Skip to main content

Potentiation of Cytotoxic Cancer Therapies by Antiangiogenic Agents

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Cancer cure requires eradication of all malignant cells. Cancer growth, however, requires proliferation of malignant cells and normal cells. The several anticancer treatment modalities currently available, including surgery, chemotherapy, radiation therapy, and immunotherapy, have been envisioned to target primarily the malignant cell. Research over the past 35 yr has reinforced the hypothesis put forth by Folkman that, without the proliferation of normal cells, especially endothelial cells, a tumor cannot grow beyond the size of a colony (1). The consequence of this finding is that both the normal cells and the malignant cells involved in tumor growth, as well as the chemical and mechanical signaling pathways that interconnect them, are valid targets for therapeutic intervention. The integration of therapeutics directed toward the vascular components, extracellular matrix components, and stromal and infiltrating cells, with classical cytotoxic anticancer therapies, may be regarded as a systems approach to cancer treatment (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman, J. (1971) Tumor angiogenesis: therapeutic implications. New Eng. J. Med. 285,1182–1186.

    Google Scholar 

  2. Teicher, B. (1996) Systems approach to cancer therapy (antiangiogenics + standard cytotoxics’ mechanism(s) of interaction). Cancer Metastasis Rev. 15, 247–272.

    Article  PubMed  CAS  Google Scholar 

  3. Teicher, B. A., Holden, S. A., Ara, G., Alvarez Sotomayor, E., Huang, Z. D., Chen, Y.-N., and Brem, H. (1994) Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other antiangiogenic agents. Int. J. Cancer 57, 920–925.

    Google Scholar 

  4. Teicher, B. A., Dupuis, N. P., Robinson, M., Emi, Y., and Goff, D. (1995) Antiangiogenic treatment (TNP-470/minocycline) increases tissue levels of anticancer drugs in mice bearing Lewis lung carcinoma. Oncol. Res. 7, 237–243.

    Google Scholar 

  5. Teicher, B. A., Alvarez Sotomayor, E., Huang, Z. D., Ara, G., Holden, S., Khandekar, V., and Chen, Y.-N. (1993) β-Cyclodextrin tetradecasulfate/tetrahydrocortisol ± minocycline as modulators of cancer therapies in vitro and in vivo against primary and metastatic Lewis lung carcinoma. Cancer Chemother. Pharmacol. 33, 229–238.

    Google Scholar 

  6. Teicher, B. A., Holden, S. A., Ara, G., and Northey, D. (1993) Response of the FSaII fibrosarcoma to antiangiogenic modulators plus cytotoxic agents. AntiCancer Res. 13, 2101–2106.

    PubMed  CAS  Google Scholar 

  7. Alvarez Sotomayor, E., Teicher, B. A., Schwartz, G. N., Holden, S. A., Menon, K., Herman, T. S., and Frei, E., III (1992) Minocycline in combination with chemotherapy or radiation therapy in vitro and in vivo. Cancer Chemother. Pharmacol. 30, 377–384.

    Google Scholar 

  8. Teicher, B. A., Alvarez Sotomayor, E., and Huang, Z. D. (1992) Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res. 52, 6702–6704.

    PubMed  CAS  Google Scholar 

  9. Teicher, B. A., Holden, S. A., Chen, Y.-N., Ara, G., Korbut, T. T., and Northey, D. (1994) CAI: effects on cytotoxic therapies in vitro and in vivo. Cancer Chemother. Pharmacol. 34, 515–522.

    Google Scholar 

  10. Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235, 442–447.

    Article  PubMed  CAS  Google Scholar 

  11. Ingber, D. and Folkman, J. (1988) Inhibition of angiogenesis through modulation of collagen metabolism. Lab. Inves. 59, 44–51.

    Google Scholar 

  12. Folkman, J. and Ingber, D. E. (1987) Angiostatic steroids: method of discovery and mechanism of action. Ann. Surg. 206, 374–383.

    Google Scholar 

  13. Ingber, D. E., Madri, J. A., and Folkman, J. (1986) Possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119, 1768–1775.

    Article  PubMed  CAS  Google Scholar 

  14. Folkman, J., Langer, R., Lingardt, R., Haudenschild, C., and Taylor, S. (1983) Angiogenesis inhibition and tumour regression caused by heparin or a heparin fragment in the prescence of cortisone. Science 221, 719–725.

    Article  PubMed  CAS  Google Scholar 

  15. Folkman, J., Weisz, P. B., Joullie, M. M., Li, W. W., and Ewing, W. R. (1989) Control of angiogenesis with synthetic heparin substitutes. Science 243, 1490–1493.

    Article  PubMed  CAS  Google Scholar 

  16. Grunt, T. W., Lametschwadtner, A., Karrer, K., and Staindl, O. (1986) Angioarchitecture of the Lewis lung carcinoma in laboratory mice. Scan. Electron Microsc. 11, 557–574.

    Google Scholar 

  17. Grunt, T. W., Lametschwadtner, A., and Karrer, K. (1986) Characteristic structural feature of the blood vessels of the Lewis lung carcinoma. Scan. Electron Microsc. 11, 575–589.

    Google Scholar 

  18. Killough, J. H., Magill, G. B., and Smith, R. C. (1952) Treatment of amebiasis with fumagillin. Science 115, 71,72.

    Google Scholar 

  19. Katznelson, H. and Jamieson, C. A. (1952) Control of nosema disease of honeybees with fumagillin. Science 115, 70,71.

    Google Scholar 

  20. Brem, H., Ingber, D., Blood, C. H., Bradley, D., Urioste, S., and Folkman, J. (1991) Suppression of tumor metastasis by angiogenesis inhibition. Surg. Forum 42, 439–441.

    Google Scholar 

  21. Ingber, D., Fujita, T., Kishimoto, S., Sudo, K., Kanamaru, T., Brem, H., and Folkman, J. (1990) Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348, 555–557.

    Article  PubMed  CAS  Google Scholar 

  22. Kusaka, M., Sudo, K., Fujita, T., Marui, S., Itoh, F., Ingber, D., and Folkman, J. (1991) Potent antiangiogenic action of AGM-1470, comparison to the fumagillin parent. Biochem. Biophys. Res. Commun. 174, 1070–1076.

    Google Scholar 

  23. Brem, H. and Folkman, J. (1993) Analysis of experimental antiangiogenic therapy. J. Ped. Surg. 28, 445–451.

    Google Scholar 

  24. Takayamiya, Y., Friedlander, R. M., Brem, H., Malick, A., and Martuza, R. L. (1993) Inhibition of angiogenesis and growth of human nerve sheath tumors by AGM-1470. J. Neurosurg. 78, 470–476.

    Article  Google Scholar 

  25. Brem, H., Gresser, I., Grossfeld, J., and Folkman, J. (1993) Combination of antiangiogenic agents to inhibit primary tumor growth and metastasis. J. Ped. Surg. 28, 445–451.

    Google Scholar 

  26. Kamei, S., Okada, H., Inoue, Y., Yoshioka, T., Ogawa, Y., and Toguchi, H. (1993) Antitumor effects of angiogenesis inhibitor TNP-470 in rabbits bearing VX-2 carcinoma by arterial administration of microspheres and oil solution. J. Pharmacol. Exper. Ther. 264, 469–474.

    Google Scholar 

  27. Yamaoka, M., Yamamoto, T., Masaki, T., Ikeyama, S., Sudo, K., and Fujita, T. (1993) Inhibition of tumor growth and metastasis of rodent tumors by the angiogenesis inhibitor O-(Chloroacetylcarbamoyl)fumagillin (TNP-470; AGM-1470). Cancer Res. 53, 4262–4267.

    PubMed  CAS  Google Scholar 

  28. Toi, M., Yamamoto, Y., Imazawa, T., Takayanagi, T., Akutsu, K., and Tominaga, T. (1993) Antitumor effect of the angiogenesis inhibitor AGM-1470 and its combination effect with tamoxifen in DMBA induced mammary tumors in rats. Int. J. Oncol. 3, 525–528.

    Google Scholar 

  29. Yamaoka, M., Yamamoto, T., Ikeyama, S., Sudo, K., and Fujita, T. (1993) Angiogenesis inhibitor TNP-470 (AGM-1470) potently inhibits the tumor growth of hormone-independent human breast and prostate carcinoma cell lines. Cancer Res. 53, 5233–5236.

    PubMed  CAS  Google Scholar 

  30. Schoof, D. D., Obando, J. A., Cusack, J. C., Jr., Goedegebuure, P. S., Brem, H., and Eberlein, T. J. (1993) Influence of angiogenesis inhibitor AGM-1470 on immune system status and tumor growth in vitro. Int. J. Cancer 55, 630–635.

    Google Scholar 

  31. Yanase, T., Tamura, M., Fujita, K., Kodama, S., and Tanaka, K. (1993) Inhibitory effect of angiogenesis inhibitor TNP-470 in rabbits bearing VX-2 carcinoma by arterial administration of microspheres and oil solution. Cancer Res. 53, 2566–2570.

    PubMed  CAS  Google Scholar 

  32. Chang, A. and Garrow, G. (1995) Pilot study of vinorelbine (Navelbine) and paclitaxel (Taxol) in patients with refractory breast cancer and lung cancer. Semin. Oncol. 22(Suppl. 5), 66.

    PubMed  CAS  Google Scholar 

  33. Murphy, W., Fossella, F. and Winn, R. (1993) Phase II study of taxol in patients with untreated advanced non-small cell lung cancer. J. Natl. Cancer Inst. 8, 384.

    Google Scholar 

  34. Johnson, D., Paul, D., and Hande, K. (1996) Paclitaxel plus carboplatin in advanced non-small cell lung cancer. J. Clin. Oncol. 14, 2054.

    Google Scholar 

  35. Langer, C. J., Leighton, J., and Comis, R. (1994) Taxol and carboplatin in combination in stage, I. V., and IIIB non-small cell lung cancer (NSCLC): A phase II trial. Proc. Am. Soc. Clin. Oncol. 13, 338 (abstract 1122).

    Google Scholar 

  36. Langer, C., Leighton, J., and Comis, R. (1995) Paclitaxel and carboplatin in combination in the treatment of advanced non-small cell lung cancer: a phase II toxicity, response and survival analysis. J. Clin. Oncol. 12, 1860.

    Google Scholar 

  37. Rowinsky, E. K., Sartorious, S. E., and Bowling, M. K. (1995) Paclitaxel on a 3-hour schedule and carboplatin in non-small cell lung cancer, use of maximally tolerated and clinically relevant singleagent doses in combination is feasible. Proc. Am. Soc. Clin. Oncol. 14, 1075 (abstract 354).

    Google Scholar 

  38. Vafai, D., Israel, V., and Zaretsky, S. (1995) Phase I/II trial ofcombination carboplatin and taxol in nonsmall cell lung cancer (NSCLC). Proc. Natl. Acad. Sci. USA 14, (abstract).

    Google Scholar 

  39. Herbst, R. S., Takeuchi, H., and Teicher, B. A. (1984) Paclitaxel/Carboplatin administration along with antiangiogenic therapy in non-small cell lung and breast carcinoma models. Cancer Chemo. Pharmacol. 41, 497–504.

    Google Scholar 

  40. Setchell, K. D. R., Borriello, S. P., Kirk, D. N., and Axelson, M. (1984) Nonsteroidal estrogens of dietary origin: possible role in hormone-dependent disease. Am. J. Clin. Nutr. 40, 569–578.

    Google Scholar 

  41. Barnes, S., Grubbs, C., Setchell K. D. R., and Carlson, J. (1990) Soybeans inhibit mammary tumor in models of breast cancer, in Mutagens and Carcinogens in the Diet (Pariza, M. and Liss, A. R., eds.), Wiley-Liss, New York, pp. 239–253.

    Google Scholar 

  42. Messina, M. and Barnes, S. (1991) Role of soy products in reducing risk of cancer. J. Natl. Cancer Inst. 83, 541–546.

    Google Scholar 

  43. Akiyama, T., Ishida, J., Nakawaga, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., and Fukami, Y. (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262, 5592–5595.

    Google Scholar 

  44. Hunter, T. and Cooper, J. A. (1985) Protein-tyrosine kinase. Ann. Rev. Biochem. 54, 897–930.

    Google Scholar 

  45. Okura, A., Arakawa, H., Oka, H., Yoshinari, T., and Monden, Y. (1988) Effect of genistein on toposiomerase activity and on the growth of [Va112] Ha-ras-transformed NIH 3Y3 cells. Biochem. Biophys. Res. Commun. 157, 183–189.

    Google Scholar 

  46. Fotsis, T., Pepper, M., Adlercreutz, H., Fleischmann, G., Hase, T., Montesano, R., and Schweigerer, L. (1993) Genistein, a dietary-derived inhibitor ofin vitro angiogenesis. Proc. Natl. Acad. Sci. USA 90, 2690–2694.

    Google Scholar 

  47. Takano, S., Gately, S., Neville, M., Herblin, W. F., Gross, J. L., and Brem, S. (1993) Suramin, an inhibitor of angiogenesis, suppresses endothelial cell growth, migration and plasminogen activator activity. Proc. Am. Assoc. Cancer Res. 34, 74.

    Google Scholar 

  48. Danesi, R., Del Bianchi, S., Soldani, P., Campagni, A., La Rocca, R. V., Myers, C. E., Paparelli, A., and Del Tacca, M. (1993) Suramin inhibits bFGF-induced endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane. Br. J. Cancer 68, 932–938.

    Google Scholar 

  49. Stein, C. A., LaRocca, R. V., Thomas, R., McAtee, N., and Myers, C. E. (1989) Suramin: an anticancer drug with a unique mechanism of action. J. Clin. Oncol. 7, 499–508.

    Google Scholar 

  50. Yayon, A. and Klagsbrun, M. (1990) Autocrine transformation by chimeric signal peptide-basic fobroblast growth factor: reversal by suramin. Proc. Natl. Acad. Sci. USA 87, 5346–5350.

    Google Scholar 

  51. Takano, S., Gately, S., Neville, M. E., Herblin, W. F., Gross, J. L., Engelhard, H., et al. (1994) Suramin, an anticancer and angiosuppressive agent, inhibits endothelial cell binding of basic fibroblast growth factor, migration, proliferation, and induction of urokinase-type plasminogen activator. Cancer Res. 54, 2654–2660.

    PubMed  CAS  Google Scholar 

  52. Teicher, B. A., Dupuis, N., Kusumoto, T., Robinson, M. F., Liu, F., Menon, K., and Coleman, C. N. (1995) Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Radiat. Oncol. Invest. 2, 269–276.

    Google Scholar 

  53. Teicher, B. A., Holden, S. A., Dupuis, N. P., Kakeji, Y., Ikebe, M., Emi, Y., and Goff, D. (1995) Potentiation of cytotoxic therapies by TNP-470 and minocycline in mice bearing EMT-6 mammary carcinoma. Breast Cancer Res. Treat. 36, 227–236.

    Google Scholar 

  54. Teicher, B. A., Holden, S. A., Ara, G., Dupuis, N., Liu, F., Yuan, J., Ikebe, M., and Kakeji, Y. (1995) Influence of an anti-angiogenic treatment on 9L gliosarcoma: oxygenation and response to cytotoxic therapy. Int. J. Cancer 61, 732–737.

    Google Scholar 

  55. Terranova, V. P., Hujanen, E. S., and Martin, G. R. (1986) Basement membrane and the invasive activity of metastatic tumor cells. J. Natl. Cancer Inst. 77, 311–316.

    Google Scholar 

  56. Tryggvason, K., Hoyhtya, M., and Salo, T. (1987) Proteolytic degradation of extracellular matrix in tumor invasion. Biochim. Biophys. Acta 907, 191–217.

    Google Scholar 

  57. Taylor, S. aand Folkman, J. (1982) Protamine is an inhibitor of angiogenesis. Nature 297, 307–312.

    CAS  Google Scholar 

  58. Groopman, J. E. and Scadden, D. T. (1989) Interferon therapy for Kaposi sarcoma associated with the acquired immunodeficiency syndrome (AIDS). Ann. Int. Med. 110, 335–337.

    Google Scholar 

  59. White, C. W., Sondheimer, H. M., Crouch, E. C., Wilson, H., and Fan, L. L. (1989) Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2a. Med. Intell. 18, 1197–1200.

    Google Scholar 

  60. Strieter, R. M., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., and Polverini, P. J. (1995) Interferon y-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem. Biophys. Res. Commun. 210, 51–57.

    Google Scholar 

  61. Kolber, D. L., Knisely, T. L., and Maione, T. E. (1995) Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. J. Natl. Cancer Inst. 87, 304–309.

    Google Scholar 

  62. Stetler-Stevenson, W. G., Krutzsch, H. C., and Liotta, L. A. (1989) Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J. Biol. Chem. 264, 17,374– 17,378.

    Google Scholar 

  63. Welgus, H. G. and Stricklin, G. P. (1983) Human skin fibroblast collagenase inhibitor. Comparative studies in human connective tissues, serum, and amniotic fluid. J. Biol. Chem. 258, 12,259–12,264.

    Google Scholar 

  64. Voest, E. E., Kenyon, B. M., O’Reilly, M. S., Truitt, G., D’Amato, R. J., and Folkman, J. (1995) Inhibition of angiogenesis in vivo by interleukin 12. J. Natl. Cancer Inst. 87, 581–586.

    Google Scholar 

  65. Kerbel, R. S. and Hawley, R. G. (1995) Interleukin 12, newest member of the antiangiogenesis club. J. Natl. Cancer Inst. 87, 557, 558.

    Google Scholar 

  66. Banks, R. E., Patel, P. M., and Selby, P. J. (1995) Interleukin 12, a new clinical player in cytokine therapy. Br. J. Cancer 71, 655–659.

    Google Scholar 

  67. O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression ofmetastases by a Lewis lung carcinoma. Cell79, 315–328.

    Google Scholar 

  68. Lee, A. and Langer, R. (1983) Shark cartilage contains inhibitors of tumor angiogenesis. Science 221, 1185–1187.

    Article  PubMed  CAS  Google Scholar 

  69. Moses, M. A., Sudhalter, J., and Langer, R. (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248, 1408–1410.

    Article  PubMed  CAS  Google Scholar 

  70. Taylor, C. M. and Weiss, J. B. (1985) Partial purification of a 5.7K glycoprotein from bovine vitreous which inhibits both angiogenesis and collagenase activity. Biochem. Biophys. Res. Commun. 133, 911–916.

    Google Scholar 

  71. DeClerck, Y. A. (1988) Purification and characterization of a collagenase inhibitor produced by bovine vascular smooth muscle cells. Arch. Biochem. Biophys. 265, 28–37.

    Google Scholar 

  72. Sakamoto, N., Iwahana, M., Tanaka, N. G., and Osada, Y. (1991) Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res. 51, 903–906.

    PubMed  CAS  Google Scholar 

  73. Bogden, A. E., Taylor, J. E., Moreau, J.-P., Coy, D. H., and LePage, D. J. (1990) Response of human lung tumor xenografts to treatment with a somatostatin analogue (somatuline). Cancer Res. 50, 4360–4365.

    PubMed  CAS  Google Scholar 

  74. Brooks, P. C., Clark, R. A., and Cheresh, D. A. (1994) Requirement of vascular integrin avβ3 for angiogenesis. Science 264, 569–573.

    Article  PubMed  CAS  Google Scholar 

  75. Brooks, P. C., Montgomery, A. M. P., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., and Cheresh, D. A. (1994) Integrin avβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  76. Cheresh, D. A. (1987) Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc. Natl. Acad. Sci. USA 84, 6471–6475.

    Google Scholar 

  77. Gazzinelli, R. T., Hieny, S., Wynn, T. A., Wolf, S., and Sher, A. (1993) Interleukin 12 is required for the T-lymphocyte-independent induction of interferon y by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc. Natl. Acad. Sci. USA 90, 6115–6119.

    Google Scholar 

  78. Locksley, R. M. (1993) Interleukin 12 in host defense against microbial pathogens. Proc. Natl. Acad. Sci. USA 90, 5879, 5880.

    Google Scholar 

  79. Robertson, M. and Ritz, J. (1996) Interleukin 12, basic biology and potential applications in cancer treatment. Oncologist 1, 88–97.

    PubMed  CAS  Google Scholar 

  80. Gately, M. K., Desai, B., Wolitzky, A. G., Quinn, P. M., Dwyer, C. M., Podlaski, F. J., et al. (1991) Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J. Immunol. 147, 874–882.

    PubMed  CAS  Google Scholar 

  81. Perussia, B., Chan, S. H., D’Andres, A., Tsuji, K., Santoli, D., Pospisil, M., et al. (1992) Natural killer (NK) cell stimulatory factor of IL-12 has differential effects on the proliferation of TCR-ab+, TCR-γδ+ T lymphocytes, and NK cells. J. Immunol. 149, 3495–3502.

    Google Scholar 

  82. Robertson, M. J., Soiffer, R. J., Wolf, S. F., Manley, T. J., Donahue, C., Young, D., Herrmann, S. H., and Ritz, J. (1992) Responses ofhuman natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J. Exp. Med. 175, 779–788.

    Google Scholar 

  83. Gately, M. K., Wolitzky, A. G., Quinn, P. M., and Chizzonite, R. (1992) Regulation of human cytolytic lymphocyte responses by interleukin-12. Cell Immunol. 143, 127.

    Article  PubMed  CAS  Google Scholar 

  84. Naume, B., Gately, M., and Espevik, T. (1992) A comparative study of IL-12 (cytotoxic lymphocyte maturation factor)-, IL-2-, and IL-7-induced effects on immunomagnetically purified CD56+NK cells. J. Immunol. 148, 2429–2436.

    PubMed  CAS  Google Scholar 

  85. Chan, S. H., Perussia, B., Gupta, J. W., Kobayashi, M., Pospisil, M., Young, H. A., et al. (1991) Induction of interferon γ production by natural killer cell stimulatory factor: characterization of the responding cells and synergy with other inducers. J. Exp. Med. 173, 869–879.

    Google Scholar 

  86. Brunda, M., Luistro, L., Rumennik, L., Wright, R., Dvorozniak, M., Aglione, A., et al. (1996) Antitumor activity of interleukin 12 in preclinical models. Cancer Chemother. Pharmacol. 38(Suppl.), S16–S21.

    Google Scholar 

  87. Brunda, M. J., Luistro, L., Warrier, R. R., Wright, R. B., Hubbard, B. R., Murphy, M., Wolf, S. F., and Gately, M. K. (1993) Antitumor and antimetastatic activity of Interleukin-12 against murine tumors. J. Exp. Med. 178, 1223–1230.

    Google Scholar 

  88. Nastala, C. L., Edington, H. D., McKinney, T. G., Tahara, H., Nalesnik, M. A., Brunda, M. J., et al. (1994) Recombinant IL-12 administration induces tumor regression in association with IFN-y production. J. Immunol. 153, 1697–1706.

    PubMed  CAS  Google Scholar 

  89. Noguchi, Y., Richards, E. C., Chen, Y.-T., and Old, L. J. (1995) Influence of interleukin 12 on p53 peptide vaccination against established Meth A sarcoma. Proc. Natl. Acad. Sci. USA 92, 2219–2223.

    Google Scholar 

  90. Fujiwara, H. and Hamaoka, T. (1996) Antitumor and antimetastatic effects of interleukin 12. Cancer Chemother. Pharmacol. 38, S22–S26.

    Google Scholar 

  91. Kedar, E. and Klein, E. (1992) Cancer immunotherapy: are the results discouraging? Can they be improved? Adv. Cancer Res. 59, 245.

    Article  CAS  Google Scholar 

  92. Seder, R. A., Gazzinelli, R., Sher, A., and Paul, W. E. (1993) Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon y production and diminishes interleukin 4 inhibition of such priming. Proc. Natl. Acad. Sci. USA 90, 10,188–10,192.

    Google Scholar 

  93. Yoshida, A., Koide, Y., Uchijima, M., and Yoshida, T. O. (1994) IFN-γ induces IL-12 mRNA expression by a murine macrophage cell line, J774. Biochem. Biophys. Res. Commun. 198, 857–861.

    Google Scholar 

  94. Gately, M. K., Warrier, R. R., Honasoge, S., Carvajal, D. M., Faherty, D. A., Connaughton, S. E., et al. (1994) Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-y in vivo. Int. Immunol. 6, 157–167.

    Google Scholar 

  95. Zeh, H. J., III, Hurd, S., Storkus, W. J., and Lotze, M. T. (1993) Interleukin-12 promotes the proliferation and cytolytic maturation of immune effectors: implications for the immunotherapy of cancer. J. Immunother. 14, 155–161.

    Article  CAS  Google Scholar 

  96. Caruso, M., Pham-Nguyen, K., Kwong, Y., Xu, B., Kosai, K., Finegold, M., Woo, S., and Chen, S. (1996) Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma. Proc. Natl. Acad. Sci. USA 93, 11,302–11,306.

    Google Scholar 

  97. Nishimura, T., Watanabe, K., Yahata, T., Ushaku, L., Ando, K., Kimura, M., Saiko, I., Uede, T., and Habu, S. (1996) Application of interleukin 12 to antitumor cytokine and gene therapy. Ann. NYAcad. Sci. 795, 375–378.

    Google Scholar 

  98. Brunda, M. J. (1994) Interleukin-12. J. Leuk. Biol. 55, 280–288.

    Google Scholar 

  99. Gohji, K., Fidler, I., Tsan, R., Radinsky, R., von Eschenbach, A., Tsuruo, T., and Nakajima, M. (1994) Human recombinant interferons-beta and -gamma decrease gelatinase production and invasion by human KG-2 renal-carcinoma cells. Int. J. Cancer 58, 380–384.

    Google Scholar 

  100. Hujanen, E. S., Vaisanen, A., Zheng, A., Tryggvason, K., and Turpeenniemi-Hujanen, T. (1994) Modulation of Mr 72,000 and Mr 92,000 type-IV collagenase (gelatinase, A., and B) gene expression by interferons alpha and gamma in human melanoma. Int. J. Cancer 58, 582–586.

    Google Scholar 

  101. Norioka, K., Mitaka, T., Mochizuki, Y., Hara, M., Kawagoe, M., and Nakamura, H. (1994) Interaction of interleukin-1 and interferon-y on fibroblast growth factor-induced angiogenesis. Jpn. J. Cancer Res. 85, 522–529.

    Google Scholar 

  102. Hiscox, S., Hallett, M. B., Puntis M. C. A., and Jiang, W. G. (1995) Inhibition of cancer cell motility and invasion by interleukin-12. Clin. Exp. Metastasis 13, 396–404.

    Google Scholar 

  103. Wigginton, J. M., Komschlies, K. L., Back, T. C., Franco, J. L., Brunda, M. J., and Wiltrout, R. H. (1996) Administration of interleukin-12 with pulse interleukin-2 and the rapid and complete eradication of murine renal carcinoma. J. Natl. Cancer Inst. 88, 38–43.

    Google Scholar 

  104. Teicher, B. A., Ara, G., Menon, K., and Schaub, R. G. (1995)In vivo studies with interleukin-12 alone and in combination with monocyte-colony stimulating factor and/or fractionated radiation therapy. Int. J. Cancer 65, 80–84.

    Google Scholar 

  105. Lu, L., Shen, R.-N., Lin, Z.-H., Aukerman, S. L., Ralph, P., and Broxmeyer, H. E. (1991) Antitumor effects of recombinant human macrophage colony-stimulating factor, alone or in combination with local irradiation, in mice inoculated with Lewis lung carcinoma cells. Int. J. Cancer 47, 143–147.

    Google Scholar 

  106. Bonta, I. L. and Ben-Efraim, S. (1993) Involvement of inflammatory mediators in macrophage antitumor activity. J. Leuk. Biol. 54, 613–626.

    Google Scholar 

  107. Wolf, S. F., Sieburth, D., and Sypek, J. (1994) Interleukin 12, a key modulator of immune function. Stem Cells 12, 154–168.

    Article  PubMed  CAS  Google Scholar 

  108. Munn, D. H. and Cheung, N. K. (1989) Antibody-dependent antitumor cytotoxicity by human monocytes cultured with recombinant macrophage colony-stimulating factor: induction of efficient anti-body mediated antitumor cytotoxicity not detected by isotope release assays. J. Exp. Med. 170, 511–526.

    Google Scholar 

  109. O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994) Angiostatin: A novel angiogenesis inhibitor that mediates the supression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.

    Google Scholar 

  110. Sottrup-Jensen, L., Claeys, H., Zajdel, M., Petersen, T. E., and Magnusson, S. (1978) The primary structure of human plasminogen: isolation of two lysine-binding fragments and one “Mini-” plasminogen (MW 38,000) by elastase-catalyzed-specific limited proteolysis, in Progress in Chemical Fibrinolysis and Thrombolysis, vol. 3 (Davidson, J. F., Rowan, R. M., Samama, M. M., and Desnoyers, P. C., eds.), Raven, New York, pp. 191–209.

    Google Scholar 

  111. O’Reilly, M. S., Holmgren, L., Chen, C. C., and Folkman, J. (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med. 2, 689–692.

    Article  PubMed  Google Scholar 

  112. Holmgren, L., O’Reilly, M. S., and Folkman, J. (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis supression. Nature Med. 1, 149–153.

    Article  PubMed  CAS  Google Scholar 

  113. Gately, S., Twardowski, P., Stack, M. S., Patrick, M., Boggio, L., Cundiff, D. L., et al. (1996) Human prostate carcinoma cells express enaymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin. Cancer Res. 56, 4887–4890.

    PubMed  CAS  Google Scholar 

  114. Cao, Y., Ji, R. W., Davidson, D., Schaller, J., Marti, D., Sohndel, S., et al. (1996) Kringle domains of human angiostatin: characterization of the anti-proliferative acivity on endothelial cells. J. Biol. Chem. 271, 29,461–29,467.

    Google Scholar 

  115. O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., et al. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.

    Article  PubMed  Google Scholar 

  116. Gasparini, G. and Harris, A. L. (1995) Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J. Clin. Oncol. 13, 765–782.

    Google Scholar 

  117. Toppmeyer, D. (1997) Phase I trial design and methodology, in Anticancer Drug Development: Preclinical Screening, Clinical Trial and Approval (Teicher, B., ed.), Humana, Totowa, NJ, pp. 227–247.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Teicher, B.A. (1999). Potentiation of Cytotoxic Cancer Therapies by Antiangiogenic Agents. In: Teicher, B.A. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-453-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-453-5_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4518-4

  • Online ISBN: 978-1-59259-453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics