Potentiation of Cytotoxic Cancer Therapies by Antiangiogenic Agents

  • Beverly A. Teicher
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Cancer cure requires eradication of all malignant cells. Cancer growth, however, requires proliferation of malignant cells and normal cells. The several anticancer treatment modalities currently available, including surgery, chemotherapy, radiation therapy, and immunotherapy, have been envisioned to target primarily the malignant cell. Research over the past 35 yr has reinforced the hypothesis put forth by Folkman that, without the proliferation of normal cells, especially endothelial cells, a tumor cannot grow beyond the size of a colony (1). The consequence of this finding is that both the normal cells and the malignant cells involved in tumor growth, as well as the chemical and mechanical signaling pathways that interconnect them, are valid targets for therapeutic intervention. The integration of therapeutics directed toward the vascular components, extracellular matrix components, and stromal and infiltrating cells, with classical cytotoxic anticancer therapies, may be regarded as a systems approach to cancer treatment (2).


Lung Metastasis Lewis Lung Carcinoma Lewis Lung Cytotoxic Therapy Antiangiogenic Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folkman, J. (1971) Tumor angiogenesis: therapeutic implications. New Eng. J. Med. 285,1182–1186.Google Scholar
  2. 2.
    Teicher, B. (1996) Systems approach to cancer therapy (antiangiogenics + standard cytotoxics’ mechanism(s) of interaction). Cancer Metastasis Rev. 15, 247–272.PubMedCrossRefGoogle Scholar
  3. 3.
    Teicher, B. A., Holden, S. A., Ara, G., Alvarez Sotomayor, E., Huang, Z. D., Chen, Y.-N., and Brem, H. (1994) Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other antiangiogenic agents. Int. J. Cancer 57, 920–925.Google Scholar
  4. 4.
    Teicher, B. A., Dupuis, N. P., Robinson, M., Emi, Y., and Goff, D. (1995) Antiangiogenic treatment (TNP-470/minocycline) increases tissue levels of anticancer drugs in mice bearing Lewis lung carcinoma. Oncol. Res. 7, 237–243.Google Scholar
  5. 5.
    Teicher, B. A., Alvarez Sotomayor, E., Huang, Z. D., Ara, G., Holden, S., Khandekar, V., and Chen, Y.-N. (1993) β-Cyclodextrin tetradecasulfate/tetrahydrocortisol ± minocycline as modulators of cancer therapies in vitro and in vivo against primary and metastatic Lewis lung carcinoma. Cancer Chemother. Pharmacol. 33, 229–238.Google Scholar
  6. 6.
    Teicher, B. A., Holden, S. A., Ara, G., and Northey, D. (1993) Response of the FSaII fibrosarcoma to antiangiogenic modulators plus cytotoxic agents. AntiCancer Res. 13, 2101–2106.PubMedGoogle Scholar
  7. 7.
    Alvarez Sotomayor, E., Teicher, B. A., Schwartz, G. N., Holden, S. A., Menon, K., Herman, T. S., and Frei, E., III (1992) Minocycline in combination with chemotherapy or radiation therapy in vitro and in vivo. Cancer Chemother. Pharmacol. 30, 377–384.Google Scholar
  8. 8.
    Teicher, B. A., Alvarez Sotomayor, E., and Huang, Z. D. (1992) Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res. 52, 6702–6704.PubMedGoogle Scholar
  9. 9.
    Teicher, B. A., Holden, S. A., Chen, Y.-N., Ara, G., Korbut, T. T., and Northey, D. (1994) CAI: effects on cytotoxic therapies in vitro and in vivo. Cancer Chemother. Pharmacol. 34, 515–522.Google Scholar
  10. 10.
    Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235, 442–447.PubMedCrossRefGoogle Scholar
  11. 11.
    Ingber, D. and Folkman, J. (1988) Inhibition of angiogenesis through modulation of collagen metabolism. Lab. Inves. 59, 44–51.Google Scholar
  12. 12.
    Folkman, J. and Ingber, D. E. (1987) Angiostatic steroids: method of discovery and mechanism of action. Ann. Surg. 206, 374–383.Google Scholar
  13. 13.
    Ingber, D. E., Madri, J. A., and Folkman, J. (1986) Possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119, 1768–1775.PubMedCrossRefGoogle Scholar
  14. 14.
    Folkman, J., Langer, R., Lingardt, R., Haudenschild, C., and Taylor, S. (1983) Angiogenesis inhibition and tumour regression caused by heparin or a heparin fragment in the prescence of cortisone. Science 221, 719–725.PubMedCrossRefGoogle Scholar
  15. 15.
    Folkman, J., Weisz, P. B., Joullie, M. M., Li, W. W., and Ewing, W. R. (1989) Control of angiogenesis with synthetic heparin substitutes. Science 243, 1490–1493.PubMedCrossRefGoogle Scholar
  16. 16.
    Grunt, T. W., Lametschwadtner, A., Karrer, K., and Staindl, O. (1986) Angioarchitecture of the Lewis lung carcinoma in laboratory mice. Scan. Electron Microsc. 11, 557–574.Google Scholar
  17. 17.
    Grunt, T. W., Lametschwadtner, A., and Karrer, K. (1986) Characteristic structural feature of the blood vessels of the Lewis lung carcinoma. Scan. Electron Microsc. 11, 575–589.Google Scholar
  18. 18.
    Killough, J. H., Magill, G. B., and Smith, R. C. (1952) Treatment of amebiasis with fumagillin. Science 115, 71,72.Google Scholar
  19. 19.
    Katznelson, H. and Jamieson, C. A. (1952) Control of nosema disease of honeybees with fumagillin. Science 115, 70,71.Google Scholar
  20. 20.
    Brem, H., Ingber, D., Blood, C. H., Bradley, D., Urioste, S., and Folkman, J. (1991) Suppression of tumor metastasis by angiogenesis inhibition. Surg. Forum 42, 439–441.Google Scholar
  21. 21.
    Ingber, D., Fujita, T., Kishimoto, S., Sudo, K., Kanamaru, T., Brem, H., and Folkman, J. (1990) Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348, 555–557.PubMedCrossRefGoogle Scholar
  22. 22.
    Kusaka, M., Sudo, K., Fujita, T., Marui, S., Itoh, F., Ingber, D., and Folkman, J. (1991) Potent antiangiogenic action of AGM-1470, comparison to the fumagillin parent. Biochem. Biophys. Res. Commun. 174, 1070–1076.Google Scholar
  23. 23.
    Brem, H. and Folkman, J. (1993) Analysis of experimental antiangiogenic therapy. J. Ped. Surg. 28, 445–451.Google Scholar
  24. 24.
    Takayamiya, Y., Friedlander, R. M., Brem, H., Malick, A., and Martuza, R. L. (1993) Inhibition of angiogenesis and growth of human nerve sheath tumors by AGM-1470. J. Neurosurg. 78, 470–476.CrossRefGoogle Scholar
  25. 25.
    Brem, H., Gresser, I., Grossfeld, J., and Folkman, J. (1993) Combination of antiangiogenic agents to inhibit primary tumor growth and metastasis. J. Ped. Surg. 28, 445–451.Google Scholar
  26. 26.
    Kamei, S., Okada, H., Inoue, Y., Yoshioka, T., Ogawa, Y., and Toguchi, H. (1993) Antitumor effects of angiogenesis inhibitor TNP-470 in rabbits bearing VX-2 carcinoma by arterial administration of microspheres and oil solution. J. Pharmacol. Exper. Ther. 264, 469–474.Google Scholar
  27. 27.
    Yamaoka, M., Yamamoto, T., Masaki, T., Ikeyama, S., Sudo, K., and Fujita, T. (1993) Inhibition of tumor growth and metastasis of rodent tumors by the angiogenesis inhibitor O-(Chloroacetylcarbamoyl)fumagillin (TNP-470; AGM-1470). Cancer Res. 53, 4262–4267.PubMedGoogle Scholar
  28. 28.
    Toi, M., Yamamoto, Y., Imazawa, T., Takayanagi, T., Akutsu, K., and Tominaga, T. (1993) Antitumor effect of the angiogenesis inhibitor AGM-1470 and its combination effect with tamoxifen in DMBA induced mammary tumors in rats. Int. J. Oncol. 3, 525–528.Google Scholar
  29. 29.
    Yamaoka, M., Yamamoto, T., Ikeyama, S., Sudo, K., and Fujita, T. (1993) Angiogenesis inhibitor TNP-470 (AGM-1470) potently inhibits the tumor growth of hormone-independent human breast and prostate carcinoma cell lines. Cancer Res. 53, 5233–5236.PubMedGoogle Scholar
  30. 30.
    Schoof, D. D., Obando, J. A., Cusack, J. C., Jr., Goedegebuure, P. S., Brem, H., and Eberlein, T. J. (1993) Influence of angiogenesis inhibitor AGM-1470 on immune system status and tumor growth in vitro. Int. J. Cancer 55, 630–635.Google Scholar
  31. 31.
    Yanase, T., Tamura, M., Fujita, K., Kodama, S., and Tanaka, K. (1993) Inhibitory effect of angiogenesis inhibitor TNP-470 in rabbits bearing VX-2 carcinoma by arterial administration of microspheres and oil solution. Cancer Res. 53, 2566–2570.PubMedGoogle Scholar
  32. 32.
    Chang, A. and Garrow, G. (1995) Pilot study of vinorelbine (Navelbine) and paclitaxel (Taxol) in patients with refractory breast cancer and lung cancer. Semin. Oncol. 22(Suppl. 5), 66.PubMedGoogle Scholar
  33. 33.
    Murphy, W., Fossella, F. and Winn, R. (1993) Phase II study of taxol in patients with untreated advanced non-small cell lung cancer. J. Natl. Cancer Inst. 8, 384.Google Scholar
  34. 34.
    Johnson, D., Paul, D., and Hande, K. (1996) Paclitaxel plus carboplatin in advanced non-small cell lung cancer. J. Clin. Oncol. 14, 2054.Google Scholar
  35. 35.
    Langer, C. J., Leighton, J., and Comis, R. (1994) Taxol and carboplatin in combination in stage, I. V., and IIIB non-small cell lung cancer (NSCLC): A phase II trial. Proc. Am. Soc. Clin. Oncol. 13, 338 (abstract 1122).Google Scholar
  36. 36.
    Langer, C., Leighton, J., and Comis, R. (1995) Paclitaxel and carboplatin in combination in the treatment of advanced non-small cell lung cancer: a phase II toxicity, response and survival analysis. J. Clin. Oncol. 12, 1860.Google Scholar
  37. 37.
    Rowinsky, E. K., Sartorious, S. E., and Bowling, M. K. (1995) Paclitaxel on a 3-hour schedule and carboplatin in non-small cell lung cancer, use of maximally tolerated and clinically relevant singleagent doses in combination is feasible. Proc. Am. Soc. Clin. Oncol. 14, 1075 (abstract 354).Google Scholar
  38. 38.
    Vafai, D., Israel, V., and Zaretsky, S. (1995) Phase I/II trial ofcombination carboplatin and taxol in nonsmall cell lung cancer (NSCLC). Proc. Natl. Acad. Sci. USA 14, (abstract).Google Scholar
  39. 39.
    Herbst, R. S., Takeuchi, H., and Teicher, B. A. (1984) Paclitaxel/Carboplatin administration along with antiangiogenic therapy in non-small cell lung and breast carcinoma models. Cancer Chemo. Pharmacol. 41, 497–504.Google Scholar
  40. 40.
    Setchell, K. D. R., Borriello, S. P., Kirk, D. N., and Axelson, M. (1984) Nonsteroidal estrogens of dietary origin: possible role in hormone-dependent disease. Am. J. Clin. Nutr. 40, 569–578.Google Scholar
  41. 41.
    Barnes, S., Grubbs, C., Setchell K. D. R., and Carlson, J. (1990) Soybeans inhibit mammary tumor in models of breast cancer, in Mutagens and Carcinogens in the Diet (Pariza, M. and Liss, A. R., eds.), Wiley-Liss, New York, pp. 239–253.Google Scholar
  42. 42.
    Messina, M. and Barnes, S. (1991) Role of soy products in reducing risk of cancer. J. Natl. Cancer Inst. 83, 541–546.Google Scholar
  43. 43.
    Akiyama, T., Ishida, J., Nakawaga, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., and Fukami, Y. (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262, 5592–5595.Google Scholar
  44. 44.
    Hunter, T. and Cooper, J. A. (1985) Protein-tyrosine kinase. Ann. Rev. Biochem. 54, 897–930.Google Scholar
  45. 45.
    Okura, A., Arakawa, H., Oka, H., Yoshinari, T., and Monden, Y. (1988) Effect of genistein on toposiomerase activity and on the growth of [Va112] Ha-ras-transformed NIH 3Y3 cells. Biochem. Biophys. Res. Commun. 157, 183–189.Google Scholar
  46. 46.
    Fotsis, T., Pepper, M., Adlercreutz, H., Fleischmann, G., Hase, T., Montesano, R., and Schweigerer, L. (1993) Genistein, a dietary-derived inhibitor ofin vitro angiogenesis. Proc. Natl. Acad. Sci. USA 90, 2690–2694.Google Scholar
  47. 47.
    Takano, S., Gately, S., Neville, M., Herblin, W. F., Gross, J. L., and Brem, S. (1993) Suramin, an inhibitor of angiogenesis, suppresses endothelial cell growth, migration and plasminogen activator activity. Proc. Am. Assoc. Cancer Res. 34, 74.Google Scholar
  48. 48.
    Danesi, R., Del Bianchi, S., Soldani, P., Campagni, A., La Rocca, R. V., Myers, C. E., Paparelli, A., and Del Tacca, M. (1993) Suramin inhibits bFGF-induced endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane. Br. J. Cancer 68, 932–938.Google Scholar
  49. 49.
    Stein, C. A., LaRocca, R. V., Thomas, R., McAtee, N., and Myers, C. E. (1989) Suramin: an anticancer drug with a unique mechanism of action. J. Clin. Oncol. 7, 499–508.Google Scholar
  50. 50.
    Yayon, A. and Klagsbrun, M. (1990) Autocrine transformation by chimeric signal peptide-basic fobroblast growth factor: reversal by suramin. Proc. Natl. Acad. Sci. USA 87, 5346–5350.Google Scholar
  51. 51.
    Takano, S., Gately, S., Neville, M. E., Herblin, W. F., Gross, J. L., Engelhard, H., et al. (1994) Suramin, an anticancer and angiosuppressive agent, inhibits endothelial cell binding of basic fibroblast growth factor, migration, proliferation, and induction of urokinase-type plasminogen activator. Cancer Res. 54, 2654–2660.PubMedGoogle Scholar
  52. 52.
    Teicher, B. A., Dupuis, N., Kusumoto, T., Robinson, M. F., Liu, F., Menon, K., and Coleman, C. N. (1995) Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Radiat. Oncol. Invest. 2, 269–276.Google Scholar
  53. 53.
    Teicher, B. A., Holden, S. A., Dupuis, N. P., Kakeji, Y., Ikebe, M., Emi, Y., and Goff, D. (1995) Potentiation of cytotoxic therapies by TNP-470 and minocycline in mice bearing EMT-6 mammary carcinoma. Breast Cancer Res. Treat. 36, 227–236.Google Scholar
  54. 54.
    Teicher, B. A., Holden, S. A., Ara, G., Dupuis, N., Liu, F., Yuan, J., Ikebe, M., and Kakeji, Y. (1995) Influence of an anti-angiogenic treatment on 9L gliosarcoma: oxygenation and response to cytotoxic therapy. Int. J. Cancer 61, 732–737.Google Scholar
  55. 55.
    Terranova, V. P., Hujanen, E. S., and Martin, G. R. (1986) Basement membrane and the invasive activity of metastatic tumor cells. J. Natl. Cancer Inst. 77, 311–316.Google Scholar
  56. 56.
    Tryggvason, K., Hoyhtya, M., and Salo, T. (1987) Proteolytic degradation of extracellular matrix in tumor invasion. Biochim. Biophys. Acta 907, 191–217.Google Scholar
  57. 57.
    Taylor, S. aand Folkman, J. (1982) Protamine is an inhibitor of angiogenesis. Nature 297, 307–312.Google Scholar
  58. 58.
    Groopman, J. E. and Scadden, D. T. (1989) Interferon therapy for Kaposi sarcoma associated with the acquired immunodeficiency syndrome (AIDS). Ann. Int. Med. 110, 335–337.Google Scholar
  59. 59.
    White, C. W., Sondheimer, H. M., Crouch, E. C., Wilson, H., and Fan, L. L. (1989) Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2a. Med. Intell. 18, 1197–1200.Google Scholar
  60. 60.
    Strieter, R. M., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., and Polverini, P. J. (1995) Interferon y-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem. Biophys. Res. Commun. 210, 51–57.Google Scholar
  61. 61.
    Kolber, D. L., Knisely, T. L., and Maione, T. E. (1995) Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. J. Natl. Cancer Inst. 87, 304–309.Google Scholar
  62. 62.
    Stetler-Stevenson, W. G., Krutzsch, H. C., and Liotta, L. A. (1989) Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J. Biol. Chem. 264, 17,374– 17,378.Google Scholar
  63. 63.
    Welgus, H. G. and Stricklin, G. P. (1983) Human skin fibroblast collagenase inhibitor. Comparative studies in human connective tissues, serum, and amniotic fluid. J. Biol. Chem. 258, 12,259–12,264.Google Scholar
  64. 64.
    Voest, E. E., Kenyon, B. M., O’Reilly, M. S., Truitt, G., D’Amato, R. J., and Folkman, J. (1995) Inhibition of angiogenesis in vivo by interleukin 12. J. Natl. Cancer Inst. 87, 581–586.Google Scholar
  65. 65.
    Kerbel, R. S. and Hawley, R. G. (1995) Interleukin 12, newest member of the antiangiogenesis club. J. Natl. Cancer Inst. 87, 557, 558.Google Scholar
  66. 66.
    Banks, R. E., Patel, P. M., and Selby, P. J. (1995) Interleukin 12, a new clinical player in cytokine therapy. Br. J. Cancer 71, 655–659.Google Scholar
  67. 67.
    O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression ofmetastases by a Lewis lung carcinoma. Cell79, 315–328.Google Scholar
  68. 68.
    Lee, A. and Langer, R. (1983) Shark cartilage contains inhibitors of tumor angiogenesis. Science 221, 1185–1187.PubMedCrossRefGoogle Scholar
  69. 69.
    Moses, M. A., Sudhalter, J., and Langer, R. (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248, 1408–1410.PubMedCrossRefGoogle Scholar
  70. 70.
    Taylor, C. M. and Weiss, J. B. (1985) Partial purification of a 5.7K glycoprotein from bovine vitreous which inhibits both angiogenesis and collagenase activity. Biochem. Biophys. Res. Commun. 133, 911–916.Google Scholar
  71. 71.
    DeClerck, Y. A. (1988) Purification and characterization of a collagenase inhibitor produced by bovine vascular smooth muscle cells. Arch. Biochem. Biophys. 265, 28–37.Google Scholar
  72. 72.
    Sakamoto, N., Iwahana, M., Tanaka, N. G., and Osada, Y. (1991) Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res. 51, 903–906.PubMedGoogle Scholar
  73. 73.
    Bogden, A. E., Taylor, J. E., Moreau, J.-P., Coy, D. H., and LePage, D. J. (1990) Response of human lung tumor xenografts to treatment with a somatostatin analogue (somatuline). Cancer Res. 50, 4360–4365.PubMedGoogle Scholar
  74. 74.
    Brooks, P. C., Clark, R. A., and Cheresh, D. A. (1994) Requirement of vascular integrin avβ3 for angiogenesis. Science 264, 569–573.PubMedCrossRefGoogle Scholar
  75. 75.
    Brooks, P. C., Montgomery, A. M. P., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., and Cheresh, D. A. (1994) Integrin avβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164.PubMedCrossRefGoogle Scholar
  76. 76.
    Cheresh, D. A. (1987) Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc. Natl. Acad. Sci. USA 84, 6471–6475.Google Scholar
  77. 77.
    Gazzinelli, R. T., Hieny, S., Wynn, T. A., Wolf, S., and Sher, A. (1993) Interleukin 12 is required for the T-lymphocyte-independent induction of interferon y by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc. Natl. Acad. Sci. USA 90, 6115–6119.Google Scholar
  78. 78.
    Locksley, R. M. (1993) Interleukin 12 in host defense against microbial pathogens. Proc. Natl. Acad. Sci. USA 90, 5879, 5880.Google Scholar
  79. 79.
    Robertson, M. and Ritz, J. (1996) Interleukin 12, basic biology and potential applications in cancer treatment. Oncologist 1, 88–97.PubMedGoogle Scholar
  80. 80.
    Gately, M. K., Desai, B., Wolitzky, A. G., Quinn, P. M., Dwyer, C. M., Podlaski, F. J., et al. (1991) Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J. Immunol. 147, 874–882.PubMedGoogle Scholar
  81. 81.
    Perussia, B., Chan, S. H., D’Andres, A., Tsuji, K., Santoli, D., Pospisil, M., et al. (1992) Natural killer (NK) cell stimulatory factor of IL-12 has differential effects on the proliferation of TCR-ab+, TCR-γδ+ T lymphocytes, and NK cells. J. Immunol. 149, 3495–3502.Google Scholar
  82. 82.
    Robertson, M. J., Soiffer, R. J., Wolf, S. F., Manley, T. J., Donahue, C., Young, D., Herrmann, S. H., and Ritz, J. (1992) Responses ofhuman natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J. Exp. Med. 175, 779–788.Google Scholar
  83. 83.
    Gately, M. K., Wolitzky, A. G., Quinn, P. M., and Chizzonite, R. (1992) Regulation of human cytolytic lymphocyte responses by interleukin-12. Cell Immunol. 143, 127.PubMedCrossRefGoogle Scholar
  84. 84.
    Naume, B., Gately, M., and Espevik, T. (1992) A comparative study of IL-12 (cytotoxic lymphocyte maturation factor)-, IL-2-, and IL-7-induced effects on immunomagnetically purified CD56+NK cells. J. Immunol. 148, 2429–2436.PubMedGoogle Scholar
  85. 85.
    Chan, S. H., Perussia, B., Gupta, J. W., Kobayashi, M., Pospisil, M., Young, H. A., et al. (1991) Induction of interferon γ production by natural killer cell stimulatory factor: characterization of the responding cells and synergy with other inducers. J. Exp. Med. 173, 869–879.Google Scholar
  86. 86.
    Brunda, M., Luistro, L., Rumennik, L., Wright, R., Dvorozniak, M., Aglione, A., et al. (1996) Antitumor activity of interleukin 12 in preclinical models. Cancer Chemother. Pharmacol. 38(Suppl.), S16–S21.Google Scholar
  87. 87.
    Brunda, M. J., Luistro, L., Warrier, R. R., Wright, R. B., Hubbard, B. R., Murphy, M., Wolf, S. F., and Gately, M. K. (1993) Antitumor and antimetastatic activity of Interleukin-12 against murine tumors. J. Exp. Med. 178, 1223–1230.Google Scholar
  88. 88.
    Nastala, C. L., Edington, H. D., McKinney, T. G., Tahara, H., Nalesnik, M. A., Brunda, M. J., et al. (1994) Recombinant IL-12 administration induces tumor regression in association with IFN-y production. J. Immunol. 153, 1697–1706.PubMedGoogle Scholar
  89. 89.
    Noguchi, Y., Richards, E. C., Chen, Y.-T., and Old, L. J. (1995) Influence of interleukin 12 on p53 peptide vaccination against established Meth A sarcoma. Proc. Natl. Acad. Sci. USA 92, 2219–2223.Google Scholar
  90. 90.
    Fujiwara, H. and Hamaoka, T. (1996) Antitumor and antimetastatic effects of interleukin 12. Cancer Chemother. Pharmacol. 38, S22–S26.Google Scholar
  91. 91.
    Kedar, E. and Klein, E. (1992) Cancer immunotherapy: are the results discouraging? Can they be improved? Adv. Cancer Res. 59, 245.CrossRefGoogle Scholar
  92. 92.
    Seder, R. A., Gazzinelli, R., Sher, A., and Paul, W. E. (1993) Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon y production and diminishes interleukin 4 inhibition of such priming. Proc. Natl. Acad. Sci. USA 90, 10,188–10,192.Google Scholar
  93. 93.
    Yoshida, A., Koide, Y., Uchijima, M., and Yoshida, T. O. (1994) IFN-γ induces IL-12 mRNA expression by a murine macrophage cell line, J774. Biochem. Biophys. Res. Commun. 198, 857–861.Google Scholar
  94. 94.
    Gately, M. K., Warrier, R. R., Honasoge, S., Carvajal, D. M., Faherty, D. A., Connaughton, S. E., et al. (1994) Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-y in vivo. Int. Immunol. 6, 157–167.Google Scholar
  95. 95.
    Zeh, H. J., III, Hurd, S., Storkus, W. J., and Lotze, M. T. (1993) Interleukin-12 promotes the proliferation and cytolytic maturation of immune effectors: implications for the immunotherapy of cancer. J. Immunother. 14, 155–161.CrossRefGoogle Scholar
  96. 96.
    Caruso, M., Pham-Nguyen, K., Kwong, Y., Xu, B., Kosai, K., Finegold, M., Woo, S., and Chen, S. (1996) Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma. Proc. Natl. Acad. Sci. USA 93, 11,302–11,306.Google Scholar
  97. 97.
    Nishimura, T., Watanabe, K., Yahata, T., Ushaku, L., Ando, K., Kimura, M., Saiko, I., Uede, T., and Habu, S. (1996) Application of interleukin 12 to antitumor cytokine and gene therapy. Ann. NYAcad. Sci. 795, 375–378.Google Scholar
  98. 98.
    Brunda, M. J. (1994) Interleukin-12. J. Leuk. Biol. 55, 280–288.Google Scholar
  99. 99.
    Gohji, K., Fidler, I., Tsan, R., Radinsky, R., von Eschenbach, A., Tsuruo, T., and Nakajima, M. (1994) Human recombinant interferons-beta and -gamma decrease gelatinase production and invasion by human KG-2 renal-carcinoma cells. Int. J. Cancer 58, 380–384.Google Scholar
  100. 100.
    Hujanen, E. S., Vaisanen, A., Zheng, A., Tryggvason, K., and Turpeenniemi-Hujanen, T. (1994) Modulation of Mr 72,000 and Mr 92,000 type-IV collagenase (gelatinase, A., and B) gene expression by interferons alpha and gamma in human melanoma. Int. J. Cancer 58, 582–586.Google Scholar
  101. 101.
    Norioka, K., Mitaka, T., Mochizuki, Y., Hara, M., Kawagoe, M., and Nakamura, H. (1994) Interaction of interleukin-1 and interferon-y on fibroblast growth factor-induced angiogenesis. Jpn. J. Cancer Res. 85, 522–529.Google Scholar
  102. 102.
    Hiscox, S., Hallett, M. B., Puntis M. C. A., and Jiang, W. G. (1995) Inhibition of cancer cell motility and invasion by interleukin-12. Clin. Exp. Metastasis 13, 396–404.Google Scholar
  103. 103.
    Wigginton, J. M., Komschlies, K. L., Back, T. C., Franco, J. L., Brunda, M. J., and Wiltrout, R. H. (1996) Administration of interleukin-12 with pulse interleukin-2 and the rapid and complete eradication of murine renal carcinoma. J. Natl. Cancer Inst. 88, 38–43.Google Scholar
  104. 104.
    Teicher, B. A., Ara, G., Menon, K., and Schaub, R. G. (1995)In vivo studies with interleukin-12 alone and in combination with monocyte-colony stimulating factor and/or fractionated radiation therapy. Int. J. Cancer 65, 80–84.Google Scholar
  105. 105.
    Lu, L., Shen, R.-N., Lin, Z.-H., Aukerman, S. L., Ralph, P., and Broxmeyer, H. E. (1991) Antitumor effects of recombinant human macrophage colony-stimulating factor, alone or in combination with local irradiation, in mice inoculated with Lewis lung carcinoma cells. Int. J. Cancer 47, 143–147.Google Scholar
  106. 106.
    Bonta, I. L. and Ben-Efraim, S. (1993) Involvement of inflammatory mediators in macrophage antitumor activity. J. Leuk. Biol. 54, 613–626.Google Scholar
  107. 107.
    Wolf, S. F., Sieburth, D., and Sypek, J. (1994) Interleukin 12, a key modulator of immune function. Stem Cells 12, 154–168.PubMedCrossRefGoogle Scholar
  108. 108.
    Munn, D. H. and Cheung, N. K. (1989) Antibody-dependent antitumor cytotoxicity by human monocytes cultured with recombinant macrophage colony-stimulating factor: induction of efficient anti-body mediated antitumor cytotoxicity not detected by isotope release assays. J. Exp. Med. 170, 511–526.Google Scholar
  109. 109.
    O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994) Angiostatin: A novel angiogenesis inhibitor that mediates the supression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.Google Scholar
  110. 110.
    Sottrup-Jensen, L., Claeys, H., Zajdel, M., Petersen, T. E., and Magnusson, S. (1978) The primary structure of human plasminogen: isolation of two lysine-binding fragments and one “Mini-” plasminogen (MW 38,000) by elastase-catalyzed-specific limited proteolysis, in Progress in Chemical Fibrinolysis and Thrombolysis, vol. 3 (Davidson, J. F., Rowan, R. M., Samama, M. M., and Desnoyers, P. C., eds.), Raven, New York, pp. 191–209.Google Scholar
  111. 111.
    O’Reilly, M. S., Holmgren, L., Chen, C. C., and Folkman, J. (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med. 2, 689–692.PubMedCrossRefGoogle Scholar
  112. 112.
    Holmgren, L., O’Reilly, M. S., and Folkman, J. (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis supression. Nature Med. 1, 149–153.PubMedCrossRefGoogle Scholar
  113. 113.
    Gately, S., Twardowski, P., Stack, M. S., Patrick, M., Boggio, L., Cundiff, D. L., et al. (1996) Human prostate carcinoma cells express enaymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin. Cancer Res. 56, 4887–4890.PubMedGoogle Scholar
  114. 114.
    Cao, Y., Ji, R. W., Davidson, D., Schaller, J., Marti, D., Sohndel, S., et al. (1996) Kringle domains of human angiostatin: characterization of the anti-proliferative acivity on endothelial cells. J. Biol. Chem. 271, 29,461–29,467.Google Scholar
  115. 115.
    O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., et al. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.PubMedCrossRefGoogle Scholar
  116. 116.
    Gasparini, G. and Harris, A. L. (1995) Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J. Clin. Oncol. 13, 765–782.Google Scholar
  117. 117.
    Toppmeyer, D. (1997) Phase I trial design and methodology, in Anticancer Drug Development: Preclinical Screening, Clinical Trial and Approval (Teicher, B., ed.), Humana, Totowa, NJ, pp. 227–247.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Beverly A. Teicher

There are no affiliations available

Personalised recommendations