Advertisement

Dietary and Nutritional Modulation of Tumor Angiogenesis

  • Purna Mukherjee
  • Jin-Rong Zhou
  • Alexander V. Sotnikov
  • Steven K. Clinton
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Tumor angiogenesis is intimately linked to the dynamic interactions between the nutrient status of the host and the tumor. It is well recognized that a growing tumor requires a vascular supply to provide oxygen, and to remove metabolic waste (1–4). The tumor vasculature also provides the pathway for the delivery of energy-yielding com-pounds to fuel metabolism, required vitamins and minerals to serve as catalysts and critical cofactors for enzymes, essential building blocks for cellular macromolecules, and substrates for intracellular signaling pathways that cannot be synthesized by cells. There-fore, from the perspective of the tumor microenvironment, it is probable that cancer cells may alter the synthesis or balance of angiogenic and antiangiogenic factors in response to nutritional and metabolic needs. Furthermore, the nutritional status of the host modulates concentrations of circulating hormones and growth factors, or the availability of nutrients that may directly influence tumor cell proliferation and metabolism, as well as the response of the tumor vascular compartment to regulatory signals in the local environment. Although direct evidence for these concepts, derived from carefully designed experiments, is only beginning to emerge, the rapid development of laboratory models and tools for the evaluation of tumor angiogenesis provides the foundation for scientific inquiry (5).

Keywords

Vascular Endothelial Growth Factor Retinoic Acid Energy Intake Vascular Endothelial Growth Factor Expression Chronic Food Restriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cao, Y., Linden, P., Shima, D., Browne, F., and Folkman, J. (1996) In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J. Clin. Invest. 98, 2507–2511.Google Scholar
  2. 2.
    Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.PubMedCrossRefGoogle Scholar
  4. 4.
    Folkman, J. (1990) What is the evidence that tumors are angiogenesis-dependent?J. Natl. Cancer Inst. 82,4–6.Google Scholar
  5. 5.
    Jain, R. K., Schlenger, K., Hockel, M., and Yuan, F. (1997) Quantitative angiogenesis assays: progress and problems. Nature Med. 11, 1203–1208.Google Scholar
  6. 6.
    Clinton, S. K. and Giovannucci, E. (1997) Nutrition in the etiology and prevention of cancer, in Cancer Medicine (Holland, J. F., Frei, E., Bast, B. C., Kufe, D. W., Morton, D. L., and Weichselbaum, R. R., eds.), Williams and Wilkins, Philadelphia, pp. 465–494.Google Scholar
  7. 7.
    Fund, W. C. R. (1997) Food, Nutrition and the Prevention of Cancer: A Global Perspective, American Institute for Cancer Res., Washington, DC.Google Scholar
  8. 8.
    National Research Council. (1982) Diet, Nutrition, and Cancer, National Academy Press, Washington, DC.Google Scholar
  9. 9.
    National Research Council, National Academy of Sciences. (1989) Diet and Health, National Academy Press, Washington, DC.Google Scholar
  10. 10.
    National Academy of Sciences, Committee on Diet and Health, Food and Nutrition Board, Commission on Life Sciences, National Research Council. (1989) Implications for Reducing Chronic Disease Risk. Diet and Health. National Academy Press, Washington, DC.Google Scholar
  11. 11.
    Tannenbaum, A. (1942) Genesis and growth of tumors III. Effects of a high-fat diet. Cancer Res. 2, 468–475.Google Scholar
  12. 12.
    Tannenbaum, A. (1945) Dependence of tumor formation on the composition of the calorie-restricted diet as well as on the degree of restriction. Cancer Res. 5, 616–625.Google Scholar
  13. 13.
    Tannenbaum, A. (1959) Nutrition and cancer, in The Physiopathology of Cancer (Homburger, F., ed.), Hoeber-Harper, New York.Google Scholar
  14. 14.
    Boutwell, R. K., Brush, M. K., and Rusch, H. P. (1949) Stimulating effect of dietary fat on carcinogenesis. Cancer Res. 9, 741–746.PubMedGoogle Scholar
  15. 15.
    McCay, C. M., Maynard, L. A., Sperling, G., and Barnes, L. L. (1939) Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories. J. Nutr. 18, 1–13.Google Scholar
  16. 16.
    Haenszel, W. (1961) Cancer mortality among the foreign-born in the United States. J. Natl. Cancer Inst. 26, 37–132.PubMedGoogle Scholar
  17. 17.
    Haenszel, W. and Kurihara, M. (1968) Studies ofJapanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J. Natl. Cancer Inst. 40, 43–68.Google Scholar
  18. 18.
    Staszewski, W. and Haenszel, W. (1965) Cancer mortality among the Polish-born in the United States. J. Natl. Cancer Inst. 35, 291–297.PubMedGoogle Scholar
  19. 19.
    Willett, W. C. (1990) Nutritional Epidemiology. Oxford University Press, New York.Google Scholar
  20. 20.
    World Health Organization. (1990) Diet, Nutrition, and the Prevention of Chronic Diseases. WHO, Geneva.Google Scholar
  21. 21.
    American Cancer Society (1996) Guidelines of diet, nutrition, and cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. Cancer 46, 325–341.Google Scholar
  22. 22.
    The Alpha Tocopherol and Beta Carotene Study Group (1994) Effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Eng. J. Med. 330, 1029–1035.Google Scholar
  23. 23.
    Clark, L. C., Combs, G. F., Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J., et al. (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276, 1957–1963.PubMedCrossRefGoogle Scholar
  24. 24.
    Knapka, J. J., Smith, K. P., and Judge, F. J. (1974) Effect of open and closed formula rations on the performance of three strains of laboratory mice. Lab. Animal Sci. 24, 480–487.Google Scholar
  25. 25.
    Rao, G. N. and Knapka, J. J. (1987) Contaminant and nutrient concentrations of natural ingredient rat and mouse diets used in chemical toxicology studies. Fundam. Appl. Toxicol. 9, 329–338.PubMedCrossRefGoogle Scholar
  26. 26.
    er, W. L., Kendall, D. C., and Greenman, D. L. (1989) Variability of selected nutrients and contaminants monitored in rodent diets: a 6–year study. J. Toxicol. Environ. Health 27, 47–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Fowler, B. A., Jones, H. S., Brown, H. W., and Haseman, J. K. (1975) Morphologic effects of chronic cadmium administration on the renal vasculature of rats given low and normal calcium diets. Toxicol. Appl. Pharmacol. 34, 233–252.PubMedCrossRefGoogle Scholar
  28. 28.
    Wattenberg, L. W. (1992) Chemoprevention of cancer by naturally occurring and synthetic compounds, in Cancer Chemoprevention (Wattenberg, L. W., Lipkin, M., Boone, C. W., and Kelloff, G. J., eds.), CRC Press, Boca Raton, FL, pp. 19–39.Google Scholar
  29. 29.
    Fotsis, T., Pepper, M., Adlercreutz, H., Fleischmann, G., Hase, T., Montesano, R., and Schweigerer, L. (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc. Natl. Acad. Sci. USA 90, 2690–2694.PubMedCrossRefGoogle Scholar
  30. 30.
    Fotsis, T., Pepper, M., Adlercreutz, H., Hase, T., Montesano, R., and Schweigerer, L. (1995) Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J. Nutr. 125, 790s–797s.Google Scholar
  31. 31.
    Fotsis, T., Pepper, M. S., Aktas, E., Breit, S., Rasku, S., Adlercreutz, H., et al. (1997) Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res. 57, 2916–2921.PubMedGoogle Scholar
  32. 32.
    Zhou, J.-R., Blackburn, G., and Clinton, S. (1997) Dietary soy products inhibit the growth of transplantable murine bladder carcinoma in mice. Proc. Am. Assoc. Cancer Res. 38, 111 (abstract 3822).Google Scholar
  33. 33.
    Zhou, J.-R., Mukherjee, P., Clinton, S., and Blackburn, G. (1998) Soybean components inhibit the growth of human prostate cancer cell line LNCaP in SCID mice via alteration in cell apoptosis, angiogenesis, and proliferation. FASEB J. 39, A658(abstract).Google Scholar
  34. 34.
    American Institute ofNutrition (1977) Report of the AIN ad hoc committee on standards for nutritional studies. J. Nutr. 107, 1340–1348.Google Scholar
  35. 35.
    American Institute of Nutrition (1980) Second report of the ad hoc committee on standards for nutritional studies. J. Nutr. 110, 1726.Google Scholar
  36. 36.
    Reeves, P. G., Hielsen, F. H., and Fahey, J. G. (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951.PubMedGoogle Scholar
  37. 37.
    Newberne, P. M., Bieri, J. G., Briggs, G. M., and Mesheim, M. C. (1978) Control of diets in laboratory animal experimentation. Inst. Lab. Animal Res. News. 21, A3–Al2.Google Scholar
  38. 38.
    Rao, G. N. (1988) Rodent diets for carcinogenesis studies. J. Nutr. 118, 929–931.PubMedGoogle Scholar
  39. 39.
    Greenfield, H. and Briggs, G. M. (1971) Nutritional methodology in metabolic research with rats. Ann. Rev. Biochem. 40, 549–571.PubMedCrossRefGoogle Scholar
  40. 40.
    Clinton, S. K. (1997) Diet, anthropometry and breast cancer: integration of experimental and epidemiologic approaches. J. Nutr. 127, 916s-920s.Google Scholar
  41. 41.
    Weindruch, R. and Walford, R. (1988) Retardation of Aging and Disease by Dietary Restriction. Charles C. Thomas, Springfield, IL.Google Scholar
  42. 42.
    Clinton, S. K., Imrey, P. B., Mangian, H. J., Nandkumar, S., and Visek, W. J. (1992) The combined effects of dietary fat, protein, and energy intake on azoxymethane-induced intestinal and renal carcinogenesis. Cancer Res. 52, 857–865.Google Scholar
  43. 43.
    Clinton, S. K., Imrey, P. B., Alster, J. M., Simon, J., Truex, C. R., and Visek, W. J. (1984) Combined effects of dietary protein and fat on 7,12-dimethylbenz(a)anthracene-induced breast cancer in rats. J. Nutr. 114, 1213–1223.PubMedGoogle Scholar
  44. 44.
    Haseman, J. K. and Johnson, F. M. (1996) Analysis of National Toxicology Program rodent bioassay data for anticarcinogenic effects. Mutat. Res. 350, 131–141.PubMedCrossRefGoogle Scholar
  45. 45.
    Abdo, K. M. and Kari, F. W. (1996) Sensitivity of the NTP bioassay for carcinogen hazard evaluation can be modulated by dietary restriction. Exp. Toxicol. Pathol. 48, 129–137.PubMedCrossRefGoogle Scholar
  46. 46.
    Swarm, R. L. (1963) Transplantation of a murine chondrosarcoma in mice of different inbred strains. J. Natl. Cancer Inst. 31, 953–974.PubMedGoogle Scholar
  47. 47.
    Pili, R., Guo, Y., Chang, J., Nakanishi, H., Martin, G. R., and Passaniti, A. (1994) Altered angiogenesis underlying age-dependent changes in tumor growth. J. Natl. Cancer Inst. 86, 1303–1314.PubMedCrossRefGoogle Scholar
  48. 48.
    Mukherjee, P. Zhou, J., Sotnikov, A., Mangian, H. Blackburn, G., Visek, W., and Clinton, S. (1998) Energy intake stimulates prostate tumor growth by enhancing VEGF expression and tumor angiogenesis. J. Natl. Cancer Inst, in press.Google Scholar
  49. 49.
    Armario, A., Montero, J. L., and Jolin, T. (1987) Chronic food restriction and the circadian rhythms ofpituitaryadrenal hormones, growth hormone and thyroid stimulating hormone. Ann. Nutr. Metab. 31, 81–87.PubMedCrossRefGoogle Scholar
  50. 50.
    Leakey, J. E., Bazare, J., Harmon, J. R., Feuers, R. J., Duffy, P. H., and Hart, R. W. (1991) Effects of long-term caloric restriction on hepatic drug metabolizing enzyme activities in the Fischer 344 rat, in Biological Effects of Dietary Restriction (Fishben, L., ed.), Springer-Verlag. New York.Google Scholar
  51. 51.
    Stewart, J., Meaney, M. J., Aitken, D., Jensen, L., and Kalant, N. (1988) Effects of acute and longlife food restriction on basal and stress induced serum corticosterone levels in young and aged rats. Endocrinology 123, 1934–1941.PubMedCrossRefGoogle Scholar
  52. 52.
    Sabatino, F., Masoro, E. J., McMahan, C. A., and Kuhn, R. W. (1991) Assessment of the role of the glucocorticoid system in aging processes and in the action of food restriction. J. Gerontol. 46, B 171–179.Google Scholar
  53. 53.
    Leakey, J. E., Chen, S., Manjgaladze, M., Turturro, A., Duffy, P. H., Pipkin, J. L., and Hart, R. W. (1994) Role of glucocorticoids and ‘caloric stress’ in modulating the effects of caloric restrictions in rodents. Ann. NYAcad. Sci. 719, 171–194.CrossRefGoogle Scholar
  54. 54.
    Yaktine, A., Vaughn, R., Duysen, E., and Birt, D. (1997) Energy restriction inhibits epidermal c-jun protein and increases glucocorticoid hormone but does not increase receptor activation in the Sencar mouse. FASEB J. 11, A439 (abstract 2540).Google Scholar
  55. 55.
    Folkman, J. and Ingber, D. E. (1987) Angiostatic steroids: method of discovery and mechanism of action. Ann. Surg. 206, 374–383.PubMedCrossRefGoogle Scholar
  56. 56.
    Blei, F., Wilson, E. L., Mignatti, P., and Rifkin, D. B. (1993) Mechanism of action of angiogenic steroids: suppression ofplasminogen activator activity via stimulation ofplasminogen activator inhibitor synthesis. J. Cell. Physiol. 155, 568–578.Google Scholar
  57. 57.
    Fotsis, T., Zhang, Y., Pepper, M. S., Aldercrutz, H., Montesano, R., Nauroth, P. P., and Schweigerer, L. (1994) Endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 368, 237–239.PubMedCrossRefGoogle Scholar
  58. 58.
    Rose, D. P., Chlebowski, R. T., Connolly, J. M., Jones, L. A., and Wynder, E. L. (1992) Effects of tamoxifen adjuvant therapy and a low-fat diet on serum binding proteins and estradiol bioavailability in postmenopausal breast cancer patients. Cancer Res. 52, 5386–5390.PubMedGoogle Scholar
  59. 59.
    Ferrara, N., Clapp, C., and Weiner, R. (1991) 16 K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth ofcapillary endothelial cells. Endocrinology 129, 896–900.Google Scholar
  60. 60.
    Clapp, C. and Weiner, R. I. (1992) A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 130, 1380–1386.PubMedCrossRefGoogle Scholar
  61. 61.
    Clapp, C., Martial; J. A., Guzman, R. C., Rentier-Delrue, F., and Weiner, R. I. (1993) The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133, 1292–1299.Google Scholar
  62. 62.
    Compton, M. and Witorsch, R. (1984) Proteolytic degradation and modification of rat prolactin by subcellular fractions of the rat ventral prostate gland. Endocrinology 115, 476–484.PubMedCrossRefGoogle Scholar
  63. 63.
    Wong, V., Compton, M., and Witorsch, R. (1986) Proteolytic modification of rat prolactin by subcellular fractions of the lactating rat mammary gland. Biochem. Biophys. Acta 881, 167–174.PubMedCrossRefGoogle Scholar
  64. 64.
    Sinha, Y. and Gilligan, T. (1984) A cleaved form of prolactin in the mouse pituitary gland: identification and comparison of in vitro synthesis and release in strains with high and low incidences of mammary tumors. Endocrinology 114, 2046–2053.PubMedCrossRefGoogle Scholar
  65. 65.
    Sinha, Y., Gilligan, T., Lee, D., Hollingsworth, D., and Markoff, E. (1985) Cleaved prolactin: evidence for its occurrence in human pituitary gland and plasma. J. Clin. Endocrinol. Metab. 60, 239–243.Google Scholar
  66. 66.
    Clinton, S. K., Mulloy, A. L., Li, S. P., Mangian, H. J., and Visek, W. J. (1997) Dietary fat and protein intake differ in modulation of prostate tumor growth, prolactin secretion and metabolism, and prostate gland prolactin binding capacity in rats. J. Nutr. 127, 225–237.PubMedGoogle Scholar
  67. 67.
    Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., et al. (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411–415.PubMedCrossRefGoogle Scholar
  68. 68.
    Kusuhara, M., Yamaguchi, K., Nagasaki, K., Hayashi, C., Suzaki, A., Hori, S., Handa, S., Nakamura, Y., and Abe, K. (1990) Production of endothelin in human cancer cell lines. Cancer Res. 50, 3257–3261.PubMedGoogle Scholar
  69. 69.
    Randall, M. D. (1991) Vascular activities of the endothelins. Pharmacol. Ther. 50, 73–93.PubMedCrossRefGoogle Scholar
  70. 70.
    Komuro, I., Kurihara, H., Sugiyama, T., Takaku, F., and Yazaki, Y. (1988) Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett. 238, 249–252.PubMedCrossRefGoogle Scholar
  71. 71.
    Schrey, M. P., Patel, K. V., and Tezapsidis, N. (1992) Bombesin and glucocorticoids stimulate human breast cancer cells to produce endothelin, a paracrine mitogen for breast stromal cells. Cancer Res. 52, 1786–1790.PubMedGoogle Scholar
  72. 72.
    Mehta, R. S. and Hartle, D. K. (1994) Effects of total fasting or chronic food restriction on plasma endothelin levels in rats. Physiol. Behav. 56, 407–410.PubMedCrossRefGoogle Scholar
  73. 73.
    Onizuka, M., Miyauchi, T., Morita, R., Akaogi, E., Mitsui, K., Suzuki, N., et al. (1991) Increased plasma concentrations of endothelin-1 during and after pulmonary surgery. J. Cardiovasc. Pharmacol. 17, S402–403.CrossRefGoogle Scholar
  74. 74.
    Rakugi, H., Tabuchi, Y., Nakamura, M., Nagano, M., Higashimori, K., Mikami, H., Ogihara, T., and Suzuki, N. (1990) Evidence of endothelin-1 release from resistance vessels of rats in response to hypoxia. Biochem. Biophys. Res. Commun. 169, 973–977.PubMedCrossRefGoogle Scholar
  75. 75.
    Pernow, J., Hemsen, A., Hallen, A., and Lundberg, J. M. (1990) Release of et like immunoreactivity in relation to neuropeptide Y and catecholamines during endotoxin shock and asphyxia in the pig. Acta Physiol. Scand. 140, 311–322.Google Scholar
  76. 76.
    Saito, Y., Nakaok, K., Mukoyama, M., and Imuro, H. (1990) Increased plasma endothelin level in patients with essential hypertension. N. Eng. J. Med. 322, 205.Google Scholar
  77. 77.
    Usuki, S., Saito, S., Sawamura, T., Suzuki, N., Shigemitsu, S., Yanagisawa, M., et al. (1990) Increased maternal plasma et-1 during labor pain or on delivery and the existence of a large amount of et-1 in amniotic fluid. Gynecol. Endocrinol. 4, 85–97.PubMedCrossRefGoogle Scholar
  78. 78.
    Dvorak, H. F., Sioussat, T. M., Brown, L. F., Berse, B., Nagy, J. A., Sotrel, A., et al. (1991) Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J. Exp. Med. 174, 1275–1278.PubMedCrossRefGoogle Scholar
  79. 79.
    Kim, K., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H., and Ferrara, N. (1993) Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844.PubMedCrossRefGoogle Scholar
  80. 80.
    Aiello, L. P., Avery, R. L., Arrigg, P. G., Keyt, B. A., Jampel, H. D., Shah, S. T., et al. (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487.PubMedCrossRefGoogle Scholar
  81. 81.
    Banai, S., Shweiki, D., Pinson, A., Chandra, M., Lazarovici, G., and Keshet, E. (1994) Upregulation of vascular endothelial growth factor expression induced by myocardial ischemia: implications for coronary angiogenesis. Cardiovasc. Res. 28, 1176–1179.PubMedCrossRefGoogle Scholar
  82. 82.
    Minchenko, A., Bauer, T., Salceda, S., and Caro, J. (1994) Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab. Invest. 71, 374–379.PubMedGoogle Scholar
  83. 83.
    Miller, J. W., Adamis, A. P., Shima, D. T., D’Amore, P. A., Moultor, R. S., O’Reilly, M. S., et al. (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Opthalmol. 145, 574–578.Google Scholar
  84. 84.
    Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845.PubMedCrossRefGoogle Scholar
  85. 85.
    Shweiki, D., Neeman, M., Itin, A., and Keshet, E. (1995) Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc. Natl. Acad. Sci. USA 92, 768–772.PubMedCrossRefGoogle Scholar
  86. 86.
    Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A., and Simon, M. C. (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407.PubMedCrossRefGoogle Scholar
  87. 87.
    Bar, R. S. and Boes, M. (1984) Distinct receptors for IGF-I, IGF-II and insulin are present on bovine capillary endothelial cells and large vessel endothelial cells. Biochem. Biophys. Res. Commun. 124, 203–209.PubMedCrossRefGoogle Scholar
  88. 88.
    King, G. L., Goodman, A. D., Buzney, S., Moses, A., and Kahn, C. R. (1985) Receptors and growthpromoting effects of insulin and insulin like growth factors on cells from bovine retinal capillaries and aorta. J. Clin. Invest. 75, 1028–1036.Google Scholar
  89. 89.
    Nakao-Hayashi, J., Ito, H., Kanayasu, T., Morita, I., and Murota, S. (1992) Stimulatory effects of insulin and insulin-like growth factor 1 on migration and tube formation by vascular endothelial cells. Atherosclerosis 92, 141–149.PubMedCrossRefGoogle Scholar
  90. 90.
    Kluge, A., Zimmermann, R., Munkel, B., Mohri, M., Sack, S., Schaper, J., and Schaper, W. (1995) Insulin-like growth factor I is involved in inflammation linked angiogenic processes after microembolisation in porcine heart. Cardiovasc. Res. 29, 407–415.PubMedGoogle Scholar
  91. 91.
    Kluge, A., Zimmermann, R., Weihrauch, D., Mohri, M., Sack, S., Schaper, J., and Schaper, W. (1997) Coordinate expression of the insulin like growth factor system after microembolisation in porcine heart. Cardiovasc. Res. 33, 324–331.Google Scholar
  92. 92.
    Delafontaine, P. (1995) Insulin like growth factor 1 and its binding proteins in the cardiovascular system. Cardiovasc. Res. 30, 825–834.PubMedGoogle Scholar
  93. 93.
    Vialettes, B., Silvestre-Aillaud, P., and Atlan-Gepner, C. (1994) Outlook for the future in the treatment of diabetic retinopathy. Diabetes Metab. 20, 229–234.Google Scholar
  94. 94.
    Goad, D. L., Rubin, J., Wang, H., Tashjian, A. H. J., and Patterson, C. (1996) Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast like cells and murine osteoblasts induced by insulin like growth factor 1. Endocrinology 137, 2262–2268.Google Scholar
  95. 95.
    Fiorelli, G., Orlando, C., Benvenuti, S., Franceschelli, F., Bianchi, S., Pioli, P., et al. (1994) Characterization, regulation, and function of specific cell membrane receptors for insulin like growth factor 1 on bone endothelial cells. J. Bone Miner. Res. 9, 329–337.PubMedCrossRefGoogle Scholar
  96. 96.
    Warren, R. S., Yuan, H., Matli, M. R., Ferrara, N., and Donner, D. B. (1996) Induction of vascular endothelial growth factor by insulin like growth factor 1 in colorectal carcinoma. J. Biol. Chem. 271, 29,483–29,488.Google Scholar
  97. 97.
    Straus, D. S. and Takemoto, C. D. (1990) Effect of fasting on insulin-like growth factor I (IGF-I) and growth hormone receptor mRNA levels and IGF-I gene transcription in rat liver. Mol. Endocrinol. 4, 91–100.PubMedCrossRefGoogle Scholar
  98. 98.
    Straus, D. S. and Takemoto, C. D. (1991) Specific decrease in liver insulin-like growth factor-I and brain insulin-like growth factor-II gene expression in energy restricted rats. J. Nutr. 121,1279–1286.PubMedGoogle Scholar
  99. 99.
    Phillips, L. S., Orawski, A. T., and Belosky, D. C. (1978) Somatomedin and nutrition. IV. Regulation of somatomedin activity and growth cartilage activity by quantity and compositions of diets in rats. Endocrinology 103, 121–127.PubMedCrossRefGoogle Scholar
  100. 100.
    Prewitt, T. E., D’Ercole, J. A., Switzer, B. R., and Van Wyk, J. J. (1982) Relationship of serum immunoreactive somatomedin C to dietary protein and energy in growing rats. J. Nutr. 112, 144–150.PubMedGoogle Scholar
  101. 101.
    Yang, H., Cree, T. C., and Schalch, D. S. (1987) Effects of carbohydrate restricted, calorie reduced diet on the growth of young rats and on serum growth hormone, somatomedins, total thyroxine and triiodithyronine, freeT4 index and total corticosterone. Metabolism 36, 794–798.PubMedCrossRefGoogle Scholar
  102. 102.
    LeRoith, D., Baserga, R., Helman, L., and Roberts, C. T., Jr. (1995) Insulin-like growth factors and cancer. Ann. Intern. Med. 122, 54–59.PubMedCrossRefGoogle Scholar
  103. 103.
    Hursting, S. D., Switzer, B. R., French, J. E., and Kari, F. W. (1993) Growth hormone:insulin-like growth factor 1 axis is a mediator of diet restriction-induced inhibition of mononuclear cell leukemia. Cancer Res. 53, 2750–2757.PubMedGoogle Scholar
  104. 104.
    Ruggeri, B. A., Klurfeld, D. M., Kritchevsky, D., and Furlanetto, R. W. (1989) Caloric restriction and 7,12-dimethylbenz(a)anthracene-induced mammary tumor growth in rats: alterations in circulating insulin, insulin-like growth factors I and II, and epidermal growth factor. Cancer Res. 49, 4130–4134.PubMedGoogle Scholar
  105. 105.
    Rohlik, Q. T., Adams, D., Kull, F. C., Jr., and Jacobs, S. (1987) An antibody to the receptor for insulinlike growth factor I inhibits the growth of MCF-7 cells in tissue culture. Biochem. Biophys. Res. Commun. 149, 276–281.PubMedCrossRefGoogle Scholar
  106. 106.
    De Leon, D. D., Bakker, B., Wilson, D. M., Hintz, R. L., and Rosenfeld, R. G. (1988) Demonstration of insulin-like growth factor (IGF-I and -II) receptors and binding protein in human breast cancer cell lines. Biochem. Biophys. Res. Commun. 152, 398–405.Google Scholar
  107. 107.
    Cullen, K. J., Yee, D., Sly, W. S., Perdue, J., Hampton, B., Lippman, M. E., and Rosen, N. (1990) Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res. 50, 48–53.PubMedGoogle Scholar
  108. 108.
    Dunn, S. E., Kari, F. W., French, J., Leininger, J. R., Travols, G., Wilson, R., and Barrett, J. C. (1997) Dietary restriction reduces insulin-like growth factor-1 levels which modulates apoptosis, cell proliferation, and tumor progression in p53 deficient mice. Cancer Res. 57, 4667–4672.PubMedGoogle Scholar
  109. 109.
    Gann, P. H., Hennekens, C. H., Sacks, F. M., Grodstein, F., Giovannucci, E., and Stampfer, M. J. (1994) A prospective study of plasma fatty acids and risk of prostate cancer. J. Natl. Cancer Inst. 86, 281–286.PubMedCrossRefGoogle Scholar
  110. 110.
    Rose, D. P. and Cohen, L. A. (1988) Effects of dietary menhaden oil and retinyl acetate on the growth of DU 145 human prostatic adenocarcinoma cells transplanted into athymic nude mice. Carcinogenesis 9 603–605.Google Scholar
  111. 111.
    Karmali, R. A., Reichel, P., Cohen, L. A., Terano, T., Hirai, A., Tamuri, Y., and Yoshida, S. (1987) Effects of dietary omega-3 fatty acids on the DU145 transplantable human prostatic tumor. Anticancer Res. 7 1173–1180.Google Scholar
  112. 112.
    Connolly, J. M. and Rose, D. P. (1993) Effects of fatty acids on invasion through reconstiituted basement membrane (Matrigel) by a human breast cancer cell line. Cancer Lett. 75, 137–142.PubMedCrossRefGoogle Scholar
  113. 113.
    Rose, D. P. and Connolly, J. M. (1993) Effects of dietary omega-3 fatty acids on human breast cancer growth and metastasis in nude mice. J. Natl. Cancer Inst. 85, 1743–1747.PubMedCrossRefGoogle Scholar
  114. 114.
    Rose, D. P., Connolly, J. M., Rayuburn, J., and Coleman, M. (1995) Influence of diets containing different levels of eicosapentaenoic or docosahexaenoic acid on the growth and metastasis of human breast cancer cells in nude mice. J. Natl. Cancer Inst. 87, 587–592.Google Scholar
  115. 115.
    Carroll, K. K. and Kohr, H. T. (1971) Effects of level and type of dietary fat on incidence of mammary tumors induced in female Sprague-Dawley rats by 7,12-dimethybenz(a)anthracene. Lipids 6, 415–420.PubMedCrossRefGoogle Scholar
  116. 116.
    Clinton, S. K., Li, P. S., Mulloy, A. L., Imrey, P. B., Nandkumar, S., and Visek, W. J. (1995) Effects of dietary fat and estrogen on survival, 7,12-dimethylbenz(a)anthracene-induced breast cancer, and prolactin metabolism in rats. J. Nutr. 125, 1192–1204.PubMedGoogle Scholar
  117. 117.
    Cohen, L. A., Thompson, D. 0., Choi, K., Karmali, R. A., and Rose, D. P. (1986) Dietary fat and mammary cancer. II. Modulation of serum and tumor lipid composition and tumor prostaglandins by different dietary fats: association with tumor incidence patterns. J. Natl. Cancer Inst. 77, 43–51.Google Scholar
  118. 118.
    Liu, X.-H., Connolly, J. M., and Rose, D. P. (1996) Eicosanoids as mediators oflinoleic acid-stimulated invasion and type IV collagenase production by a metastatic human breast cancer cell line. Clin. Exp. Metastasis 14, 145–152.PubMedCrossRefGoogle Scholar
  119. 119.
    Hubbard, N. E., Chapkin, R. S., and Erickson, K. L. (1988) Inhibition of growth and linoleate-enhanced metastasis of a transplantable mouse mammary tumor by indomethacin. Cancer Lett. 43, 111–120.PubMedCrossRefGoogle Scholar
  120. 120.
    Peterson, H. I. (1983) Effects of prostaglandin synthesis inhibitors on tumor growth and vascularization. Invasion Metastasis 3, 151–159.PubMedGoogle Scholar
  121. 121.
    Seed, M. P., Brown, J. R., Freemantle, C. N., Papworth, J. L., Colville-Nash, P. R., Willis, D., et al. (1997) Inhibition of colon-26 adenocarcinoma development and angiogenesis by topical diclofenac in 2.5% hyaluronan. Cancer Res. 57, 1625–1629.PubMedGoogle Scholar
  122. 122.
    Fernandes, G. and Venkatraman, J. T. (1991) Modulation of breast cancer growth in nude mice by omega-3 lipids. World Rev. Nutr. Diet. 66, 488–503.Google Scholar
  123. 123.
    Karmali, R. A., Adams, L., and Trout, J. R. (1993) Plant and marine n-3 fatty acids inhibit experimental metastasis ofrat mammary adenocarcinoma cells. Prostaglandin. Leukot. EssentFattyAcids 48, 309–314.CrossRefGoogle Scholar
  124. 124.
    Kort, W. J., Weijma, I. M., Vergroesen, A. J., and Westbroek, D. L. (1987) Conversion of diets at tumor induction shows the pattern of tumor growth and metastasis of the first given diet. Carcinogenesis 8, 611–614.PubMedCrossRefGoogle Scholar
  125. 125.
    Wan, J. M.-F., Kanders, B. S., and Kowalchuk, M. (1991) Omega-3 fatty acids and cancer metastasis in humans. World Rev. Nutr. Diet. 66, 477–487.Google Scholar
  126. 126.
    Karmali, R. A., Marsh, J., and Fuchs, C. (1984) Effect of omega 3 fatty acids on growth of a rat mammary tumor. J. Natl. Cancer Inst. 73, 457–461.PubMedGoogle Scholar
  127. 127.
    Karmali, R. A. (1989) Dietary w3 and w6 fatty acids in cancer, in Biological Effects and Nutritional Essentiality. (Galli, C. and Simopoulos, A. P., eds.), Plenum, New York, pp. 351–359.Google Scholar
  128. 128.
    Jurkowski, J. J. and Cave, W. T. J. (1985) Dietary effects ofmenhaden oil on the growth and membrane lipid composition of rat mammary tumors. J. Natl. Cancer Inst. 74, 1145–1150.PubMedGoogle Scholar
  129. 129.
    Reddy, B. S. and Maruyama, H. (1986) Effect of dietary fish oil on azoxymethane induced colon carcinogenesis in male F344 rats. Cancer Res. 46, 3367–3370.PubMedGoogle Scholar
  130. 130.
    de Bravo, M. G., de Antueno, R. J., Toledo, J., DeTomas, M. E., Mercuri, O. F., and Quintans, C. (1991) Effects of an eicosapentaenoic and docosahexaenoic acid concentrate on a human lung carcinoma grown in nude mice. Lipids 26, 866–870.Google Scholar
  131. 131.
    Galli, C. and Butrum, R. (1991) Dietary w3 fatty acids and cancer: an overview. World Rev. Nutr. Diet 66, 446–461.Google Scholar
  132. 132.
    McCarty, M. F. (1996) Fish oil may impede tumour angiogenesis and invasiveness by downregulating protein kinase c and modulating eicosanoid production. Med. Hypotheses 46, 107–115.PubMedCrossRefGoogle Scholar
  133. 133.
    Ormerod, L. D., Garsd, A., Abelson, M. B., and Kenyon, K. R. (1990) Effects of altering the eicosanoid precursor pool on neovascularization and inflammation in the alkali-burned rabbit cornea. Am. J. Pathol. 137, 1243–1252.PubMedGoogle Scholar
  134. 134.
    Verbey, N. L., van Haeringen, N. J., and de Jong, P. T. (1988) Modulation of immunogenic keratitis in rabbits by topical administration of poly-unsaturated fatty acids. Curr. Eye Res. 7, 549–556.PubMedCrossRefGoogle Scholar
  135. 135.
    Kanayasu, T., Morita, I., Nakao-Hayashi, J., Asuwa, N., Fujisawa, C., Ishii, T., Ito, H. and Murota, S. (1991) Eicosapentaenoic acid inhibits tube formation of vascular endothelial cells in vitro. Lipids 26 271 –276.Google Scholar
  136. 136.
    Morris, P. B., Hida, T., Blackshear, P. J., Klintworth, G. K., and Swain, J. L. (1988) Tumor-promotional phorbol esters induce angiogenesis in vivo. Am. J. Physiol. 254, C318–C322.Google Scholar
  137. 137.
    Wright, P. S., Cross-Doersen, D., Miller, J. A., Jones, W. D., and Bitonti, A. J. (1992) Inhibition of angiogenesis in vitro and in ovo with an inhibitor of cellular protein kinases, MDL 27032. J. Cell. Physiol. 152, 448–457.Google Scholar
  138. 138.
    Hu, D. E. and Fan, T. P. D. (1995) Protein kinase C inhibitor calphostin C prevents cytokine-induced angiogenesis in the rat. Inflammation 19, 39–54.PubMedCrossRefGoogle Scholar
  139. 139.
    Moscatelli, D., Jaffe, E., and Rifkin, D. B. (1980) Tetradecanoyl phorbol acetate stimulates latent collagenase production by cultured human endothelial cells. Cell 20, 343–351.PubMedCrossRefGoogle Scholar
  140. 140.
    Montesano, R. and Orci, L. (1985) Tumor promoting phorbol esters induce angiogenesis in vitro. Cell 42, 469–477.PubMedCrossRefGoogle Scholar
  141. 141.
    Nishizuka, Y. (1992) Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614.PubMedCrossRefGoogle Scholar
  142. 142.
    Cockcroft, S. and Thomas, G. M. H. (1992) Inositol-lipid specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J. 288, 1–14.PubMedGoogle Scholar
  143. 143.
    Kenny, D., Warltier, D. C., Pleuss, J. A., Hoffman, R. G., Goodfriend, T. L., and Egan, B. M. (1992) Effect of omega 3 fatty acids on the vascular response to angiotensin in normotensive men. Am. J. Cardiol. 70, 1347–1352.PubMedCrossRefGoogle Scholar
  144. 144.
    Chin, J. P. F., Gust, A. P., Nestel, P. J., and Dart, A. M. (1993) Marine oils dose-dependently inhibit vasoconstriction of forearm resistance vessels in humans. Hypertension 21, 22–28.PubMedCrossRefGoogle Scholar
  145. 145.
    Knapp, H. R. and Fitzgerald, G. A. (1989) Antihypertensive effect of fish oil: a controlled study of polyunsaturated fatty acid supplements in essential hypertension. N. Engl. J. Med. 320, 1037–1043.PubMedCrossRefGoogle Scholar
  146. 146.
    Bonaa, K. H., Bjerve, K. S., Straume, B., Gram, I. T., and Thelle, D. (1990) Effect of eicosapentaenoic and docosahexaenoic acids on blood pressure in hypertension. N. Engl. J. Med. 322, 795–801.PubMedCrossRefGoogle Scholar
  147. 147.
    Clinton, S. K., Bostwick, D. G., Olson, L. M., Mangian, H. J., and Visek, W. J. (1988) Effects of ammonium acetate and sodium cholate on N-methyl-N’-nitro-N-nitrosoguanidine-induced colon carcinogenesis of rats. Cancer Res. 48, 3035–3039.PubMedGoogle Scholar
  148. 148.
    Visek, W. J. and Clinton, S. K. (1991) Dietary protein and chronic toxicity of 1,2-dimethylhydrazine fed to mice. J. Toxicol. Environ. Health 32, 383–413.PubMedCrossRefGoogle Scholar
  149. 149.
    Clinton, S. K., Truex, C. R., and Visek, W. J. (1979) Dietary protein, aryl hydrocarbon hydroxylase and chemical carcinogenesis in rats. J. Nutr. 109, 55–62.PubMedGoogle Scholar
  150. 150.
    Bastian, N. R., Yim, C. Y., Hibbs, J. B. J., and Samlowski, W. E. (1994) Induction of iron derived EPR signals in murine cancers by nitric oxide. Evidence for multiple intracellular targets. J. Biol. Chem. 269, 5127–5131.PubMedGoogle Scholar
  151. 151.
    Cobbs, C. S., Brenman, J. E., Aldape, K. D., Bredt, D. S., and Israel, M. A. (1995) Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res. 55, 727–730.PubMedGoogle Scholar
  152. 152.
    Thomsen, L. L., Lawton, F. G., Knowles, R. G., Beesley, J. E., RiverosMoreno, V., and Moncada, S. (1994) Nitric oxide synthase activity in human gynaecological cancer. Cancer Res. 54, 1352–1354.PubMedGoogle Scholar
  153. 153.
    Doi, K. T., Akaike, T., Horie, H., Noguchi, Y., Fuji, S., Beppu, T., Ogawa, M., and Maeda, H. (1996) Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer 77, 1598–1604.PubMedGoogle Scholar
  154. 154.
    Maeda, H., Noguchi, Y., Sato, K., and Akaike, T. (1994) Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn. J. Cancer Res. 85, 331–334.PubMedCrossRefGoogle Scholar
  155. 155.
    Ziche, M., Morbidelli, L., Choudhuri, R., Zhang, H., Donnini, S., Granger, H., and Bicknell, R. (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J. Clin. Invest. 99, 2625–2634.Google Scholar
  156. 156.
    Leibovich, S. J., Polverini, P. J., Fong, T. W., Harlow, L. A., and Koch, A. E. (1994) Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide synthase dependent effector mechanism. Proc. Natl. Acad. Sci. USA 91, 4190–4194.PubMedCrossRefGoogle Scholar
  157. 157.
    Papapetropoulos, A., Desai, K. M., Rudic, R. D., Mayer, B., Zhang, R., Ruiz-Torres, M. P., et al. (1997) Nitric oxide synthase inhibitors attenuate transforming growth factor beta 1-stimulated capillary organization in vitro. Am. J. Pathol. 150, 1835–1844.Google Scholar
  158. 158.
    Ziche, M., Parenti, A., Ledda, F., Deeli’Era, P., Granger, H., Maggi, C., and Presta, M. (1997) Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ. Res. 80, 845–852.Google Scholar
  159. 159.
    Ku, D. D., Zaleski, J. K., Liu, S., and Brock, T. A. (1993) Vascular endothelial growth factor induces EDRF dependent relaxation in coronary arteries. Am. J. Physiol. 265, H586–H592.Google Scholar
  160. 160.
    Wu, H. M., Qiaobing, H., Yuan, Y., and Granger, H. J. (1996) VEGF induces NO dependent hyperpermeability in coronary venules. Am. J. Physiol. 271, H2735–H2739.Google Scholar
  161. 161.
    Morbidelli, L., Chang, C. H., Douglas, J. G., Granger, H. J., Ledda, F., and Ziche, M. (1996) Nitric oxide mediates the mitogenic effect of VEGF on coronary venular endothelium. Am. J. Physiol. 270, H411––H415.Google Scholar
  162. 162.
    Ziche, M., Parenti, A., Ledda, F., P., D. E., Granger, H. J., Maggi, C. A., and Presta, M. (1997) Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ. Res. 80, 845–852.PubMedCrossRefGoogle Scholar
  163. 163.
    Mayne, S. T., Graham, S., and Zheng, T. (1991) Dietary retinol: prevention or promotion of carcinogenesis in humans? Cancer Causes Control 2, 443–450.PubMedCrossRefGoogle Scholar
  164. 164.
    Braunhut, S. J. and Palomares, M. (1991) Modulation of endothelial cell shape and growth by retinoids. Microvasc. Res. 41, 47–62.PubMedCrossRefGoogle Scholar
  165. 165.
    Lee, J. Y., Mak, C. P., Wang, B. J., and Chang, W. C. (1992) Effects of retinoids on endothelial cell proliferation, prostacyclin production and platelet aggregation. J. Dermatol. Sci. 3, 157–162.PubMedCrossRefGoogle Scholar
  166. 166.
    Horie, S., Kizaki, K., Ishii, H., and Kazama, M. (1992) Retinoic acid stimulates expression of thrombomodulin, a cell surface anticoagulant glycopretein, on human endothelial cells. Differences between up-regulation of thrombomodulin by retinoic acid and cyclic AMP. Biochem. J. 281,149–154.PubMedGoogle Scholar
  167. 167.
    Kooistra, T. Opdenberg, J. P., Toet, K., Hendriks, H. F., van den Hoogen, R. M., and Emeis, J. J. (1991) Stimulation of tissue-type plasminogen activator synthesis by retinoids in cultured human endothelial cells and rat tissues in vivo. Thromb. Haemost. 65 565–572.Google Scholar
  168. 168.
    Dorfman, D. M., Wilson, D. B., Bruns, G. A., and Orkin, S. H. (1992) Human transcription factor GATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. J. Biol. Chem. 267, 1279–1285.PubMedGoogle Scholar
  169. 169.
    Morriss, G. M. and Steele, C. E. (1977) Comparison of the effects of retinol and retinoic acid on postimplantation rat embryos in vitro. Teratology 15, 109–119.PubMedCrossRefGoogle Scholar
  170. 170.
    Thompson, J. N., Howell, J. M., Pitt, G. A., and McLaughlin, C. I. (1969) Biological activity of retinoic acid in the domestic fowl and the effects of vitamin A deficiency on the chick embryo. Br. J. Nutr. 23, 471–490.PubMedCrossRefGoogle Scholar
  171. 171.
    Oikawa, T., Hirotani, K., Nakamura, O., Shudo, K., Hiragun, A., and Iwaguchi, T. (1989) A highly potent antiangiogenic activity of retinoids. Cancer Lett. 48, 157–162.PubMedCrossRefGoogle Scholar
  172. 172.
    Majewski, S., Marczak, M., Szmurlo, A., Jablonska, S., and Bollag, W. (1995) Retinoids, interferonalpha, 1,25-dihydroxyvitamin D3 and their combination inhibit angiogenesis induced by non-HPVharboring tumor cell lines. RAR alpha mediates the antiangiogenic effect of retinoids. Cancer Lett. 89, 117–124.PubMedGoogle Scholar
  173. 173.
    Majewski, S., Szmurlo, S., Marczak, M., Jabloska, S., and Bollag, W. (1994) Synergistic effect of retinoids and interferon alpha on tumor-indiced angiogenesis: anti-angiogenic effect on HPV-harboring tumor-cell lines. Int. J. Cancer. 57, 81–85.PubMedCrossRefGoogle Scholar
  174. 174.
    Lingen, M. W., Polverini, P. J., and Bouck, N. P. (1996) Retinoic acid induces cells cultured from oral squamous cell carcinomas to become anti-angiogenic. Am. J. Pathol. 149, 247–258.PubMedGoogle Scholar
  175. 175.
    Liaudet-Coopman, E., Berchem, G., and Wellstein, A. (1997) In vivo inhibition of angiogenesis and induction of apoptosis by retinoic acid in squamous cell carcinoma. Clin. Cancer Res. 3, 179–184.PubMedGoogle Scholar
  176. 176.
    Schwartz, J. L. and Shklar, G. (1995) Retinoid and carotenoid angiogenesis: a possible explaination for enhanced oral carcinogenesis. Nutr. Cancer 27, 192–199.CrossRefGoogle Scholar
  177. 177.
    Bollag, W., Majewski, S., and Jablonska, S. (1994) Cancer combination chemotherapy with retinoids: experimental rational. Leukemia 8, 1453–1457.PubMedGoogle Scholar
  178. 178.
    Martin, A., Wu, D., Baur, W., Meydani, S. N., Blumberg, J. B., and Meydani, M. (1996) Effect of vitamin E on human aortic endothelial cell responses to oxidative injury. Free Radical Biol. Med. 21, 505–511.CrossRefGoogle Scholar
  179. 179.
    Shklar, G. and Schwartz, J. L. (1996) Vitamin E inhibits experimental carcinogenesis and tumour angiogenesis. Eur. J. Cancer B. Oral Oncol. 32B, 114–119.CrossRefGoogle Scholar
  180. 180.
    Kunisaki, M., Bursell, S. E., Clermaont, A. C., Ishii, H., Ballas, L. M., Jirousek, M. R., et al. (1995) Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. Am. J. Physiol. 269, E239–246.Google Scholar
  181. 181.
    Keaney, J. F., Guo, Y., Gunninglham, D., Shwaery, G. T., Xu, A., and Vita, J. A. (1996) Vascular incorporation of alpha-tocopherol prevents endothelial dysfunction due to oxidized LDL by inhibiting protein kinase C stimulation. J. Clin. Invest. 98, 386–394.Google Scholar
  182. 182.
    Bhooma, V., Sulochana, K. M., Biswas, J., and Ramakrishnan, S. (1997) Eales’ disease: accumulation of reactive oxygen intermediates and lipid peroxides and decrease of antioxidants causing inflammation, neovascularization and retinal damage. Curr. Eye Res. 16, 91 –95.Google Scholar
  183. 183.
    Kipp, D. E., McElvain, M., Kimmel, D. B., Akhter, M. P., Robinson, R. G., and Lukert, B. P. (1996) Scurvy results in decreased collagen synthesis and bone density in the guinea pig animal model. Bone 18, 281–288.Google Scholar
  184. 184.
    Alini, M., Marriott, A., Chen, T., Abe, S., and Poole, A. R. (1996) Novel angiogenic molecule produced at the time of chondrocyte hypertrophy during endochondral bone formation. Dev. Biol. 176, 124–132.PubMedCrossRefGoogle Scholar
  185. 185.
    Descalzi Cancedda, F., Melchiori, A., Benelli, R., Gentili, C., Masiello, L., Campanile, G., Cancedda, R., and Albini, A. (1995) Production of angiogenesis inhibitors and stimulators is modulated by cultured growth plate chondrocytes during in vitro differentiation: dependence on extracellular matrix assembly. Eur. J. Cell Biol. 66, 60–68.PubMedGoogle Scholar
  186. 186.
    Utoguchi, N., Ikeda, K., Saeki, K., Oka, N., Mizuguchi, H., Kubo, K., Nakagawa, S., and Mayumi, T. (1995) Ascorbic acid stimulates barrier function ofcultured endothelial cell monolayer.J. Cell. Physiol. 163, 393–399.PubMedCrossRefGoogle Scholar
  187. 187.
    Reichel, H., Koeffler, H. P., and Norman, A. W. (1989) Role of the vitamin D endocrine system in health and disease. New Engl. J. Med. 320, 980–991.Google Scholar
  188. 188.
    Hisa, T., Taniguchi, S., Tsurauta, D., Hirachi, Y., Isizuka, S., and Takigawa, M. (1996) Viamin D inhibits endothelial cell migration. Arch. Dermatol. Res. 288, 5,6, 262,263.Google Scholar
  189. 189.
    Campbell, M. J. and Koeffler, H. P. (1997) Toward therapeutic intervention of cancer by vitamin D compounds. J. Natl. Cancer Inst. 3, 182–185.CrossRefGoogle Scholar
  190. 190.
    Jones, G. and Calverley, M. J. (1993) Dialogue on analogues: newer vitamin-D drugs for use in bone disease, psoriasis, and cancer. Trends Endocrinol. Metabol. 4, 297–303.Google Scholar
  191. 191.
    Tanaka, Y., Wu, A. S., Ikekawa, N., Iseki, K., Kawai, M., and Koboyashi, Y. (1994) Inhibition of HT-29 human colon cancer growth under the renal capsule of severe combined immunodeficient mice by an analogue of 1,25-dihydroxyvitamin D3, DD-003. Cancer Res. 54, 5148–5153.PubMedGoogle Scholar
  192. 192.
    Cross, H. S., Hulla, W., Tong, W., and Peterlik, M. (1995) Growth regulation of human colon adenocarcinoma-derived cells by calcium, vitamin D and epidermal growth factor. J. Nutr. 125, 2004s–2008s.Google Scholar
  193. 193.
    Hedlund, T. E., Moffatt, K. A., Uskokovic, M. R., and Miller, G. J. (1997) Three synthetic vitamin D analogues induce prostate-specific acid phosphatase and prostate-specific antigen while inhibiting the growth of human prostate cancer cells in a vitamin D receptor-dependent fashion. Clin. Cancer Res. 3,1331–1338.PubMedGoogle Scholar
  194. 194.
    Oikawa, T., Hirotani, K., Ogasawara, H., Katayama, T., Nakamura, O., Iwaguchi, T., and Hiragun, A. (1990) Inhibition of angiogenesis by viamin D3 analogues. Eur. J. Pharmacol. 178, 247–250.PubMedCrossRefGoogle Scholar
  195. 195.
    Majewski, S., Szmurlo, A., Marczak, M., Jablonska, S., and Bollag, W. (1993) Inhibition of tumor cellinduced angiogenesis by retinoids, 1,25-dihydroxyvitamin D3 and their combination. Cancer Lett. 75, 35–39.PubMedCrossRefGoogle Scholar
  196. 196.
    Shokravi, M. T., Marcus, D. M., Alroy, J., Egan, K., Saornil, M. A., and Albert, D. M. (1995) Vitamin D inhibits angiogenesis in transgenic murine retinoblastoma. Invest. Opthalmol. Vis. Sci. 36, 83–87.Google Scholar
  197. 197.
    Kohn, E. C., Alessandro, R., Spoonster, J., Wersto, R. P., and Liotta, L. A. (1995) Angiogenesis: role of calcium-mediated signal transduction. Proc. Natl. Acad. Sci. USA 92, 1307–1311.PubMedCrossRefGoogle Scholar
  198. 198.
    Block, G., Patterson, B., and Subar, A. (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr. Cancer 18, 1–29.PubMedCrossRefGoogle Scholar
  199. 199.
    Malone, W. F., Boone, C. W., and Kellofff, G. J. (1992) Drug development status of four leading chemopreventive agents at the National Cancer Institute, in Cancer Chemoprevention (Wattenberg, L., Lipkin, M., Boone, C. W., and Kelloff, G. J., eds.), CRC, Boca Raton, pp. 597–606.Google Scholar
  200. 200.
    Wattenberg,L.W.(1983)InhibitionofneoplasiabyminordietaryconstituentsCancerRes.43(Suppl.) 2448S.Google Scholar
  201. 201.
    Wattenberg, L. W. (1993) Prevention, therapy, basic science and the resolution of the cancer problem: presidential address. Cancer Res. 53, 5890–5896.PubMedGoogle Scholar
  202. 202.
    Dewick, P. M. (1988) IsoJlavonoids, Chapman and Hall, London, pp. 552–570.Google Scholar
  203. 203.
    Price, K. R. and Fenwick, G. R. (1985) Naturally occurring oestrogens in foods: a review. Food Add. Contam. 2, 73–106.Google Scholar
  204. 204.
    Murphy, P. A. (1982) Phytoestrogen content of processed soybean products. Food Technol. 36, 62–64.Google Scholar
  205. 205.
    Adlercreutz, H., Fotsis, T., Bannwart, C., Wahala, K., Brunow, G., and Hase, T. (1991) Isotope dilution gas chromatographic-mass spectrometric method for the determination of lignans and isoflavonoids in human urine, including identification of genistein. Clin. Chim. Acta. 199, 263–278.PubMedCrossRefGoogle Scholar
  206. 206.
    Adlercreutz, C. H., Goldin, B. R., Gorbach, S. L., Hockerstedt, K. A., Watanabe, S., Hamalainen, E. K., et al. (1995) Soybean phytoestrogen intake and cancer risk. J. Nutr. 125, 757s–770s.Google Scholar
  207. 207.
    Messina, M. J., Persky, V., Setchell, K. D., and Barnes, S. (1994) Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr. Cancer 21, 113–131.PubMedCrossRefGoogle Scholar
  208. 208.
    Levy, A. P., Levy, N. S., and Goldberg, M. A. (1996) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J. Biol. Chem. 271, 2746–2753.PubMedCrossRefGoogle Scholar
  209. 209.
    Guo, D., Jia, Q., Song, H. Y., Warren, R. S., and Donner, D. B. (1995) Vascularendothelial cell growth factor promotes tyrosine phosphorylation ofmediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J. Biol. Chem. 270, 6729–6733.PubMedCrossRefGoogle Scholar
  210. 210.
    Xia, P., Aiello, L. P., Ishii, H., Jiang, Z. Y., Park, D. J., Robinson, G. S., et al. (1996) Characterization of vascular endothelial growth factor’s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. 98, 2018–2026.PubMedCrossRefGoogle Scholar
  211. 211.
    Koroma, B. M. and de Juan, E. (1994) Phosphotyrosine inhibition and control of vascular endothelial cell proliferation by genistein. Biochem. Pharm. 48, 809–818.PubMedCrossRefGoogle Scholar
  212. 212.
    Takeda, K., Hatamochi, A., and Ueki, H. (1989) Increased number of mast cells accompany enhanced collagen synthesis in linear localized scleroderma. Arch. Dermatol. Res. 281, 288.PubMedCrossRefGoogle Scholar
  213. 213.
    Gruber, B. L., Marchese, M. J., and Kew, R. (1995) Angiogenic factors stimulate mast-cell migration. Blood 86, 2488–2493.PubMedGoogle Scholar
  214. 214.
    Montesano, R., Vassalli, J.-D., Baird, A., Guillemin, R., and Orci, L. (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc. Natl. Acad. Sci. USA 83, 7297–7301.PubMedCrossRefGoogle Scholar
  215. 215.
    Pepper, M. S. and Montesano, R. (1990) Proteolytic balance and capillary morphogenesis. Cell Differ. Dev. 32, 319–328.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Purna Mukherjee
  • Jin-Rong Zhou
  • Alexander V. Sotnikov
  • Steven K. Clinton

There are no affiliations available

Personalised recommendations