Advertisement

Ribozyme Targeting of Angiogenic Molecules

  • Anton Wellstein
  • Anke M. Schulte
  • Claudius Malerczyk
  • Anne T. Tuveson
  • Achim Aigner
  • Frank Czubayko
  • Anna T. Riegel
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

The importance of blood vessel formation (angiogenesis) for the local growth of solid tumors and their metastatic spread is well established (1,2). A large series of correlative clinical studies published by different groups over the past seven years showed that the number of blood vessels detected in a primary tumor is an independent prognostic indicator of the outcome of the disease and is directly related to the rate of metastasis of tumors of different origin, such as breast cancer (3–8),nonsmall-cell lung cancer (9), prostate cancer (10), squamous cell carcinoma of the head and neck (11),and melanoma (12,13). In general, these studies showed that the numbers of blood vessels in a given primary tumor specimen is indicative of the rate of metastasis of the respective tumor and gives an independent measure of the outcome of the disease. Of additional significance are reports that in breast cancer patients with estrogen receptor (ER)-positive tumors, and hence apparently good prognosis, high microvessel density in the primary tumors seems to predict poor clinical outcome (8).

Keywords

Melanoma Cell Basic Fibroblast Growth Factor Hammerhead Ribozyme Angiogenic Molecule WM852 Melanoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fidler, I. F. and Ellis, L. M. (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79, 185–188.PubMedCrossRefGoogle Scholar
  2. 2.
    Weidner, N. (1995) Intratumor microvessel density as a prognostic factor in cancer. Am. J. Pathol. 147, 9–19.PubMedGoogle Scholar
  3. 3.
    Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N. Engl. J Med. 324, 1–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Horak, E. R., Leek, R., Klenk, N., Lejeunde, S., Smith, K., Stuart, N., Greenall, M., Stepniewska, K., and Harris, A. L. (1992) Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340, 1120–1124.PubMedCrossRefGoogle Scholar
  5. 5.
    Bosari, S., Lee, A. K., DeLellis, R. A., Wiley, B. D., Heatley, G. J., and Silverman, M. L. (1992) Microvessel quantitation and prognosis in invasive breast carcinoma. Hum. Pathol. 23, 755–761.PubMedCrossRefGoogle Scholar
  6. 6.
    Weidner, N., Folkman, J., Pozza, F., Bevilacqua, P., Allred, E. N., Moore, D. H., Meli, S., and Gasparini, G. (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma [see comments]. J Natl. Cancer Inst. 84, 1875–1887.PubMedCrossRefGoogle Scholar
  7. 7.
    Toi, M., Kashitani, J., and Tominaga, T. (1993) Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma. Int. J Cancer 55, 371–374.PubMedCrossRefGoogle Scholar
  8. 8.
    Fox, S. B., Leek, R. D., Smith, K., Hollyer, J., Greenall, M., and Harris, A. L. (1994) Tumor angiogenesis in node-negative breast carcinomas-relationship with epidermal growth factor receptor, estrogen receptor, and survival. Breast Cancer Res. Treat. 29, 109–116.PubMedCrossRefGoogle Scholar
  9. 9.
    Macchiarini, P., Fontaini, G., Jardini, M. J., Squartini, F., and Angeletti, C. A. (1992) Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet 340, 145,146.Google Scholar
  10. 10.
    Weidner, N., Carroll, P. R., Flax, J., Blumenfeld, W., and Folkman, J. (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol. 143, 401–409.PubMedGoogle Scholar
  11. 11.
    Gasparini, G., Weidner, N., Maluta, S., Pozza, F., Boracchi, P., Mezzetti, M., Testolin, A., and Bevilacqua, P. (1993) Intratumoral microvessel density and p53 protein: correlation with metastasis in head-and-neck squamous-cell carcinoma. Int. J. Cancer 55, 739–744.PubMedCrossRefGoogle Scholar
  12. 12.
    Barnhill, R. L., Fandrey, K., Levy, M. A., Mihm, M. C., and Hyman, B. (1992) Angiogenesis and tumor progression of melanoma: quantification of vascularity in mealanocytic nevi and cutaneous malignant melanoma. Lab. Invest. 67, 331–337.PubMedGoogle Scholar
  13. 13.
    Srivastava, A., Laidler, P., Davies, R. P., Horgan, K., and Hughes, L. E. (1988) The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma. Am. J. Path. 133, 419–423.Google Scholar
  14. 14.
    Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G. (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336.PubMedCrossRefGoogle Scholar
  15. 15.
    Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms ofthe angiogenic switch during tumorigenesis. Ce1186, 353–364.Google Scholar
  16. 16.
    Dvorak, H. F., Brown, L. F., Detmar, M., and Dvorak, A. M. (1995) Vascular permeability factor/ vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146, 1029–1039.PubMedGoogle Scholar
  17. 17.
    Thomas, K. A. (1996) Vascular endothelial growth factor, a potent and selective angiogenic agent. J. Biol. Chem. 271, 603–606.PubMedCrossRefGoogle Scholar
  18. 18.
    Plate, K. H., Breier, G., Weich, H. A., and Risau, W. (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848.PubMedCrossRefGoogle Scholar
  19. 19.
    Millauer, B., Shawver, L. K., Plate, K. H., Risau, W., and Ullrich, A. (1994) Glioblastoma growth inhibited in vivo by a dominant-negative flk-1 mutant. Nature 367, 576–579.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S., and Ferrara, N. (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844.Google Scholar
  21. 21.
    Asano, M., Yukita, A., Matsumoto, T., Kondo, S., and Suzuki, H. (1995) Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/vascular permeability factor121. Cancer Res. 55, 5296–5301.PubMedGoogle Scholar
  22. 22.
    Warren, R. S., Yuan, H., Matli, M. R., Gillett, N. A., and Ferrara, N. (1995) Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J. Clin. Invest. 95, 1789–1797.Google Scholar
  23. 23.
    Shih, I. M. and Herlyn, M. (1993) Role of growth factors and their receptors in the development and progression of melanoma. J. Invest. Dermatol. 100, 196S–203S.PubMedGoogle Scholar
  24. 24.
    Usman, N. and Stinchcomb, D. T. (1996) Design, synthesis and function of therapeutic hammerhead ribozymes. Nucleic Acids Mol. Biol. 10, in press.Google Scholar
  25. 25.
    Christoffersen, R. E. and Man, J. J. (1995) Ribozymes as human therapeutic agents. J. Med. Chem. 38, 2023–2037.PubMedCrossRefGoogle Scholar
  26. 26.
    Kiehntopf, M., Esquivel, E. L., Brach, M. A., and Herrmann, F. (1995) Clinical applications of ribozymes. Lancet 345, 1027–1031.PubMedCrossRefGoogle Scholar
  27. 27.
    Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., and Cech, T. R. (1982) Self-splicing RNA: autoexcision and autocyclization ofthe ribosomal RNA intervening sequence of tetrahymena. Cell 131, 147–157.Google Scholar
  28. 28.
    Haseloff, J. and Gerlach, W. L. (1988) Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591.Google Scholar
  29. 30.
    Cameron, F. H. and Jennings, P. A. (1989) Specific gene suppression by engineered ribozymes in monkey cells. Proc. Natl. Acad. Sci. USA 86, 9139–9143.PubMedCrossRefGoogle Scholar
  30. 31.
    Symons, R. H. (1992) Small catalytic RNAs. Ann. Rev. Biochem. 61, 641–671.PubMedCrossRefGoogle Scholar
  31. 32.
    Pyle, A. M. (1993) Ribozymes: a distinct class of metalloenzymes. Science 261, 709–714.PubMedCrossRefGoogle Scholar
  32. 33.
    Czubayko, F., Schulte, A. M., and Wellstein, A. (1998). Ribozyme targeting of the growth factor pleiotrophin, in Therapeutic Applications of Ribozymes ( Scanlon, K. J., ed.), Humana, Totowa, NJ, pp. 311–328.CrossRefGoogle Scholar
  33. 34.
    Czubayko, F., Riegel, A. T., and Wellstein, A. (1994) Ribozyme-targeting elucidates a direct role of pleiotrophin in tumor growth. J. Biol. Chem. 269, 21,358–21, 363.Google Scholar
  34. 35.
    McCall, M. J., Hendry, P., and Jennings, P. A. (1992) Minimal sequence requirements for ribozyme activity. Proc. Natl. Acad. Sci. USA 89, 5710–5714.Google Scholar
  35. 36.
    Juhl, H., Downing, S. G., Wellstein, A., and Czubayko, F. (1997) HER-2/neu is rate-limiting for ovarian cancer growth: Conditional depletion of HER-2/neu by ribozyme targeting. J. Biol. Chem. 272, 29,482–29, 486.Google Scholar
  36. 37.
    Czubayko, F., Liaudet-Coopman, E. D., Aigner, A., Tuveson, A. T., Berchem, G. J., and Wellstein, A. (1997) A secreted FGF-binding protein can serve as the angiogenic switch in human cancer [see comments]. Nature Med. 3, 1137–1140.PubMedCrossRefGoogle Scholar
  37. 38.
    Czubayko, F., Downing, S. G., Hsieh, S. S., Goldstein, D. J., Lu, P. Y., Trapnell, B. C., and Wellstein, A. (1997) Adenovirus-mediated transduction of ribozymes abrogates HER-2/neu and pleiotrophin expression and inhibits tumor cell proliferation. Gene Ther. 4, 943–949.PubMedCrossRefGoogle Scholar
  38. 39.
    Schulte, A. M., Lai, S., Kurtz, A., Czubayko, F., Riegel, A. T., and Wellstein, A. (1996) Human trophoblast and choriocarcinoma expression of the growth factor pleiotrophin attributable to germ line insertion of an endogenous retrovirus. Proc. Natl. Acad. Sci. USA 93, 14,759–14, 764.Google Scholar
  39. 40.
    Czubayko, F., Schulte, A. M., Berchem, G. J., and Wellstein, A. (1996) Melanoma angiogenesis and metastasis modulated by ribozyme targeting of the secreted growth factor pleiotrophin. Proc. Natl. Acad. Sci. USA 93, 14,753–14, 758.Google Scholar
  40. 41.
    Sachs, A. B. (1993) Messenger RNA degradation in eukaryotes. Cell 74, 413–421.PubMedCrossRefGoogle Scholar
  41. 42.
    L’Huillier, P. J., Davis, S. R., and Bellamy, A. R. (1992) Cytoplasmic delivery of ribozymes leads to efficient reduction in alpha-lactalbumin mRNA levels in C1271 mouse cells. EMBO J. 11, 4411–4418.PubMedGoogle Scholar
  42. 43.
    Burgess, W. H. and Maciag, T. (1989) The heparin-binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem. 58, 575–606.PubMedCrossRefGoogle Scholar
  43. 44.
    Baird, A. and Böhlen, P. (1990). Fibroblast growth factors, in Handbook of Experimental Pharmacology, vol. 95/I ( Sporn, M. B. and Roberts, A. B., eds.) Springer, New York, pp. 369–418.Google Scholar
  44. 45.
    Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235, 442–447.PubMedCrossRefGoogle Scholar
  45. 46.
    Lobb, R. and Fett, J. (1984) Purification of two distinct growth factors from bovine neural tissue by heparin affinity chromatography. Biochemistry 23, 6295–6299.PubMedCrossRefGoogle Scholar
  46. 47.
    Maciag, T., Tevie, M., and Friesel, R. (1984) Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain. Science 225, 932–935.PubMedCrossRefGoogle Scholar
  47. 48.
    Risau, W., Gautschi-Sova, P., and Böhlen, P. (1988) Endothelial cell growth factors in embryonic and adult chick brain are related to human acidic fibroblast growth factor. EMBO J. 7, 959–962.PubMedGoogle Scholar
  48. 49.
    Risau, W. (1986) Developing brain produces an angiogenesis factor. Proc. Natl. Acad. Sci. USA 83, 3855–3859.PubMedCrossRefGoogle Scholar
  49. 50.
    Esch, F., Baird, A., Ling, N., Ueno, N., Hill, F., Denoroy, L., Klepper, R., Gospodarowicz, D., Böhlen, P., and Guillemin, R. (1985) Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc. Natl. Acad. Sci. USA 82, 6507–6511.Google Scholar
  50. 51.
    Shing, Y., Folkman, J., Sullivan, R., Butterfield, C., Murray, J., and Klagsbrun, M. (1984) Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223, 1296–1299.PubMedCrossRefGoogle Scholar
  51. 52.
    Moscatelli, D., Presta, M., Joseph-Silverstein, J., and Rifkin, D. B. (1986) Both normal and tumor cells produce basic fibroblast growth factor. J. Cell. Physiol. 129, 273–276.Google Scholar
  52. 53.
    Vlodaysky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J., and Klagsbrun, M. (1987) Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad Sci. USA 84, 2292–2296.CrossRefGoogle Scholar
  53. 54.
    Rogelj, S., Klagsbrun, M., Atzmon, R., Kurokawa, M., Haimovitz, A., Fuks, Z., and Vlodaysky, I. (1989) Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC 12 cells. J. Cell Biol. 109, 823–831.PubMedCrossRefGoogle Scholar
  54. 55.
    Saksela, O., Moscatelli, D., Sommer, A., and Rifkin, D. B. (1988) Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol. 107, 743–751.Google Scholar
  55. 56.
    Kiefer, M. C., Stephans, J. C., Crawford, K., Okino, K., and Barr, P. J. (1990) Ligand-affinity cloning and structure of a cell surface heparan sulfate proteoglycan that binds basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 87, 6985–6989.PubMedCrossRefGoogle Scholar
  56. 57.
    Patterson, S. L., Grady, M. S., and Bothwell, M. (1993) Nerve growth factor and a fibroblast growth factor-like neurotrophic activity in cerebrospinal fluid of brain injured human patients. Brain Res. 605, 43–49.PubMedCrossRefGoogle Scholar
  57. 58.
    Vlodaysky, I., Eldor, A., Bar-Ner, M., Fridman, R., Cohen, I. R., and Klagsbrun, M. (1988) Heparan sulfate degradation in tumor cell invasion and angiogenesis. Adv. Exp. Med. Biol. 233, 201–210.Google Scholar
  58. 59.
    Bashkin, P., Doctrow, S., Klagsbrun, M., Svahn, C. M., Folkman, J., and Vlodaysky, 1. (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28, 1737–1743.PubMedCrossRefGoogle Scholar
  59. 60.
    Moscatelli, D. (1992) Basic fibroblast growth factor (bFGF) dissociates rapidly from heparan sulfates but slowly from receptors. Implications for mechanisms of bFGF release from pericellular matrix. J. Biol. Chem. 267, 25,803–25, 809.Google Scholar
  60. 61.
    Vlodaysky, I., Bashkin, P., Ishai-Michaeli, R., Chajek-Shaul, T., Bar-Shavit, R., Haimovitz-Friedman, A., Klagsbrun, M., and Fuks, Z. (1991) Sequestration and release of basic fibroblast growth factor. Ann. NY Acad. Sci. 638, 207–220.CrossRefGoogle Scholar
  61. 62.
    Wu, D., Kan, M., Sato, G. H., Okamoto, T., and Sato, J. D. (1991) Characterization and molecular cloning of a putative binding protein for heparin-binding growth factors. J. Biol. Chem. 266, 16,77816, 785.Google Scholar
  62. 63.
    Czubayko, F., Smith, R. V., Chung, H. C., and Wellstein, A. (1994) Tumor growth and angiogenesis induced by a secreted binding protein for fibroblast growth factors. J. Biol. Chem. 269, 28,243–28, 248.Google Scholar
  63. 64.
    Kurtz, A., Darwiche, N., Harris, V., Wang, H. L., and Wellstein, A. (1997) Expression of a binding protein for FGF is associated with epithelial development and skin carcinogenesis. Oncogene 14, 26712681.Google Scholar
  64. 65.
    Milner, P.G., Li, Y. S., Hoffman, R. M., Kodner, C. M., Siegel, N. R., and Deuel, T. F. (1989) A novel 17 kD heparin-binding growth factor (HBGF-8) in bovine uterus: purification and N-terminal amino acid sequence. Biochem. Biophys. Res. Commun. 165, 1096—I 103.Google Scholar
  65. 66.
    Li, Y. S., Milner, P. G., Chauhan, A. K., Watson, M. A., Hoffman, R. M., Kodner, C. M., Milbrandt, J., and Deuel, T. F. (1990) Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity. Science 250, 1690–1694.PubMedCrossRefGoogle Scholar
  66. 67.
    Rauvala, H. (1989) An 18-kd heparin-binding protein of developing brain that is distinct from fibroblast growth factors. EMBO J. 8, 2933–2941.PubMedGoogle Scholar
  67. 68.
    Merenmies, J. and Rauvala, H. (1990) Molecular cloning of the 18-kDa growth-associated protein of developing brain. J. Biol. Chem. 265, 16,721–16, 724.Google Scholar
  68. 69.
    Kovesdi, I., Fairhurst, J. L., Kretschmer, P. J., and Böhlen, P. (1990) Heparin-binding neurotrophic factor (HBNF) and MK, members of a new family of homologous, developmentally regulated proteins. Biochem. Biophys. Res. Commun. 172, 850–854.PubMedCrossRefGoogle Scholar
  69. 70.
    Kuo, M. D., Oda, Y., Huang, J. S., and Huang, S. S. (1990) Amino acid sequence and characterization of a heparin-binding neurite-promoting factor (p18) from bovine brain../. Biol. Chem. 265, 18,749–18, 752.Google Scholar
  70. 71.
    Bloch, B., Normand, E., Kovesdi, I., and Böhlen, P. (1992) Expression of the HBNF (heparin-binding neurite-promoting factor) gene in the brain of fetal, neonatal and adult rat: an in situ hybridization study. Brain. Res. Dev. Brain Res. 70, 267–278.PubMedCrossRefGoogle Scholar
  71. 72.
    Vanderwinden, J. M., Mailleux, P., Schiffmann, S. N., and Vanderhaeghen, J. J. (1992) Cellular distribution of the new growth factor pleiotrophin (HB- GAM) mRNA in developing and adult rat tissues. Anat. Embryol. (Berl.) 186, 387–406.CrossRefGoogle Scholar
  72. 73.
    Schulte, A. M. and Wellstein, A. (1997). Pleiotrophin and related molecules, in Tumour Angiogenesis ( Bicknell, R., Lewis, C. M., and Ferrara, N., eds.), Oxford University Press, New York, pp. 273–289.Google Scholar
  73. 74.
    Fang, W. J., Hartmann, N., Chow, D., Riegel, A. T., and Wellstein, A. (1992) Pleiotrophin stimulates fibroblasts, endothelial and epithelial cells, and is expressed in human cancer. J. Biol. Chem. 267, 25,889–25, 897.Google Scholar
  74. 75.
    Cross, M. and Dexter, T. M. (1991) Growth factors in development, transformation, and tumorigenesis. Cell 64, 271–280.PubMedCrossRefGoogle Scholar
  75. 76.
    Raulo, E., Julkunen, I., Merenmies, J., Pihlaskari, R., and Rauvala, H. (1992) Secretion and biological activities of heparin-binding growth-associated molecule. Neurite outgrowth-promoting and mitogenic actions of the recombinant and tissue-derived protein. J. Biol. Chem. 267, 11,408–11, 416.Google Scholar
  76. 77.
    Courty, J., Dauchel, M. C., Caruelle, D., Perderiset, M., and Barritault, D. (1991) Mitogenic properties of a new endothelial cell growth factor related to pleiotrophin. Biochem. Biophys. Res. Commun. 180, 145–151.PubMedCrossRefGoogle Scholar
  77. 78.
    Chauhan, A. K., Li, Y. S., and Deuel, T. F. (1993) Pleiotrophin transforms NIH 3T3 cells and induces tumors in nude mice. Proc. Natl. Acad. Sci. USA 90, 679–682.PubMedCrossRefGoogle Scholar
  78. 79.
    Rodeck, U. and Herlyn, M. (1991) Growth factors in melanoma. Cancer Metast. Rev. 10, 89–101.CrossRefGoogle Scholar
  79. 80.
    Folkman, J. and Shing, Y. (1992) Angiogenesis. J. Biol. Chem. 267, 10,931–10, 934.Google Scholar
  80. 81.
    Wellstein, A., Fang, W. J., Khatri, A., Lu, Y., Swain, S. S., Dickson, R. B., Sasse, J., Riegel, A. T., and Lippman, M. E. (1992) A heparin-binding growth factor secreted from breast cancer cells homologous to a developmentally regulated cytokine. J. Biol. Chem. 267, 2582–2587.PubMedGoogle Scholar
  81. 82.
    Brooks, P. C., Montgomery, A. M. P., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., and Cheresh, D. A. (1994) Integrin alpha(v)beta(3) antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164.PubMedCrossRefGoogle Scholar
  82. 83.
    Sumantran, V. N., Ealovega, M. W., Nunez, G., Clarke, M. F., and Wicha, M. S. (1995) Overexpression of Bcl-xs sensitizes MCF-7 cells to chemotherapy-induced apoptosis. Cancer Res. 55, 2507–2510.PubMedGoogle Scholar
  83. 84.
    Gavrieli, Y., Sherman, Y., and Ben-Sasson, S.A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Anton Wellstein
  • Anke M. Schulte
  • Claudius Malerczyk
  • Anne T. Tuveson
  • Achim Aigner
  • Frank Czubayko
  • Anna T. Riegel

There are no affiliations available

Personalised recommendations