Thrombospondin as an Inhibitor of Angiogenesis

  • David W. Dawson
  • Noël P. Bouck
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Most normal, healthy adult tissues exist in a state of vascular quiescence that is sustained by a combination of influences that include embryonic factors (1), associated cells (2) and an overall balance of angiogenic factors in which inhibitors predominate over inducers (3). Thrombospondin (TSP) is one of a small number of naturally occurring inhibitors of angiogenesis that is well-positioned to contribute to this maintenance of vascular quiescence in normal tissues, and whose loss in pathologic conditions, particularly cancer, contributes to increased neovascularization. First identified over two decades ago as a secretory product of thrombin-stimulated platelets (4,5) TSP is now known to be secreted by a wide array of cell types, including endothelial, fibroblast, smooth muscle, glial, keratinocyte, and inflammatory cells, and to participate in diverse biological processes, including coagulation, fibrinolysis, neurite outgrowth and nerve regeneration, tumor growth and metastasis, embryonic development, differentiation, inflammation, and angiogenesis (6).


Endothelial Cell Focal Adhesion Kinase Angiogenesis Inhibitor Endothelial Cell Migration Antiangiogenic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hanahan, D. (1997) Signaling vascular morphogenesis and maintainence. Science 277, 48–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Beck, L. and D’Amore, P. A. (1997) Vascular development: cellular and molecular recognition. FASEB J. 11, 365–373.Google Scholar
  3. 3.
    Bouck, N., Stellmach, V., and Hsu, S. (1996) How tumors become angiogenic. Adv. Cancer Res. 69, 135–174.PubMedCrossRefGoogle Scholar
  4. 4.
    Baenziger, N., Brodie, G., and Majerus, P. (1972) Isolation and properties of thrombin-sensitive protein of human platelets. J. Biol. Chem. 247, 2723–2731.PubMedGoogle Scholar
  5. 5.
    Baenziger, N., Brodie, G., and Majerus, P. (1971) A thrombin-sensitive protein of human platelet membranes. Proc. Natl. Acad. Sci. USA 68, 240–243.PubMedCrossRefGoogle Scholar
  6. 6.
    Bornstein, P. (1995) Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J. Cell Biol. 130, 503–506.PubMedCrossRefGoogle Scholar
  7. 7.
    Bornstein, P. and Sage, E. H. (1994) Thrombospondins. Methods Enzymol. 245, 62–85.PubMedCrossRefGoogle Scholar
  8. 8.
    Lawler, J. (1986) Structural and functional properties of thrombospondin. Blood 67, 1197–1209.PubMedGoogle Scholar
  9. 9.
    Tuszynski, G. P. and Nicosia, R. F. (1996) Role of thrombospondin-1 in tumor progression and angiogenesis. Bioessays 18, 71–76.PubMedCrossRefGoogle Scholar
  10. 10.
    Roberts, D. D. (1996) Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J. 10, 1183–1191.Google Scholar
  11. 11.
    Lahav, J. (1993) Functions of thrombospondin and its involvement in physiology and pathology. Biochim. Biophys. Acta. 1182, 1–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Frazier, W. A. (1998) Thrombospondin as a regulator of angiogenesis, in Tumor Angiogenesis and Microcirculation (Voest, E. E. and D’Amore, P. A., eds.), Marcel Dekker, New York, in press.Google Scholar
  13. 13.
    DiPietro, L. A. (1997) Thrombospondin as a regulator of angiogenesis, in Regulation ofAngiogenesis (Goldberg, T. D. and Rosen, E. M., eds.), Birkhauser Verlag, Basel, pp. 295–313.CrossRefGoogle Scholar
  14. 14.
    Tolsma, S. S., Volpert, O. V., Good, D. J., Frazier, W. A., Polverini, P. J., and Bouck, N. (1993) Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J. Cell Biol. 122, 497–511.CrossRefGoogle Scholar
  15. 15.
    Rastinejad, F., Polverini, P. J., and Bouck, N. P. (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56, 345–355.PubMedCrossRefGoogle Scholar
  16. 16.
    Good, D. J., Polverini, P. J., Rastinejad, F., Le Beau, M. M., Lemons, R. S., Frazier, W. A., and Bouck, N. P. (1990) Tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 87, 6624–6628.PubMedCrossRefGoogle Scholar
  17. 17.
    Lamszus, K., Joseph, A., Jin, L., Yao, Y., Chowdhury, S., Fuchs, A., et al. (1996) Scatter factor binds to thrombospondin and other extracellular matrix components. Am. J. Pathol. 149, 805–819.PubMedGoogle Scholar
  18. 18.
    Iruela-Arispe, M. L. and Dvorak, H. F. (1997) Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb. Haemost. 78, 672–677.PubMedGoogle Scholar
  19. 19.
    Volpert, O. V., Lawler, J., and Bouck, N. P. (1997) A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental lung metastases via thrombospondin-1. Proc. Natl. Acad. Sci. USA 95, 6343–6348.Google Scholar
  20. 20.
    BenEzra, D., Griffin, B. W., Maftzir, G., and Aharonov, O. (1993) Thrombospondin and in vivo angiogenesis induced by basic fibroblast growth factor or lipopolysaccharide. Invest. Opthalmol. Vis. Sci. 34, 3601–3608.Google Scholar
  21. 21.
    BenEzra, D. and Maftzir, G. (1996) Antibodies to IL-1 and TNF-alpha but not to bFGF or VEGF inhibit angiogenesis. Invest. Ophthalmol. Vis. Sci. 37, S1015.Google Scholar
  22. 22.
    Murphy-Ullrich, J. E., Schultz-Cherry, S., and Hook, M. (1992) Transforming growth factor-B com-plexes with thrombospondin. Mol. Biol. Cell. 3, 181–188.PubMedGoogle Scholar
  23. 23.
    Reed, M. J., Iruela-Arispe, L., O’Brien, E. R., Truong, T., LaBell, T., Bornstein, P., and Sage, E. H. (1995) Expression of thrombospondins by endothelial cells. Injury is correlated with TSP-1. Am. J. Pathol. 147, 1068–1080.Google Scholar
  24. 24.
    O’Shea, K. S. and Dixit, V. M. (1988) Unique distribution of the extracellular matrix component thrombospondin in the developing mouse embryo. J. Cell Biol. 107, 2737–2748.CrossRefGoogle Scholar
  25. 25.
    Saglio, S. D. and Slayter, H. S. (1982) Use of radioimmunoassay to quantify thrombospondin. Blood 59, 162–166.PubMedGoogle Scholar
  26. 26.
    Hsu, S. C., Volpert, O. V., Steck, P. A., Mikkelsen, T., Polverini, P. J., Rao, S., Chou, P., and Bouck, N. P. (1996) Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res. 56, 5684–5691.Google Scholar
  27. 27.
    Dameron, K. M., Volpert, O. V., Tainsky, M. A., and Bouck, N. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584.Google Scholar
  28. 27a.
    Campbell, S. C., Volpert, O. V., Ivanovich, M., and Bouck, N. P. (1998) Molecular mediators of angiogenesis in bladder cancer. Cancer Res. 58, 1298–1304.PubMedGoogle Scholar
  29. 28.
    Stellmach, V., Volpert, O. V., Crawford, S. E., Lawler, J., Hynes, R. O., and Bouck, N. (1996) Tumor suppressor genes and angiogenesis: the role of P53 in fibroblasts. Eur. J. Cancer 32A, 2394–2400.Google Scholar
  30. 29.
    Hsu, S. C. (1997) Chromosome 10 controls a major angiogenic switch in the progression of human glioblastomas via thrombospondin-1. Thesis dissertation. Northwestern University, Chicago.Google Scholar
  31. 30.
    Polverini, P. J., DiPietro, L. A., Dixit, V. M., Hynes, R. O., and Lawler, J. (1995) Thrombospondin-1 knockout mice showed delayed organization and prolonged neovascularization of skin wounds. FASEB J. 9, 272a.Google Scholar
  32. 31.
    Schultz-Cherry, S. and Murphy-Ullrich, J. E. (1993) Thrombospondin causes activation of latent transforming growth factor beta secreted by endothelial cells by a novel mechanism. J. Cell Biol. 122, 923–932.PubMedCrossRefGoogle Scholar
  33. 32.
    Panetti, T. S., Chen, H., Misenheimer, T. M., Getzler, S. B., and Mosher, D. F. (1997) Endothelial cell mitogenesis induced by LPA: inhibition by thrombospondin-1 and thrombospondin-2. J. Lab. Clin. Med. 129, 208–216.PubMedCrossRefGoogle Scholar
  34. 33.
    Tolsma, S. S., Stack, M. S., and Bouck, N. (1997) Lumen formation and other angiogenic activities of cultured capillary endothelial cells are inhibited by thrombospondin-1. Microvasc. Res. 54, 13–26.PubMedCrossRefGoogle Scholar
  35. 34.
    Scheibani, N. and Frazier, W. A. (1995) Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenicity. Proc. Natl. Acad. Sci. USA 92, 6788–6792.CrossRefGoogle Scholar
  36. 35.
    Mansfield, P. J., Boxer, L. A., and Suchard, S. J. (1990) Thrombospondin stimulates motility of human neutrophils. J. Cell Biol. 111, 3077–3086.PubMedCrossRefGoogle Scholar
  37. 36.
    Taraboletti, G., Morigi, M., Figliuzzi, M., Giavazzi, R., Zoja, C., and Remuzzi, G. (1992) Thrombo-spondin induces glomerular mesangial cell adhesion and migration. Lab. Invest. 67, 566–571.Google Scholar
  38. 37.
    Dawson, D. W., Pearce, S. F. A., Zhong, R., Silverstein, R. L., Frazier, W. A., and Bouck, N. P. (1997) CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J. Cell Biol. 138, 707–717.PubMedCrossRefGoogle Scholar
  39. 38.
    Volpert, O. V., Tolsma, S. S., Pellerin, S., Feige, J.-J., Chen, H., Mosher, D. F., and Bouck, N. (1995) Inhibition of angiogenesis by thrombospondin-2. Biochem. Biophys. Res. Comm. 217, 326–332.PubMedCrossRefGoogle Scholar
  40. 39.
    Taraboletti, G., Roberts, D., Liotta, L. A., and Giavazzi, R. (1990) Platelet thrombospondin modulates endothelial cell adhesion, motility and growth: a potential angiogenesis regulatory factor. J. Cell Biol. 111, 765–772.PubMedCrossRefGoogle Scholar
  41. 40.
    Taraboletti, G., Belotti, D., and Giavazzi, R. (1992) Thrombospondin modulates basic fibroblast growth factor activities on endothelial cells, in Angiogenesis, Key Principles (Steiner, R., Weiss, P. B., and Langer, R., eds.), Birkhauser Verlag, Basel, pp. 210–213.CrossRefGoogle Scholar
  42. 41.
    Gao, A.-G., Lindberg, F. P., Finn, M. B., Blystone, S. D., Brown, E. J., and Frazier, W. A. (1996) Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J. Biol. Chem. 271, 21–24.CrossRefGoogle Scholar
  43. 42.
    Nicosia, R. F. and Tuszynski, G. P. (1994) Matrix-bound thrombospondin promotes angiogenesis in vitro. J. Cell Biol. 124, 183–193.PubMedCrossRefGoogle Scholar
  44. 43.
    Sato, N., Sawasaki, Y., Senoo, A., Fuse, Y., Hirano, Y., and Goto, T. (1987) Development of capillary networks from rat microvascular fragments in vitro: the role of myofibroblastic cells. Microvasc. Res. 33, 194–210.PubMedCrossRefGoogle Scholar
  45. 44.
    Vogel, T., Guo, N. H., Krutsch, H. C., Blake, D. A., Hartman, J., Mendelovitz, S., Panet, A., and Roberts, D. D. (1993) Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. J. Cell. Biochem. 53, 74–84.PubMedCrossRefGoogle Scholar
  46. 45.
    Asch, A. S., Silbiger, S., Heimer, E., and Nachman, R. L. (1992) Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem. Biophys. Res. Comm. 182, 1208–1217.PubMedCrossRefGoogle Scholar
  47. 46.
    Leung, L. L. K., Li, W.-X., McGregor, J. L., Albrecht, G., and Howard, R. J. (1992) CD36 peptides enhance or inhibit CD36-thrombospondin binding. J. Biol. Chem. 267, 18,244–18,250.Google Scholar
  48. 47.
    Li, W.-X., Howard, R. J., and Leung, L. L. K. (1993) Identification of SVTCG in thrombospondin as the conformation-dependent, high affinity binding site for its receptor, CD36. J. Biol. Chem. 268, 16,179–16,184.Google Scholar
  49. 47a.
    Dawson, D. W., Volpert, O. V., Pearce, S. F. A., Schneider, A. J. Silverstein, R. L., Henkin, J., and Bouck, N. P. (1998) Three distinct D-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat. Submitted for publication.Google Scholar
  50. 48.
    Guo, N.-H., Krutzsch, H. C., Inman, J. K., Shannon, C. S., and Roberts, D. D. (1997) Antiproliferative and antitumor activities of D-reverse peptides derived from the second type-1 repeat of thrombospondin1. J. Pept. Res. 50, 210–221.PubMedCrossRefGoogle Scholar
  51. 49.
    Schultz-Cherry, S., Chen, H., Mosher, D. F., Misenheimer, T. M., Krutzsch, H. C., Roberts, D. D., and Murphy-Ullrich, J. E. (1994) Regulation of transforming growth factor-β activation by discrete sequences of thrombospondin 1. J. Biol. Chem. 270, 7304–7310.Google Scholar
  52. 50.
    Tolsma, S. S., Dawson, D. W., Gao, A.-G., Finn, M. B., Poverini, P. J., Bouck, N. P., and Frazier, W. A. (1998) Integrin associated protein (CD47) is a thrombospondin-1 receptor stimulating endothelial cell motility. Submitted for publication.Google Scholar
  53. 51.
    Daviet, L. and McGregor, J. L. (1997) Vascular biology of CD36: roles of this new adhesion molecule family in different disease states. Thromb. Haemost. 78, 65–69.Google Scholar
  54. 52.
    Greenwalt, D. E., Lipsky, R. H., Ockenhouse, C. F., Ikeda, H., Tandon, N. N., and Jamieson, G. A. (1992) Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood 80, 1105–1115.Google Scholar
  55. 52a.
    Jimnéz, B., Volpert, O. V., Febbraio, M., Silverstein, R. L., and Bouck, N. (1998) Thrombospondin-1 inhibits angiogenesis in vivo by signaling via CD36, p59fyn and p38 MAPK to induce apoptosis. Submitted for publication.Google Scholar
  56. 53.
    Daviet, L., Malvoisin, E., Wild, T. F., and McGregor, J. L. (1997) Thrombospondin induces dimerization of membrane-bound, but not soluble CD36. Thromb. Haemost. 78, 897–901.Google Scholar
  57. 54.
    Taraboletti, G., Belotti, D., Borsotti, P., Vergani, V., Rusnati, M., Presta, M., and Giavazzi, R. (1997) The 140-kilodalton antiangiogenic fragment of thrombospondin-1 binds to basic fibroblast growth factor. Cell Growth Difff. 8, 471–479.Google Scholar
  58. 55.
    Yayon, A., Klabsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M. (1991) Cell surface heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841–848.Google Scholar
  59. 56.
    Bull, H. A., Brickell, P. M., and Dowd, P. M. (1994) src-related protein tyrosine kinases are physically associated with the surface antigen CD36 in human dermal microvascular endothelial cells. FEBSLett. 351, 41–44.Google Scholar
  60. 57.
    Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., et al. (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544.PubMedCrossRefGoogle Scholar
  61. 58.
    Cary, L. A., Chang, J. F., and Guan, J.-L. (1996) Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J. Cell Sci. 109, 1787–1794.Google Scholar
  62. 59.
    Romer, L. H., McLean, N., Turner, C. E., and Burridge, K. (1994) Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells. Mol. Biol. Cell. 5, 349–361.PubMedGoogle Scholar
  63. 60.
    Soldi, R., Sanavio, F., Aglietta, M., Primo, L., Defilippi, P., Marchisio, P. C., and Bussolino, F. (1996) Platelet-activating factor (PAF) induces early tyrosine phosphorylation of focal adhesion kinase (p125FAK) in human endothelial cells. Oncogene 13, 515–525.PubMedGoogle Scholar
  64. 61.
    Abedi, H. and Zachary, I. (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Biol. Chem. 272, 15,442–15,451.Google Scholar
  65. 62.
    Gilmore, A. P. and Romer, L. H. (1996) Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol. Biol. Cell. 7, 1209–1224.PubMedGoogle Scholar
  66. 63.
    Williams, G. M., Kemp, S. J. G., and Brindle, N. P. J. (1996) Involvement of protein tyrosine kinases in regulation of endothelial cell organization by basement membrane proteins. Biochem. Biophys. Res. Comm. 229, 375–380.PubMedCrossRefGoogle Scholar
  67. 64.
    Guo, N., Krutzsch, H. C., Inman, J. K., and Roberts, D. D. (1997) Thrombospondin-1 and type 1 repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res. 57, 1735–1742.PubMedGoogle Scholar
  68. 65.
    Knowles, D. M., Tolidjian, C., Marboe, C., D’Agati, V., Grimes, M., and Chess, L. (1984) Monoclonal anti-human monocyte antibodies OKM1 and OKM5 possess distinctive tissue distributions including differential reactivity with vascular endothelium. J. Immunol. 132, 2170–2173.PubMedGoogle Scholar
  69. 66.
    Swerlick, R. A., Lee, K. H., Wick, T. M., and Lawley, T. J. (1992) Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J. Immunol. 148, 78–83.Google Scholar
  70. 67.
    Peltzbauer, P., Bender, J. R., Wilson, J., and Pober, J. S. (1993) Heterogeneity of dermal microvascular endothelial cell antigen expression and cytokine responsiveness in situ and in cell culture. J. Immunol. 151, 5062–5072.Google Scholar
  71. 68.
    Nagura, H., Koshikawa, T., Fukuda, Y., and Asai, J. (1986) Hepatic vascular endothelial cells heterogenously express surface antigens associated with monocytes, macrophages and T lymphocytes. Virchows Arch. 409, 407–416.CrossRefGoogle Scholar
  72. 69.
    Aikawa, M., Iseka, M., Barnwell, J. W., Taylor, D., Oo, M. M., and Howard, R. J. (1990) Pathology of human cerebral malaria. Am. J. Trop. Med. Hyg. 43, 30–37.PubMedGoogle Scholar
  73. 70.
    Johnson, J. K., Swerlick, R. A., Grady, K. K., Millet, P., and Wick, T. M. (1993) Cytoadherence of plasmodium falciparum-infected erythrocytes to microvascular endothelium is regulatable by cytokines and phorbol ester. J. Infect. Dis. 167, 698–703.PubMedCrossRefGoogle Scholar
  74. 71.
    Asch, A. S., Liu, I., Briccetti, F. M., Barnwell, J. W., Kwakye-Berko, F., Dokun, A., Goldberger, J., and Pernambuco, M. (1993) Analysis of CD36 binding domains: ligand specificity controlled by dephosphorylation of an ectodomain. Science 262, 1436–1440.PubMedCrossRefGoogle Scholar
  75. 72.
    Hatmi, M., Garavet, J. M., Elalamy, I., Vargaftig, B. B., and Jacquemin, C. (1996) Evidence for cAMP-dependent platelet ectoprotein kinase activity that phosphorylates platelet glycoprotein IV (CD36). J. Biol. Chem. 271, 24,776–24,780.Google Scholar
  76. 73.
    Murphy-Ullrich, J. E., Gurusiddappa, S., Frazier, W. A., and Hook, M. (1993) Heparin-binding peptides from thrombospondins 1 and 2 contain focal adhesion-labilizing activity. J. Biol. Chem. 268, 26,784–26,789.Google Scholar
  77. 74.
    Hogg, P. J. (1994) Thrombospondin 1 as an enzyme inhibitor. Thromb. Haemost. 72, 787–792.PubMedGoogle Scholar
  78. 75.
    Keppler, D., Sameni, M., Moin, K., Mikkelsen, T., Diglio, C. A., and Sloane, B. F. (1996) Tumor progression and angiogenesis: cathepsin B & Co. Biochem. Cell Biol. 74, 799–810.PubMedCrossRefGoogle Scholar
  79. 76.
    Bikfalvi, A., Klein, S., Pintucci, G., and Rifkin, D. B. (1997) The role of proteases in angiogenesis, in Tumour Angiogenesis (Bicknell, R., Lewis, C. E., and Ferrara, N., eds.), Oxford University Press, Oxford, pp. 115–124.Google Scholar
  80. 77.
    Pepper, M. S., Belin, D., Montesano, R., Orci, L., and Vassalli, J.-D. (1990) Transforming growth factor beta-1 positively modulates the angiogenic properties of endothelial cells. J. Cell Biol. 111, 743–755.PubMedCrossRefGoogle Scholar
  81. 78.
    Roberts, A. B. and Sporn, M. B. (1989) Regulation of endothelial cell growth, architecture, and matrix synthesis by TGF-B. Am. Rev. Respir. Dis. 140, 1126–1128.PubMedCrossRefGoogle Scholar
  82. 79.
    Muller, G., Behrens, J., Nussbaumer, U., Bohlen, P., and Birchmeier, W. (1987) Inhibitory action of transforming growth factor beta on endothelial cells. Proc. Natl. Acad. Sci. USA 84, 5600–5604.PubMedCrossRefGoogle Scholar
  83. 79a.
    Crawford, S. E., Stellmach, V., Murphy-Ullrich, J. E., Ribeiro, S. F., Lawler, J., Hynes, R. O., Boivin, G. P., and Bouck, N. (1998) Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93, 1159–1170.PubMedCrossRefGoogle Scholar
  84. 80.
    Yang, E. Y. and Moses, H. L. (1990) Transforming growth factor betal-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J. Cell Biol. 111, 731–741.Google Scholar
  85. 81.
    Huber, A. R., Ellis, S., Johnson, K. J., Dixit, V. M., and Varani, J. (1992) Monocyte diapedesis through an in vitro vessel wall construct: inhibition with monoclonal antibodies to thrombospondin. J. Leukoc. Biol. 52, 524–528.PubMedGoogle Scholar
  86. 82.
    Weinstat-Saslow, D. L., Zabrentzky, V. S., VanHoutte, K., Frazier, W. A., Roberts, D. D., and Steeg, P. S. (1994) Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res. 54, 6504–6511.PubMedGoogle Scholar
  87. 83.
    Bluel, K., Popp, S., Fusenig, N. E., Stanbridge, E. J., and Boukamp, P. (1997) Suppression of tumor growth by chromosome 15 in human skin carcinoma cells is correlated with anti-angiogenic properties of thrombospondin-1. Proc. Am. Assoc. Cancer Res. 38, 264.Google Scholar
  88. 83a.
    Boukamp, P., Bleuel, K., Popp, S., Vormwald-Dogan, V., and Fusenig, N. E. (1997) Functional evidence for tumor-suppressor activity on chromosome 15 in human skin carcinoma cells and thrombospondin-1 as the potential suppressor. J. Cell. Physiol. 173, 256–260.PubMedCrossRefGoogle Scholar
  89. 84.
    Castle, V. P., Dixit, V. M., and Polverini, P. J. (1997) Thrombospondin-1 suppresses tumorigenesis and angiogenesis in serum- and anchorage independent NIH 3T3 cells. Lab. Invest. 77, 51–61.Google Scholar
  90. 85.
    Prehn, R. T. (1993) Two competing influences that may explain concomitant tumor resistance. Cancer Res. 53, 3266–3269.PubMedGoogle Scholar
  91. 86.
    Holmgren, L., O’Reilly, M. S., and Folkman, J. (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153.PubMedCrossRefGoogle Scholar
  92. 87.
    Rasheed, S., Nelson-Rees, W. A., Toth, E. M., Arnstein, P., and Gardner, M. B. (1974) Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33, 1027–1033.PubMedCrossRefGoogle Scholar
  93. 88.
    Dawes, J., Clemetson, K. J., Gogstad, G. O., McGregor, J., Clezardin, P., Prowse, C. V., and Pepper, D. S. (1983) A radioimmunoassay for thrombospondin, used in a comparative study ofthrombospondin, beta-thromboglobulin and platelet factor 4 in healthy volunteers. Thromb. Res. 29, 569–581.PubMedCrossRefGoogle Scholar
  94. 89.
    Tuszynski, G. P., Smith, M., Rothman, V. L., Capuzzi, D. M., Joseph, R. R., Katz, J., et al. (1992) Thrombospondin levels in patients with malignancy. Thromb. Haemost. 67, 607–611.Google Scholar
  95. 90.
    Nathan, F. E., Hernandez, E., Dunton, C. J., Treat, J., Switalska, H. I., Joseph, R. R., and Tuszynski, G. P. (1994) Plasma thrombospondin levels in patients with gynecologic malignancies. Cancer 73, 2853–2858.PubMedCrossRefGoogle Scholar
  96. 91.
    Katagiri, Y., Hayashi, Y., Baba, I., Suzuki, H., Tanoue, K., and Yamazaki, H. (1991) Characterization of platelet aggregation induced by the human melanoma cell line HMV-1: roles of heparin, plasma adhesive proteins, and tumor cell membrane proteins. Cancer Res. 51, 1286–1293.PubMedGoogle Scholar
  97. 92.
    Tuszynski, G. P., Gasic, T. B., Rothman, V. L., Knudsen, K. A., and Gasic, G. J. (1987) Thrombospondin, a potentiator of tumor cell metastasis. Cancer Res. 47, 4130–4133.PubMedGoogle Scholar
  98. 93.
    Tuszynski, G. P., Rothman, V. L., Deutsch, A. H., Hamilton, B. K., and Eyal, J. (1992) Biological activities of peptides and peptide analogues derived from common sequences present in thrombospondin, properdin, and malarial proteins. J. Cell Biol. 116, 209–217.CrossRefGoogle Scholar
  99. 94.
    Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86, 353–364.PubMedCrossRefGoogle Scholar
  100. 95.
    Volpert, O. V., Dameron, K. M., and Bouck, N. (1997) Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 14 1495–1502.Google Scholar
  101. 96.
    Volpert, O. V., Stellmach, V., and Bouck, N. (1995) Modulation of thrombospondin and other naturally occuring inhibitors of angiogenesis during tumor progression. Breast Cancer Res. Treat. 36 119–126.Google Scholar
  102. 97.
    Zabrenetzky, V., Harris, C. C., Steeg, P. S., and Roberts, D. D. (1994) Expression of extracellular matrix molecule inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int. J. Cancer 59, 191–195.PubMedCrossRefGoogle Scholar
  103. 98.
    Scheibani, N. and Frazier, W. A. (1996) Repression ofthrombospondin-1 expression, a natural inhibitor of angiogenesis, in polyoma middle T transformed NIH3T3 cells. Cancer Lett. 107, 45–52.CrossRefGoogle Scholar
  104. 99.
    Slack, J. L. and Bornstein, P. (1994) Transformation by v-src causes transient induction followed by repression of mouse thrombospondin-1. Cell Growth Diffffer. 5, 1373–1380.Google Scholar
  105. 100.
    Tikhonenko, A. T., Black, D. J., and Linial, M. L. (1996) Viral myc oncoproteins in infected fibroblasts down-modulate thrombospondin-1, a possible tumor suppressor gene. J. Biol. Chem. 271, 30,741–30,747.Google Scholar
  106. 101.
    Mettouchi, A., Cabon, F., Montreau, N., Vernier, P., Mercier, G., Blangy, D., et al. (1994) SPARC and thrombospondin genes are repressed by the c-jun oncogene in rat embryo fibroblasts. EMBO J. 13, 5668–5678.Google Scholar
  107. 102.
    Van Meir, E. G., Polverini, P. J., Chazin, V. R., Su Huang, H. J., de Tribolet, N., and Cavenee, W. K. (1994) Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat. Genet. 8, 171–176.PubMedCrossRefGoogle Scholar
  108. 103.
    Li, D.-M. and Sun, H. (1997) TEP 1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor β. Cancer Res. 57, 2124–2129.PubMedGoogle Scholar
  109. 104.
    Steck, P. A., Pershouse, M. A., Jasser, S. A., Yung, W. K. A., Lin, H., Ligon, A. H., et al. (1997) Identification of a candidate tumour suppressor gene, MMAC 1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362.PubMedCrossRefGoogle Scholar
  110. 105.
    Wick, W., Petersen, I., Schmutzler, R. K., Wolfarth, B., Lenartz, D., Bierhoff, E., et al. (1996) Evidence for a novel tumor suppressor gene on chromosome 15 associated with progression to a metastatic stage in breast cancer. Oncogene 12, 973–978.PubMedGoogle Scholar
  111. 106.
    Iruela-Arispe, M. L., Bornstein, P., and Sage, H. (1991) Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc. Natl. Acad. Sci. USA 88, 5026–5030.Google Scholar
  112. 107.
    DiPietro, L. A., Nebgen, D. R., and Polverini, P. J. (1994) Downregulation of endothelial cell thrombospondin 1 enhances in vitro angiogenesis. J. Vasc. Res. 31, 178–185.PubMedCrossRefGoogle Scholar
  113. 108.
    Canfield, A. E. and Schor, A. M. (1995) Evidence that tenascin and thrombospondin-1 modulate sprouting of endothelial cells. J. Cell Sci. 108, 797–809.PubMedGoogle Scholar
  114. 109.
    Bagavandoss, P. and Wilkes, J. W. (1990) Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem. Biophys. Res. Comm. 170, 867–872.PubMedCrossRefGoogle Scholar
  115. 110.
    Raychaudhury, A., Frazier, W. A., and D’Amore, P. A. (1994) Comparison of normal and tumorigenic endothelial cells: differences in thrombospondin production and responses to transforming growth factor-beta. J. Cell Sci. 107, 39–46.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • David W. Dawson
  • Noël P. Bouck

There are no affiliations available

Personalised recommendations