Skip to main content

Oxygenation of Solid Tumors in Animals and Patients

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 248 Accesses

Abstract

The biological effectiveness of low energy transfer (LET) ionizing radiation is in part related to the amount of oxygen present at the time of the energy deposit. This dose modifying role of oxygen (oxygen enhancement ratio) is principally caused by the indirect effect ofradiation on DNA (1,2). Hypoxic cells are present in rodent and xenografted human tumors, and it has been known for a long time that the absence ofoxygen in tumors is a factor ofresistance against ionizing radiation (3–5). More recently, it has been shown that the decrease in tumor oxygen tension could also be a factor ofresistance for treatment with some cytotoxic drugs (6–8), not only directly through the low-oxygen partial pressures, but indirectly through modifications in some gene expression by O2 and other environmental factors (vascularization, pH, metabolism, angiogenic factors, and so on) (9,10). In patients, tumors are known to contain hypoxic areas (11–14), and the local control of human solid tumors could be improved if a clinically relevant test was able to identify tumors that would benefit from radiosensitization (5). Oxygen availability is dependent on oxygen supply, which depends on many parameters: microvasculature, blood flow, tissue temperature, and pH (15,16). Tissue oxygenation will result directly from 02 availability, and from the respiration rate ofthe cells. For normal tissues, changes in oxygenation reflect variations in blood flow, and partial oxygen pressure (pO2) distribution has been evaluated as a function of hemoglobin concentration, temperature, pH, and so on (15). In tumors, tissue vascularization is qualitatively poor with shunts, vessel collapses, and high interstitial pressure. All these parameters may represent a potential therapeutic target (16–18).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kellerer, A. M. and Rossi, H. H. (1971) RBE and the primary mechanism of radiation action. Radiat. Res. 47, 15–34.

    Google Scholar 

  2. Biaglow, J. E. (1981) Effects of ionizing radiation on mammalian cells. J. Chem. Educ. 58, 144–156.

    Article  CAS  Google Scholar 

  3. Thomlinson, R. H. and Gray, L. H. (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549.

    Article  PubMed  CAS  Google Scholar 

  4. Bush, R. S., Jenkin, R. D. T., Allt, W. E. C., Beale, F. A., Bean, H., Dembo, A. J., and Pringle, J. F. (1978) Definitive evidence for hypoxic cells influencing cure in cancer therapy. Br. J. Cancer 37(Suppl. III), 302–306.

    Google Scholar 

  5. Overgaard, J. (1991) Importance of tumor hypoxia in radiotherapy. A meta-analysis of controlled clinical trials. Radiother. Oncol. 24, S64.

    Google Scholar 

  6. Teicher, B. A., Lazo, J. S., and Sartorelli, A. C. (1981) Classification of antineoplasic agents by their selective toxicities towards oxygenated and hypoxic tumor cell. Cancer Res. 41, 73–81.

    PubMed  CAS  Google Scholar 

  7. Kennedy, K. A. (1987) Hypoxic cells as specific drug targets for chemotherapy. Anticancer Drug Res. 2, 181–194.

    CAS  Google Scholar 

  8. Sakata, K., Tak Kwok, T., Murphy, B. J., Laderoute, K. R., Gordon, G. R., and Sutherland, R. M. (1991) Hypoxia-induced drug resistance: comparison to P-glycoprotein-associated drug resistance. Br. J. Cancer 64, 809–814.

    Article  PubMed  CAS  Google Scholar 

  9. Sutherland, R. M., Ausserer, W. A., Murphy, B. J., and Laderoute, K. R. (1996) Tumour hypoxia and heterogeneity: challenges and opportunities for the future. Sem. Radiat. Oncol. 6, 59–70.

    Article  Google Scholar 

  10. Giaccia, A. J. (1996) Hypoxic stress proteins: survival of the fittest. Sem. Radiat. Oncol. 6, 46–58.

    Article  Google Scholar 

  11. Guichard, M. (1990) Comparison of the radiobiological properties of human tumor xenografts and rodent tumors. Int. J. Radiat. Biol. 56, 583–586.

    Article  Google Scholar 

  12. Rockwell, S. and Moulder, J. E. (1990) Hypoxic fractions of human tumors xenografted into mice: a review. Int. J. Radiat. Oncol. Biol. Phys. 19, 197–202.

    Article  PubMed  CAS  Google Scholar 

  13. Chapman, J. D. (1991) Measurement of tumor hypoxia by invasive and noninvasive procedures: a review of recent clinical studies. Radiother. Oncol. 20, 13–19.

    Article  PubMed  Google Scholar 

  14. Coleman, C. N. (1988) Hypoxia in tumors: aparadigm for the approach to biochemical and physiological heterogeneity. J. Natl. Cancer. Inst. 80, 310–316.

    Article  PubMed  CAS  Google Scholar 

  15. Vaupel, P., Kallinowski, F., and Okunieff, P. (1989) Blood flow, oxygen and nutrient supply, and metabolic environment of human tumors: a review. Cancer Res. 49, 6449–6465.

    PubMed  CAS  Google Scholar 

  16. Jain, R. K. (1988) Determinants of tumor blood flow: a review. Cancer Res. 48, 2641–2658.

    PubMed  CAS  Google Scholar 

  17. Chaplin, D. J., Durand, R. E., and Olive, P. L. (1986) Acute hypoxia in tumors: implications for modifiers of radiation effects. Int. J. Radiat. Oncol. Biol. Phys. 12, 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  18. Hirst, G. H. (1986) Anemia: a problem or an opportunity in radiotherapy? Int. J. Radiat. Oncol. Biol. Phys. 12, 2009–2017.

    Article  PubMed  CAS  Google Scholar 

  19. Vaupel, P. W., ed. (1994) Blood Flow, Oxygenation, Tissue pH Distribution, and Bioenergetic Status of Tumours. Ernst Schering Research Foundation, Berlin.

    Google Scholar 

  20. Milross, C. G., Peters, L. J., Hunter, N. R., Mason, K. A., Tucker, S. L., and Milas, L. (1996) Polarographic pO2 in mice: effect of tumor type, site of implantation and anesthesia. Radiat. Oncol. Invest. 4, 108–114.

    Article  Google Scholar 

  21. Milross, C. G., Tucker, S. L., Mason, K. A., Hunter, N. R., Peters, L. J., and Milas, L. (1997) Effect of tumour size on necrosis and polarographically measured pO2. Acta Oncol. 36, 183–189.

    Article  PubMed  CAS  Google Scholar 

  22. Davies, P. W. and Brink, F. (1946) Microelectrodes formeasuring local oxygen tension in animal tissues. Rev. Sci. Instrum. 13, 524–533.

    Article  Google Scholar 

  23. Vanderkooi, J. M., Erecinska, M., and Silver, I. A. (1991) Oxygen in mammalian tissue: methods of measurement and affinities of various reactions. Am. J. Physiol. 260(Cell Physiol. 29), C 1131–C 1150.

    Google Scholar 

  24. Chou, S-C., Flood, P. M., and Raleigh, J. A. (1996) Marking hypoxic cells for complement and cytotoxic T lymphocyte-mediated lysis: using pimonidazole. Br. J. Cancer 74(Suppl. XXVII), S213–S216.

    Google Scholar 

  25. Matthews, J., Adomat, H., Farrell, N., et al. (1996) Immunocytochemical labelling of aerobic and hypoxic mammalian cells using a platinated derivative of EF5. Br. J. Cancer 74(Suppl. XXVII), S200–S203.

    Google Scholar 

  26. Chapman, J. D. Coia, L. R., Stobbe, C. C., Engelhardt, E. L., Fenning, M. C., and Schneider, R. F. (1996) Prediction of tumour hypoxia and radioresistance with nuclear medecine markers.Br. J. Cancer 74, (Suppl. XXVII) S204–S208.

    Google Scholar 

  27. Guichard, M., Lartigau, E., Tinet, E., Thomas, C., and Avrillier, S. (1997) Suivi non invasifde l’evolution de 1’oxygenation des tumeurs par réflectivité différentielle. J. Optics 28, 265–269.

    Article  Google Scholar 

  28. Young, W. K., Vojnovic, B., and Wardman, P. (1996) Measurement of oxygen tension in tumours by

    Google Scholar 

  29. time-resolved fluorescence. Br. J. Cancer 74(Suppl. XXVII), S256–S259. 29. Olive, P. L., Viske, C. M., and Durand, R. E. (1994) Hypoxic fractions measured in murine tumors and normal tissues using the comet assay. Int. J. Radiat. Oncol. Biol. Phys. 29, 487–491.

    Google Scholar 

  30. Urtasun, R. C., Parliament, M. B., McEwan, A. J., Mercer, J. R., Mannan, R. H., Wiebe, L. I., Morin, C., and Chapman, J. D. (1996) Measurement of hypoxia in human tumours by non-invasive spect imaging of iodoazomycin arabinoside. Br. J. Cancer 74(Suppl. XXVII), S209–S212.

    Google Scholar 

  31. McCoy, C. L., McIntyre, D. J. O., Robinson, S. P., Aboagye, E. O., and Griffiths, J. R. (1996) Magnetic resonance spectroscopy and imaging methods for measuring tumour and tissue oxygenation. Br. J. Cancer 74(Suppl. XXVII), S226–S231.

    Google Scholar 

  32. Stone, H. B., Brown, J. M., Philips, T. L., and Sutherland, R. M. (1993) Oxygen in human tumors: correlation between methods of measurements and response to therapy. Radiat. Res. 136, 422–434.

    Article  PubMed  CAS  Google Scholar 

  33. Cater, D. B. and Silver, I. A. (1960) Quantitative measurements of oxygen tension in normal tissues and in the tumors of patients before and after radiotherapy. Acta Radiol. 53, 233–256.

    Article  PubMed  CAS  Google Scholar 

  34. Kolstad, P. (1968) Intercapillary distance, oxygen tension and local recurrence in cervix cancer. Scand. J. Clin. Lab. Invt. 106(Suppl.), 145–157.

    CAS  Google Scholar 

  35. Bergsjo, P. and Evans, J. C. (1968) Oxygen tension of cervical carcinoma during the early phase of external irradiation. Clinical trial with atmospheric oxygen breathing during radiotherapy of cancer of the cervix. Scand. J. Clin. Lab. Inv. 106(Suppl.), 167–171.

    CAS  Google Scholar 

  36. Badib, A. O. and Webster, J. H. (1969) Changes in tumor oxygen tension during radiation therapy. Acta Radiol. Ther. Phys. Biol. 8, 247–257.

    CAS  Google Scholar 

  37. Gatenby, R. A., Coia, L. R., Richter, M. P., Katz, H., Moldofsky, P. J., and Engstrom, P. (1985) Oxygen tension in human tumors: in vivo mapping using CT-guided probes. Radiology 156, 211–214.

    PubMed  CAS  Google Scholar 

  38. Gatenby, R. A., Kessler, H. B., Rosenblum, J. S., Coia, L. R., Modofsky, P. J., Hart, W. H., and Broder, G. J. (1988) Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 10, 831–838.

    Article  Google Scholar 

  39. Pappova, N., Siracka, E., Vacek, A., and Durkovsky, J. (1982) Oxygen tension and prediction of the radiation response. Polarographic study in human breast cancer. Neoplasma 29, 669–674.

    PubMed  CAS  Google Scholar 

  40. Schramm, U., Fleckenstein, W., and Weber, C. (1990) Morphological assessment of skeletal muscular injury caused by p02 measurements with hypodermic needle probes, in Clinical Oxygen Pressure Measurement II (Ehrly, A. M., Fleckenstein, W., Hauss, J., and Huch, R., eds.), Blackwell Ueberreuter Wissenschaft, Berlin, pp. 38–50.

    Google Scholar 

  41. Lartigau, E., Lespinasse, F., Vitu, L., and Guichard, M. (1992) Does the direct measurement of oxygen tension in tumours have any adverse effect? Int. J. Radiat. Oncol. Biol. Phys. 22, 949–951.

    Article  PubMed  CAS  Google Scholar 

  42. Khalili, A. A., Horsman, M. R., Nordsmark, M., Grau, C., and Overgaard, J. (1995) Oxygenation status in an experimental murine tumour system, in Tumor Oxygenation (Vaupel, P. W., ed.), Gustav Fischer Verlag, Stutgart, pp. 107–117.

    Google Scholar 

  43. Vaupel, P. W., Frinak, S., and Bicher, H. I. (1981) Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res. 41, 2008–2013.

    PubMed  CAS  Google Scholar 

  44. Kallinowski, F., Zander, R., Höckel, M., and Vaupel, P. (1990) Tumor tissue oxygenation as evaluated by computerized-pO2-histography. Int. J. Radiat. Oncol. Biol. Phys. 19, 953–961.

    Article  PubMed  CAS  Google Scholar 

  45. Horsman, M. R., Hansen, P. V., and Overgaard, J. (1989) Radiosensitization by nicotinamide in tumors and normal tissues: the importance of tissue oxygenation status. Int. J. Radiat. Oncol. Biol. Phys. 16, 1273–1276.

    Google Scholar 

  46. Simon, J. M., Lartigau, E., and Guichard, M. (1993) Nicotinamide and carbogen: major effect on the radiosensitivity of EMT6 and HRT18 tumors. Radiother. Oncol. 28, 203–207.

    Article  PubMed  CAS  Google Scholar 

  47. Thomas, C. D., Prade, M., and Guichard, M. (1995) Tumour oxygenation, radiosensitivity and necrosis before and/or after nicotinamide, carbogen and perflubron emulsion administration. Int. J. Radiat. Biol. 67, 597–605.

    Article  PubMed  CAS  Google Scholar 

  48. Nozue, M., Lee, I., Yuan, F., Teicher, B. A., Brizel, D. M., Dewhirst, M. W., et al. (1997) Inter-laboratory variation in oxygen tension measurement by Eppendorf “Histograph” and comparison with hypoxic marker. Surg. Oncol. 66, 30–38.

    Article  CAS  Google Scholar 

  49. Vaupel, P. W. (1990) Oxygenation of human tumors. Stralenther. Onkol. 166, 377–386.

    CAS  Google Scholar 

  50. Lartigau, E., Vitu, L., Haie-Meder, C., Cosser, M. F., Delapierre, M., Gerbaulet, A., Eschwege, F., and Guichard, M. (1992) Feasibility of measuring oxygen tension in uterine cervix carcinoma. Eur. J. Cancer 28, 1354–1357.

    Article  Google Scholar 

  51. Lartigau, E., Le Ridant, A. M., Lambin, P., Weeger, P., Martin, L., Sigal, R., et al. (1993) Oxygenation of head and neck tumors. Cancer 71, 2319–2325.

    Article  PubMed  CAS  Google Scholar 

  52. Lartigau, E., Randrianarivelo, H., Martin, L., Stern, S., Thomas, C. D., Guichard, M., et al. (1994) Oxygen tension measurements in human tumors: the Institut Gustave-Roussy Experience. Radiat. Oncol. Invest. 1, 285–291.

    Article  Google Scholar 

  53. Fleckenstein, W., Jungblut, J. R., and Suckfull, M. (1990) Distribution ofoxygen pressure in the periphery and centre ofmalignant head and neck tumors, in Clinical Oxygen Pressure Measurement II (Ehrly, A. M., Fleckenstein, W., Hauss, J., and Huch, R., eds.), Blackwell Ueberreuter Wissenschaft, Berlin, pp. 81–90.

    Google Scholar 

  54. Nordsmark, M., Overgaard, M., and Overgaard, J. (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother. Oncol. 41, 31–39.

    PubMed  CAS  Google Scholar 

  55. Terris, D. J. and Dunphy, E. P. (1994) Oxygen tension of head and neck cancers. Arch. Otolaryngol. Head Neck Surg. 120, 283–287.

    Article  PubMed  CAS  Google Scholar 

  56. Vaupel, P. W. and Höckel, M. (1995) Oxygenation status of human tumours: a reappraisal using computerized pO2 histography, in Tumor Oxygenation (Vaupel, P. W., Kelleher, D. K., and Gunderoth, M., eds.), Gustav Fischer Verlag, Stuttgart, pp. 219–232.

    Google Scholar 

  57. Höckel, M., Knoop, C., Schlenger, K., Vorndran, B., Baussmann, E., Mitze, M., Knapstein, P. G., and Vaupel, P. (1993) Intratumoral pO2 predicts survival in advanced cancer ofthe uterine cervix. Radiother. Oncol. 26, 45–50.

    Article  PubMed  Google Scholar 

  58. Höckel, M., Vorndran, B., Schlenger, K., Baussmann, E., and Knapstein, P. G. (1993) Tumor oxygenation: a new predictive parameter in locally advanced cancer of the uterine cervix. Gyn. Oncol. 51, 141–149.

    Article  Google Scholar 

  59. Wong, R. K. W., Fyles, A., Milosevic, M., Pintilie, M., and Hill, R. P. (1997) Heterogeneity of polarographic oxygen tension measurements in cervix cancer: an evaluation of within and between tumor variability, probe position and track depth. Int. J. Radiat. Oncol. Biol. Phys. 39, 405–412.

    Article  PubMed  CAS  Google Scholar 

  60. Rampling, R., Cruickshank, G., Lewis, A. D., Fitzsimmons, S. A., and Workman, P. (1994) Pretreatment oxygenation profiles of human soft tissue sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 29, 427–431.

    Article  PubMed  CAS  Google Scholar 

  61. Brizel, D. M., Rosner, G. L., Harrelson, J., Prosnitz, L. R., and Dewhirst, M. W. (1994) Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 30, 635–642.

    Article  PubMed  CAS  Google Scholar 

  62. Lusinchi, A., Lartigau, E., Luboinski, B., and Eschwege, F. (1994) Accelerated radiation therapy in the treatment of very advanced and inoperable head and neck cancers. In. J. Radiat. Oncol. Biol. Phys. 29, 149–152.

    Article  CAS  Google Scholar 

  63. Keresteci, Q. G. and Rider, M. B. (1973) Use oforthobaric oxygen in the radiotherapy ofbladder tumors. Can. J. Surg. 16, 127–129.

    PubMed  CAS  Google Scholar 

  64. Rubin, P., Hanley, J., Keys, H. M., Marcial, V., and Brady, L. (1979) Carbogen breathing during radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 5, 1963–1970.

    Article  PubMed  CAS  Google Scholar 

  65. Henk, J. M. (1981) Does hyperbaric oxygen have a future in radiation therapy? Int. J. Radiat. Oncol. Biol. Phys. 7, 1125–1128.

    Article  PubMed  CAS  Google Scholar 

  66. Martin, L., Lartigau, E., Weeger, P., Lambin, P., Le Ridant, A. M., Lusinchi, A., et al. (1993) Changes in the oxygenation of head and neck tumors during carbogen breathing. Radiother. Oncol. 27,123–130.

    Article  PubMed  CAS  Google Scholar 

  67. Falk, S. J., Ward, R., and Bleehen, N. M. (1992) The influence of carbogen breathing on tumour tissue oxygenation in man evaluated by computerised pO2 histography. Br. J. Cancer 66, 919–924.

    Article  PubMed  CAS  Google Scholar 

  68. Brown, J. M. (1989) Hypoxic cells radiosensitizers: where next? Int. J. Radiat. Oncol. Biol. Phys. 16, 987–993.

    Article  PubMed  CAS  Google Scholar 

  69. Guichard, M. (1991) The use of fluorocarbon emulsions in cancer radiotherapy. Radiother. Oncol. 20(Suppl.), 59–64.

    Article  PubMed  CAS  Google Scholar 

  70. Dische, S. (1991) Radiotherapy and anaemia. The clinical experience. Radiother. Oncol. 20(Suppl.), 35–40.

    Article  PubMed  Google Scholar 

  71. Workman, P. and Stratford, I. J. (1993) The experimental development of bioreductive drugs and their role in cancer therapy. Cancer Metatesis Rev. 12, 73–82.

    Article  CAS  Google Scholar 

  72. Brown, J. M. (1993) SR-4233 (Tirapazamine): a new anticancer drug exploiting hypoxia in solid tumors. Br. J. Cancer 67, 1163–1170.

    Article  PubMed  CAS  Google Scholar 

  73. Lartigau, E. and Guichard, M. (1995) Does tirapazamine (SR-4233) have any cytotoxic or sensitising effect on 3 human cell lines at clinically relevant partial oxygen pressure? Int. J. Radiat. Biol. 2, 211–216.

    Article  Google Scholar 

  74. Horsman, M. R. and Overgaard, J. (1997) Can mild hyperthermia improve tumour oxygenation? Int. J. Hyperthermia 13, 141–147.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lartigau, E., Guichard, M. (1999). Oxygenation of Solid Tumors in Animals and Patients. In: Teicher, B.A. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-453-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-453-5_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4518-4

  • Online ISBN: 978-1-59259-453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics