Ensoli, B., Gendelman, R., Markham P., Fiorelli, V., Colombini, S., Raffeld, M., et al. (1994) Synergy beteen basic fibroblast growth factor and HIV-1 Tat protein in inducion of Kaposi’s sarcoma. Nature 371, 674–680.PubMedGoogle Scholar
  111. 110.
    Naidu, Y. M., Rosen, M. E., Zitnick, R., Goldberg, I., Park, M., Naujorak, M., Polverini P. J., and Nickoloff, B. J. (1994) Role of scatter factor in the pathogenesis of AIDS-related Kaposi’s sarcoma. Proc. Natl. Acad. Sci. USA 91, 5281–5285.PubMedGoogle Scholar
  112. 111.
    Bussolino, F., Arese, M., Montrucchio, G., Barra, L., Primo, L., Benelli, R., et al. (1995) Platelet activating factor produced in vitro by Kaposi’s sarcoma cells induces and sustains in vivo angiogenesis. J. Clin. Invest. 96, 940–952.PubMedGoogle Scholar
  113. 112.
    Masood, R. Cai, J., Zheng, T., Smith, D. L., Naidu, Y., and Gill, S. P. (1997) Vascular endothelial growth factor/vascular permeability factor is an autocrine growth factor for AIDS-Kaposi sarcoma. Proc. Natl. Acad. Sci. USA 94 979–984.Google Scholar
  114. 113.
    Sturzl, M., Roth, W. K., Brockmeyer, N. H., Zietz, C., Speiser, B., and Hofschneider, P. H. (1992) Expression of platelet-derived growth factor its receptor in AIDS-related Kaposi sarcoma in vivo suggests paracrine and autocrine mechanisms of tumor maintenance Proc. Natl. Acad. Sci. USA 89, 7046–7050.Google Scholar
  115. 114.
    Cai, J. C., Zheng, T., Lotz, M., Masood, R., and Gill, P. S. (1997) Glucocorticoids induce Kaposi’s sarcoma cell proliferation through the regulation of tranforming growth factor-β. Blood 89,1491–1500.PubMedGoogle Scholar
  116. 115.
    Sciacca, F. L., Sturzl, M., Bussolino, F., Sironi, M., Zhou, D., Matteucci, C., et al. (1994) Expression of adhesion molecules, platelet-activating factor and chemoattractant cytokines by Kaposi’s sarcoma cells. J. Immunol. 153, 4816–4825.Google Scholar
  117. 116.
    Sturzl, M., Brandstetter, H., Zietz, C., Eisenburg, B., Raivich, G., Gearing, D. P., Brockmeyer, N. H., and Hofschneider, P. H. (1995) Identification of interleukin-1 and platelet-derived growth factor-B as major mitogens for the spindel cells of Kaposi’s sarcoma: a combined in vitro and in vivo analysis. Oncogene 10, 2007–2016.PubMedGoogle Scholar
  118. 117.
    Soldi, R. Graziani, A., Benelli, R., Ghigo, D., Bosia, A., Albini, A., and Bussolino, F. (1995) Oncostatin M activates phosphatidylinositol-3-kinase in Kaposi’s sarcoma cells. Oncogene 9 2253–2260.Google Scholar
  119. 118.
    Barillari, G., Buonauguro, L., Fiorella, V., Hoffman, J., Michaels, F., Gallo, R. C., and Ensoli, B. (1992) Effects of cytokines from activated immune cells on vascular cell growth and HIV-1 gene expression. Implications for AIDS-Kaposi’s sarcoma pathogenesis. J. Immunol. 149, 3727–3734.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Federico Bussolino
  • Alberto Mantovani

There are no affiliations available

Personalised recommendations