Skip to main content

Endpoints for Determination of Efficacy of Antiangiogenic Agents in Clinical Trials

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The fiield of angiogenesis research has undergone dramatic growth in recent years, as evidenced by the massive number of citations appearing in the medical literature (1). Until very recently, the focus of most work has been on defining the steps in the angiogenesis cascade, and the naturally occurring factors that both induce and inhibit the process. Over 20 years ago, Judah Folkman postulated that if tumor angiogenesis could be inhibited, then a potentially novel and effective treatment strategy could be developed for solid tumors (2). That hope is now coming to fruition as novel agents that inhibit tumor angiogenesis are entering clinical trials. As outlined in previous chapters, many of the compounds that are known to inhibit angiogenesis behave in a cytostatic fashion. Unlike classic cytotoxic chemotherapy agents, inhibitors oftumor angiogenesis may not cause tumor shrinkage but instead maintain a stable tumor size. The challenge facing clinical investigators and pharmaceutical companies developing these drugs is to carefully and thoughtfully design clinical trials that take into consideration the cytostatic behavior of angiogenesis inhibitors (AI) (3). Assessments of efficacy of AIs must avoid the trap of requiring tumor shrinkage

Table 1 Original Fibonacci Number Series Used for Dose Escalation of a Drug in a Phase I Clinical Trial

in order to continue clinical development. As a result, end points other than tumor regression must be incorporated into clinical trial design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gasparini, G. (1996) Angiogenesis research up to 1996. A commentary on the state of the art and suggestions for future studies. Eur. J. Cancer 32A, 2379–2385.

    Article  Google Scholar 

  2. Folkman, J. (1971) Tumor angiogenesis. Therapeutic implications. N. Engl. J. Med. 285, 1182–1186.

    Article  PubMed  CAS  Google Scholar 

  3. Pluda, J. M. (1997) Tumor-associated angiogenesis: mechanisms, clinical implications and therapeutic strategies. Semin. Oncol. 24, 203–218.

    PubMed  CAS  Google Scholar 

  4. Mani, S. and Ratain, M. J. (1997) New phase I trial methodology. Semin. Oncol. 24, 253–261.

    PubMed  CAS  Google Scholar 

  5. Schwartsmann, G., Wanders, J., Koier, I. J., et al. (1991) EORTC New Drug Development Office coordinating and monitoring programme for phase I and II trials with new anticancer agents. Eur. J. Cancer 27, 1162–1168.

    Article  PubMed  CAS  Google Scholar 

  6. Markman, M. (1986) Ethical dilemma of phase I clinical trials. CA Cancer J. Clin. 36, 367–369.

    Article  PubMed  CAS  Google Scholar 

  7. Ratain, M. J., Mick, R., Schilsky, R. L., et al. (1993) Statistical and ethical issues in the design and conduct of phase I and II clinical trials of new anticancer agents. J. Natl. Cancer Inst. 85, 1637–1643.

    Article  PubMed  CAS  Google Scholar 

  8. Greishaber, C. K. and Marsoni, S. (1986) Relation of preclinical toxicology to findings in early clinical trials. Cancer Treat. Rep. 70, 65–72.

    Google Scholar 

  9. Newell, D. R. (1994) Pharmacology based phase I trials in cancer chemotherapy. Hematol. Oncol. Clin. North Am. 8, 257–275.

    PubMed  CAS  Google Scholar 

  10. National Cancer Institute (1988) Guidelines for Reporting of Adverse Drug Reactions. Division of Cancer Treatment, National Cancer Institute, Bethesda, MD.

    Google Scholar 

  11. O’Quigley, J., Pepe, M., Fisher, L. (1990) Continual reassessment methods of practical design for phase I clinical trials in cancer. Biometrics 46, 33–48.

    Article  PubMed  Google Scholar 

  12. Korn, E. L., Midthune, D., Chen, T. T., et al. (1994) Comparison of two phase I trial designs. Stat. Med. 13, 1799–1806.

    Article  PubMed  CAS  Google Scholar 

  13. Gordon, N. H. and Wilson, J. K. V. (1992) Using toxicity grades in the design and analysis of cancer phase I clinical trials. Stat. Med. 11, 2063–2075.

    Google Scholar 

  14. Mick, R. and Ratain, M. J. (1993) Model-guided determination of maximum tolerated dose in phase I clinical trials: evidence for increased precision. J. Natl. Cancer Inst. 85, 217–223.

    Article  PubMed  CAS  Google Scholar 

  15. Graham, M. A. and Worman, P. (1992) Impact of pharmacokinetically guided dose escalation strategies in phase I clinical trials: critical evaluation and recommendations for future studies. Ann. Oncol. 3, 339–347.

    PubMed  CAS  Google Scholar 

  16. Bolognese, J. A. (1983) Monte Carlo comparison of three up and down designs for dose ranging. Controlled Clin. Trials 4, 187–196.

    PubMed  CAS  Google Scholar 

  17. Kerr, D. J. (1994) Phase I clinical trials: adapting methodology to face new challenges. Ann. Oncol. 5(Suppl. 4), 67–76.

    Article  PubMed  Google Scholar 

  18. Miller, A. B., Hoogstraten, B., Staquet, M., et al. (1981) Reporting results of cancer treatment. Cancer 47, 207–214.

    Article  PubMed  CAS  Google Scholar 

  19. Howell, A., McIntosh, J., Jones, M., et al. (1988) Definition of the “no charge” category in patients treated with endocrine therapy and chemotherapy for advanced carcinoma of the breast. Eur. J. Cancer. Clin. Oncol. 24, 1567–1572.

    Article  PubMed  CAS  Google Scholar 

  20. Jordan, V. C. and Gradishar, W. J. (1997) Molecular mechanisms and future uses of antiestrogens. Mol. Asp. Med. 18, 171–247.

    Article  Google Scholar 

  21. Jonat, W., Howell, A., Blomquist, C., et al. (1996) A randomized trial comparing two doses of the new selective aromatase inhibitor anastrozole (Arimidex) with megestrol acetate in postmenopausal patients with advanced breast cancer. Eur. J. Cancer 32A, 404–412.

    Article  Google Scholar 

  22. Polverini, P. J., Bouck, N. P., and Rastinejad, F. (1991) Assay and purification of naturally occurring inhibitor of angiogenesis. Methods Enzymol. 198, 440–450.

    Article  PubMed  CAS  Google Scholar 

  23. Lingen, M. W., Polverini, P. J., and Bouck, N. P. (1996) Inhibition of squamous cell carcinoma angiogenesis by direct interaction of retinoic acid with endothelial cells. Lab. Invest. 74, 476–483.

    PubMed  CAS  Google Scholar 

  24. Talbot, D. C. and Brown, P. D. (1996) Experimental and clinical studies on the use of matrix metalloproteinase inhibitors for the treatment of cancer. Eur. J. Cancer 32A, 2528–2533.

    Article  Google Scholar 

  25. Basset, P., Bellocq, J. P., Wolt, C., et al. (1990) Novel metalloproteinase gene specifically expressed in stromal cell of breast carcinomas. Nature 348, 699–704.

    Article  PubMed  CAS  Google Scholar 

  26. Yoshimoto, M., Itoh, F., Yamamoto, H., et al. (1993) Expression of MMP-7 (Pump-1) mRNA in human colorectal cancers. Int. J. Cancer 54, 614–618.

    Article  PubMed  CAS  Google Scholar 

  27. Okada, Y., Naka, K., Kawamura, K., et al. (1995) Localization of matrix metalloproteinase 9 in osteoclasts: implications for bone resorption. Lab. Invest. 72, 311–322.

    PubMed  CAS  Google Scholar 

  28. Gohji, K., Fujimoto, N., Fujii, A., et al. (1996) Prognostic significance of circulating matrix metalloproteinase-2 to tissue inhibitor of metalloproteinase-2 ratio in recurrence of urothelial cancer after complete resection. Cancer Res. 56, 3196–3198.

    PubMed  CAS  Google Scholar 

  29. Weidner, N. (1995) Intratumor microvessel density as a prognostic factor in cancer. Am. J. Pathol. 147, 9–19.

    PubMed  CAS  Google Scholar 

  30. Fox, S. B. (1997) Tumor angiogenesis and prognosis. Histopathology 30, 294–301.

    Article  PubMed  CAS  Google Scholar 

  31. Vermeulen, P. B., Gasparini, G., Fox, S. B., et al. (1996) Quantification of angiogenesis in solid tumors: an international consensus on the methodology and criteria of evaluation. Eur. J. Cancer 32A, 2474–2484.

    Article  Google Scholar 

  32. Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. (1991) Tumor angiogenesis and metastasiscorrelation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8.

    Article  PubMed  CAS  Google Scholar 

  33. Gasparini, G. (1996) Clinical significance of the determination of angiogenesis in human breast cancer: update ofthe biological background and overview of the Vicenza studies. Eur. J. Cancer. 32A, 2485–2493.

    Article  Google Scholar 

  34. Burrows, F. J., Derbyshire, E. J., Tazzari, L., et al. (1995) Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin. Cancer Res. 1, 1623–1634.

    PubMed  CAS  Google Scholar 

  35. DeFriend, D. J., Howell, A., Nicholson, R. I., et al. (1994) Investigation of a pure new antiestrogen (ICI 182, 780) in women with primary breast cancer. Cancer Res. 54, 408–414.

    PubMed  CAS  Google Scholar 

  36. Fujimoto, K., Ichimori, Y., Yamaguchi, H., et al. (1995) Basic fiibroblast growth factor as a candidate tumor marker for renal cell carcinoma. Jpn. J. Cancer Res. 86, 182–186.

    Article  PubMed  CAS  Google Scholar 

  37. Nyugen, M., Watanabe, H., Budson, A. E., et al. (1994) Elevated levels of an angiogenic peptide, basic fiibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J. Natl. Cancer Inst. 86,356–361.

    Article  Google Scholar 

  38. Yamamoto, Y., Toi, M., Kondo, S., et al. (1996) Concentrations of vascular endothelial growth factor in sera of normal control and cancer patients. Clin. Cancer Res. 2, 821–826.

    PubMed  CAS  Google Scholar 

  39. Taniguchi, T., Toi, M., Inada, K., et al. (1995) Serum concentrations of hepatocyte growth factor in breast cancer patients. Clin. Cancer Res. 1, 1031–1034.

    PubMed  CAS  Google Scholar 

  40. Takahashi, Y., Tucker, S. L., Kitadai, Y., et al. (1997) Vessel counts and expression of vascular endothelial growth factors as prognostic factors in node-negative colon cancer. Arch. Surg. 132, 541–546.

    Article  PubMed  CAS  Google Scholar 

  41. Takano, S., Yoshii, Y., Kondo, S., et al. (1996) Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res. 56, 2185–2190.

    PubMed  CAS  Google Scholar 

  42. Kondo, S., Asano, M., Matsuo, K., et al. (1994) Vascular endothelial growth factor/vascular permeability factor is detectable in sera of tumor-bearing mice and cancer patients. Biochem. Biophys. Acta. 1221, 211–214.

    Article  PubMed  CAS  Google Scholar 

  43. Moskal, T. L., Huang, S., Ellis, L. M., et al. (1995) Serum levels of transforming growth factor alpha in gastrointestinal cancer patients. Cancer Epidemiol. Biomarkers Prev. 4, 127–131.

    PubMed  CAS  Google Scholar 

  44. Chekrabarty, S., Huang, S., Moskal, T. L., et al. (1994) Elevated serum levels of transforming growth factor-alpha in breast cancer patients. Cancer Lett. 79, 157–160.

    Article  Google Scholar 

  45. Chopra, V., Dinh, T. V., and Hannigan, E. V. (1997) Serum levels of interleukins, growth factors and angiogenesis in patients with endometrial cancer. J. Cancer Res. Clin. Oncol. 123, 167–172.

    PubMed  CAS  Google Scholar 

  46. Malfetano, J., Teng, N., Barter, J., et al. (1997) Marimastat in patients with advanced cancer of the ovary: a dose-finding study. Proc. Am. Soc. Clin. Oncol. 16, 373a.

    Google Scholar 

  47. Zaknoen, S., Wolff, R., Cox, J., et al. (1997) Marimastat in advanced progressive colorectal cancer: a dose-finding study. Proc. Am. Soc. Clin. Oncol. 16, 273a.

    Google Scholar 

  48. American Society of Clinical Oncology (1996) Clinical practice guidelines for the use of tumor markers in breast and colorectal cancer. J. Clin. Oncol. 14, 2843–2877.

    Google Scholar 

  49. Smith, D. C. and Pienta, K. J. (1997) Use of prostate-specific antigen as a surrogate endpoint in the treatment of patients with hormone refractory prostate cancer. Urol. Clin. North Am. 24, 433–437.

    Article  PubMed  CAS  Google Scholar 

  50. Blanke, C. D. and Johnson, D. H. (1997) Treatment of small cell lung cancer. Semin. Thorac. Cardiovasc. Surg. 9, 101–110.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gradishar, W.J. (1999). Endpoints for Determination of Efficacy of Antiangiogenic Agents in Clinical Trials. In: Teicher, B.A. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-453-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-453-5_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4518-4

  • Online ISBN: 978-1-59259-453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics