Advertisement

Cartilage as a Source of Natural Inhibitors of Angiogenesis

  • Vincent Castronovo
  • Violetta Dimitriadou
  • Pierre Savard
  • Marc Rivière
  • Eric Dupont
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Ever since tumor-induced neovascularization was recognized as one of the key parameters that control tumor growth, considerable effort has been expended to identify ways to inhibit angiogenesis (1–3). Two approaches have been attempted.

Keywords

Lewis Lung Carcinoma Natural Inhibitor Antiangiogenic Activity Vitelline Membrane Antiangiogenic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Folkman, J. (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surgery 175,409–416.CrossRefGoogle Scholar
  2. 2.
    Folkman, J. (1985) Tumor angiogenesis. Adv. Cancer Res. 43, 175–203.PubMedCrossRefGoogle Scholar
  3. 3.
    Folkman, J. (1995) Angiogenesis in cancer, vascular pathophysiology as targets for cancer therapy. Nature Med. 1, 27–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Zetter, B. R. (1998) Angiogenesis and tumor metastasis. Annu. Rev. Med. 49, 407–424.PubMedCrossRefGoogle Scholar
  5. 5.
    Castronovo, V. and Belotti, D. (1996) TNP-470 (AGM-1470): mechanisms of action and early clinical development. Eur. J. Cancer 32A, 2520–2527.CrossRefGoogle Scholar
  6. 6.
    O’Reilly, Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Cao, Y., Moses, M., Lane, W. S., Sage, E. H., and Folkman, J. (1994) Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb. Symp. Quant. Biol. 59, 471–482.PubMedCrossRefGoogle Scholar
  7. 7.
    O’Reilly, D. A., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H., and Folkman, J. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma [see comments]. Cell 79, 315–328.PubMedCrossRefGoogle Scholar
  8. 8.
    O’Reilly, Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.Google Scholar
  9. 9.
    Lee, A. and Langer, R. (1983) Shark cartilage contains inhibitors of tumor angiogenesis. Science 221, 1185–1187.PubMedCrossRefGoogle Scholar
  10. 10.
    Feinberg, R. N., Latker, C. H., and Beebe, D. C. (1986) Localized vascular regression during limb morphogenesis in the chicken embryo. I. Spatial and temporal changes in the vascular pattern. Anat. Rec. 214, 405–409.PubMedCrossRefGoogle Scholar
  11. 11.
    Hallaman, R., Feinberg, R. N., Latker, C. H., Sasse, J., and Risau, W. (1987) Regression of blood vessels precedes cartilage differentiation during chick limb development. Differentiation 34, 98–105.CrossRefGoogle Scholar
  12. 12.
    Latker, C. H., Feinberg, R. N., and Beebe, D. C. (1986) Localized vascular regression during limb morphogenesis in the chicken embryo: II. Morphological changes in the vasculature. Anat. Rec. 214, 410–417.PubMedCrossRefGoogle Scholar
  13. 13.
    Arsenault, A. L. (1987) Microvascular organization at the epiphyseal-metaphyseal junction in growing rats. J. Bone Miner. Res. 2, 143–149.PubMedCrossRefGoogle Scholar
  14. 14.
    Schenk, R. K., Weiner, J., and Spiro, D. (1968) Time structural aspects of vascular invasion of the tibial epiphyseal plate of growing rats. Acta Anat. 68, 1–17.CrossRefGoogle Scholar
  15. 15.
    Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.PubMedCrossRefGoogle Scholar
  16. 16.
    Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G. (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336.PubMedCrossRefGoogle Scholar
  17. 17.
    Gelb, D. E., Rosier, R. N., and Puzas, J. E. (1990) The production of TGF-b by chick growth-plate chondrocytes in short term monolayer culture. Endocrinology 127, 1941–1947.PubMedCrossRefGoogle Scholar
  18. 18.
    Hiraki, Y., Kato, Y., Inoue, H., and Suzuki, F. (1986) Stimulation of DNA synthesis in quiescent rabbit chondrocytes in culture by limited exposure to somatomedin-like growth factors. Eur. J. Biochem. 158, 333–337.PubMedCrossRefGoogle Scholar
  19. 19.
    Brown, R. A., Taylor, C., McLaughlin, B., McFarland, C. D., Weiss, J. B., and Ali, S. Y. (1987) Epiphyseal growth plate cartilage and chondrocytes in mineralising cultures produce a low molecular mass angiogenic procollagenase activator. Bone Miner. 3, 143–158.PubMedGoogle Scholar
  20. 20.
    Carlevaro, M. F., Albini, A., Ribatti, D., Gentili, C., Benelli, R., Cermelli, S., Cancedda, R., and Cancedda, F. D. (1997) Transferrin promotes endothelial cell migration and invasion: implication in cartilage neovascularization. J. Cell Biol. 136, 1375–1384.PubMedCrossRefGoogle Scholar
  21. 21.
    Brem, H. and Folkman, J. (1975) Inhibition of tumor angiogenesis mediated by cartilage. J. Exp. Med. 141, 427–439.PubMedCrossRefGoogle Scholar
  22. 22.
    Langer, R. and Folkman, J. (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800.PubMedCrossRefGoogle Scholar
  23. 23.
    Johnson, M. D., Kim, H.-R., Chesler, C., Tsao-Wu, G., Bouck, N., and Polverini, P. J. (1994) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J. Cell Physiol. 160, 194–202.PubMedCrossRefGoogle Scholar
  24. 24.
    Moses, M. A., Sudhalter, J., and Langer, R. (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248, 1408–1410.PubMedCrossRefGoogle Scholar
  25. 25.
    Moses, M. A., Sudhalter, J., and Langer, R. (1992) Isolation and characterization of an inhibitor of neovascularization from scapular chondrocytes. J. Cell Biol. 119, 475–482.PubMedCrossRefGoogle Scholar
  26. 26.
    Murphy, A. N., Unsworth, E. J., and Steler-Stevenson, W. G. (1993) Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation.J. Cell Physiol. 157, 351–358.PubMedCrossRefGoogle Scholar
  27. 27.
    Takigawa, M., Shirai, E., Enomoto, M., Hiraki, Y., Suzuki, F., Shiito, T. and Yugari, Y. (1988) Cartilagederived anti-tumor factor (CATF): partial purification and correlation of inhibitory activity against tumor growth with antiangiogenic activity. J. Bone Min. Metab. 6, 83–92.CrossRefGoogle Scholar
  28. 28.
    Pepper, M. S., Montesano, R., Vassalli, J. D., and Orci, L. (1991) Chondrocytes inhibit endothelial sprout formation in vitro: evidence for involvement ofa transforming growth factor-beta.J. Cell Physiol. 146, 170–179.PubMedCrossRefGoogle Scholar
  29. 29.
    Oikawa, T., Ashino-Fuse, H., Shimamura, M., Koide, U., and Iwaguchi, T. (1990) A novel angiogenic inhibitor derived from Japanese shark cartilage (I). Extraction and estimation of inhibitory activities toward tumor and embryonic angiogenesis. Cancer Lett. 51, 181–186.PubMedCrossRefGoogle Scholar
  30. 30.
    Dupont, E., Brazeau, P., Juneau, C., Maes, D., and Marenus, K. (1997) Extracts of shark cartilage having an anticollagenolytic, anti-inflammatory, antiangiogenic and antitumoral activities; process of making methods of using and compositions thereof, in USP. US 08/384 555(CIP-1) and PCT/CA95/00233.Google Scholar
  31. 31.
    Dupont, E., Brazeau, P., and Juneau, C. (1997) Extracts of shark cartilage having an anti-angiogenic activity and an effect on tumor regression; process of making thereof, in USP US 08//550 003 (CIP-2) and PCT/CA95/00617.Google Scholar
  32. 32.
    Dupont, E., Brazeau, P., Juneau, C., Maes, D., and Marenus, K. (1996) Extracts of shark cartilage having an anticollagenolytic, anti-inflammatory, antiangiogenic and antitumoral activities; process of making methods of using and compositions thereof, in USP. US 08//693 535 (CIP-3) and PCT/CA96/00549.Google Scholar
  33. 33.
    Dupont, E., Savard, P. E., Jourdain, C., Juneau, C., Thibodeau, A., Ross, N., Marenus, K., Maes, D. H., Pelletier, G. and Sauder, D. N. (1998) Antiangiogenic properties of a novel shark cartilage extract: potential role in the treatment of psoriasis. J. Cutan. Med. Surg. 2, 146–152.PubMedGoogle Scholar
  34. 34.
    Dupont, E., Alaoui-Jamali, M., Wang, T., Doillon, C., Ross, N., Thibodeau, A., Alpert, L., Savard, P., and Falardeau, P. (1996) Angiostatic and antitumoral activity of Neovastat, a molecular fraction derived from shark cartilage. American Association for Cancer Research, San Diego, CA.Google Scholar
  35. 35.
    Dupont, E., Alaoui-Jamali, M., Wang, T., Thibodeau, A., Alpert, L., Savard, P., and Falardeau, P. (1996) In vitro and in vivo anti-tumor activity of Neovastat (AE-941), an angiostatic agent derived from shark cartilage. American Association for Cancer Research San Diego, CA.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Vincent Castronovo
  • Violetta Dimitriadou
  • Pierre Savard
  • Marc Rivière
  • Eric Dupont

There are no affiliations available

Personalised recommendations