Advertisement

Squalamine

A New Angiostatic Steroid
  • Jon I. Williams
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Squalamine is a natural aminosterol purified and characterized from several tissues of the dogfish shark. Originally identified as an antimicrobial substance, squalamine has now been shown to be an angiostatic steroid in several in vitro assays and in vivo. Squalamine differs in structure from previously described angiostatic steroids, does not interact with glucocorticoid or mineralocorticoid receptors, and operates by a previously undescribed mechanism for steroids that modulate angiogenesis. Squalamine has antitumor activity in animal models, with its greatest effects on inhibition of primary tumor growth being seen when squalamine is combined with various cytotoxic agents in treating xenograft or allograft solid cancers. Squalamine also has been shown to have low toxicity with repeated dosing in animals. The broad specificity of squalamine for solid tumors, and the margin of safety seen with long-term dosing regimens incorporating squalamine, combine to make this aminosterol an attractive development candidate for treating patients with advanced malignancies. Squalamine is now in phase I human safety clinical trials for cancer.

Keywords

Antiangiogenic Therapy Antiangiogenic Agent Corneal Neovascularization Human Umbilical Venous Endothelial Cell Antiangiogenic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beck, L., Jr. and D’Amore, P. A. (1997) Vascular development: cellular and molecular regulation. FASEB J. 11, 365–373.PubMedGoogle Scholar
  2. 2.
    Bussolino, F., Mantovani, A., and Persico, G. (1997) Molecular mechanisms of blood vessel formation. Trends Biochem. Sci.22, 251 256.Google Scholar
  3. 3.
    Hanahan, D. (1997) Signaling vascular morphogenesis and maintenance. Science 277, 48–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Billington, D. C. (1991) Angiogenesis and its inhibition: potential new therapies in oncology and nonneoplastic diseases. Drug Design Discovery 8, 3–35.Google Scholar
  5. 5.
    Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235, 442–447.PubMedCrossRefGoogle Scholar
  6. 6.
    Brem, H. and Klagsbrun, M. (1992) Role of fibroblast growth factors and related oncogenes in tumor growth, in Oncogenes and Tumor Suppressor Genes in Human Malignancies (Benz, C. C. and Liu, E. T., eds.), Kluwer Academic, Boston, pp. 211–231.Google Scholar
  7. 7.
    Thomas, K. A. (1996) Vascular endothelial growth factor, a potent and selective angiogenic agent. J. Biol. Chem. 271, 603–606.PubMedCrossRefGoogle Scholar
  8. 8.
    Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G. (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336.PubMedCrossRefGoogle Scholar
  9. 9.
    Bouck, N. (1993) Angiogenesis: a mechanism by which oncogenes and tumor suppressor genes regulate tumorigenesis, in Oncogenes and Tumor Suppressor Genes in Human Malignancies (Benz, C. C. and Liu, E. T., eds.), Kluwer Academic, Boston, pp. 359–371.CrossRefGoogle Scholar
  10. 10.
    Schor, A. M. and Schor, S. L. (1983) Tumour angiogenesis. J. Pathol. 141, 385–413.PubMedCrossRefGoogle Scholar
  11. 11.
    Brooks, P. C., Stromblad, S., Sanders, L. C., von Schalscha, T. L., Aimes, R. T., Stetler-Stevenson, W. G., Quigley, J. P., and Cheresh, D. A. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin α νβ3. Cell 85, 683–693.PubMedCrossRefGoogle Scholar
  12. 12.
    Denekamp, J. (1990) Vascular attack as a therapeutic strategy for cancer. Cancer and Metastasis Rev. 9, 267–282.CrossRefGoogle Scholar
  13. 13.
    Kihn, E. C. and Liotta, L. A. (1995) Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res. 55, 1856–1862.Google Scholar
  14. 14.
    Folkman, J. (1995) Clinical applications of research on angiogenesis. N. Engl. J. Med. 333,1757–1763.PubMedCrossRefGoogle Scholar
  15. 15.
    Folkman, J. and Ingber, D. (1992) Inhibition of angiogenesis. Semin. Cancer Biol. 3, 89–96.PubMedGoogle Scholar
  16. 16.
    Folkman, J. (1971) Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186.PubMedCrossRefGoogle Scholar
  17. 17.
    Folkman, J. (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175, 409–416.PubMedCrossRefGoogle Scholar
  18. 18.
    Goldfarb, R. H. and Brunson, K. W. (1992) Therapeutic agents for treatment of established metastases and inhibitors of metastatic spread: preclinical and clinical progress. Curr. Opin. Oncol. 4, 1130–1141.PubMedCrossRefGoogle Scholar
  19. 19.
    Teicher, B. A. (1995) Angiogenesis and cancer metastases: therapeutic approaches. Crit. Rev. Oncol./ Hematol. 20, 9–39.CrossRefGoogle Scholar
  20. 20.
    Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. (1991) Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Mattern, J, Koomagi, R., and Volm, M. (1996) Association ofvascular endothelial growth factor expression with intratumoral microvessel density and tumour cell proliferation in human epidermoid lung carcinoma. Br. J. Cancer 73, 931–934.PubMedCrossRefGoogle Scholar
  22. 22.
    Lindmark, G., Gerdin, B., Sundberg, C., Pohlman, L., Bergstrom, R., and Glimelius, B. (1996) Prognostic significance of the microvascular count in colorectal cancer. J. Clin. Oncol. 14, 461–466.PubMedGoogle Scholar
  23. 23.
    Weidner, N. and Folkman, J. (1996) Tumoral vascularity as a prognostic factor in cancer, in Important Advances in Oncology1996 (DeVita, V. T., Hellman, S., and Rosenberg, S. A., eds.), Lippincott-Raven, Philadelphia, pp. 167–190.Google Scholar
  24. 24.
    Fontanini, G., Lucchi, M., Signati, S., Mussi, A., Ciardiello, F., de Laurentiis, M., et al. (1997) Angiogenesis as a prognostic indicatior of survival in non-small-cell lung carcinoma: a prospective study. J. Natl. Cancer Inst. 89, 881–886.PubMedCrossRefGoogle Scholar
  25. 25.
    Gross, J., Azizkhan, R. G., Biswas, C., Bruns, R. R., Hsieh, D. S. T., and Folkman, J. (1981) Inhibition of tumor growth, vascularization, and collagenolysis in the rabbit cornea by medroxyprogesterone. Proc. Natl. Acad. Sci. USA 78, 1176–1180.PubMedCrossRefGoogle Scholar
  26. 26.
    Folkman, J., Langer, R., Linhardt, R. J., Haudenschild, C., and Taylor, S. (1983) Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221, 719–725.PubMedCrossRefGoogle Scholar
  27. 27.
    Folkman, J. and Ingber, D. E. (1987) Angiostatic steroids. Ann. Surg. 206, 374–383.PubMedCrossRefGoogle Scholar
  28. 28.
    Taylor, S. and Folkman, J. (1982) Protamine is an inhibitor of angiogenesis. Nature 297, 307–312.PubMedCrossRefGoogle Scholar
  29. 29.
    Crum, R., Szabo, S., and Folkman, J. (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230, 1375–1378.PubMedCrossRefGoogle Scholar
  30. 30.
    Rong, G. H., Alessandri, G., and Sindelar, W. F. (1985) Inhibition of tumor angiogenesis by hexuronyl hexosaminoglycan sulfate. Cancer 57, 586–590.CrossRefGoogle Scholar
  31. 31.
    Folkman, J., Weisz, P. B., Joullie, M. M., Li, W. W., and Ewing, W. R. (1989) Control of angiogenesis with synthetic heparin substitutes. Science 241, 1490–1493.CrossRefGoogle Scholar
  32. 32.
    Wilks, J. W., Scott, P. S., Vrba, L. K., and Cocuzza, J. M. (1991) Inhibition of angiogenesis with combination treatments of angiostatic steroids and suramin. Int. J. Radiat. Biol. 60, 73–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Proia, A. D., Hirakata, A., Mclnnes, J. S., Scroggs, M. W., and Parikh, I. (1993) The effect of angiostatic steroids and β-cyclodextrin tetradecasulfate on comeal neovascularizaation in the rat. Exp. Eye Res. 57, 693–698.PubMedCrossRefGoogle Scholar
  34. 34.
    Ingber, D. E., Madri, J. A., and Folkman, J. (1986) A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119, 1768–1775.PubMedCrossRefGoogle Scholar
  35. 35.
    Ingber, D. and Folkman, J. (1988) Inhibition of angiogenesis through modulation of collagen metabolism. Lab. Invest. 59, 44–51.PubMedGoogle Scholar
  36. 36.
    Ingber, D. (1991) Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J. Cell. Biochem. 47, 236–241.PubMedCrossRefGoogle Scholar
  37. 37.
    Ingber, D. E. (1992) Extracellular matrix as a solid-state regulator in angiogenesis: identification of new targets for anti-cancer therapy. Semin. Cancer Biol. 3, 57–63.PubMedGoogle Scholar
  38. 38.
    Wilks, J. W. (1992) Steroid inhibitors of angiogenesis, in Steroid Hormones and Uterine Bleeding (Alexander, N. J. and D’Arcangues, C., eds.), AAAS, Washington, DC, pp. 159–169.Google Scholar
  39. 39.
    Petrow, V. and Proia, A. D. (1997) Methods of inhibiting angiogenesis and tumor growth, and treating ophthalmologic conditions with angiostatic and therapeutic steroids. US Patent 5,646,136.Google Scholar
  40. 40.
    D’Amato, R. J., Lin, C. M., Flynn, E., Folkman, J., and Hamel, E. (1994) 2-methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc. Natl. Acad. Sci. USA 91, 3964–3968.PubMedCrossRefGoogle Scholar
  41. 41.
    Fotsis, T., Zhang, Y., Pepper, M. S., Adlercreutz, H., Montesona, R., Nawroth, P. P., and Schweigerer, L. (1994) Endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 368, 237–239.PubMedCrossRefGoogle Scholar
  42. 42.
    Mira-y-Lopez, R., Reiche, E., Stolfi, R. L., Martin, D. S., and Ossowski, L. (1985) Coordinate inhibition of plasminogen activator and tumor growth by hydrocortisone in mouse mammary carcinoma. Cancer Res. 45, 2270–2276.PubMedGoogle Scholar
  43. 43.
    Drago, J. R., Curley, R. M., and Sipio, J. C. (1985) Nb rat prostate adenocarcinoma model: metastasis. Anticancer Res. 5, 193–196.PubMedGoogle Scholar
  44. 44.
    Drago, J. R. and Lombard, J. S. (1985) Metastasis in the androgen-insensitive Nb rat prostatic carcinoma system. J. Surg. Oncol. 28, 252–256.PubMedCrossRefGoogle Scholar
  45. 45.
    Ziche, M., Ruggiero, M., Pasquali, F., and Chiarugi, V. P. (1985) Effects of cortisone with and without heparin on angiogenesis induced by prostaglandin E1 and by S180 cells, and on growth of murine transplantable tumours. lnt. J. Cancer 35, 549–552.CrossRefGoogle Scholar
  46. 46.
    Sakamoto, N., Tanaka, N. G., Tohgo, A., and Ogawa, H. (1986) Heparin plus cortisone acetate inhibit tumor growth by blocking endothelial cell proliferation. Cancer J. 1, 55–58.Google Scholar
  47. 47.
    Sakamoto, N., Tanaka, N. G., Tohgo, A., Osada, Y., Ogawa, H. (1987) Inhibitory effects ofheparin plus cortisone acetate on endothelial cell growth both in cultures and in tumor masses. J. Natl. Cancer Inst. 78, 581–585.PubMedGoogle Scholar
  48. 48.
    Penhaligon, M. and Camplejohn, R. S. (1985) Combination heparin plus cortisone treatment of two transplanted tumors in C3H/He mice. J. Natl. Cancer Inst. 74, 869–873.PubMedGoogle Scholar
  49. 49.
    Teale, D. M., Underwood, J. C. E., Potter, C. W., and Rees, R. C. (1987) Therapy of spontaneously metastatic HSV-2 induced hamster tumours with cortisone acetate administered with or without heparin. Eur. J. Cancer Clin. Oncol. 23, 93–100.PubMedCrossRefGoogle Scholar
  50. 50.
    Zeidman, I. (1961) Fate of circulating tumor cells II. A mechanism of cortisone action in increasing metastases. Cancer Res. 22, 501–503.Google Scholar
  51. 51.
    Bhakoo, H. S., Paolini, N. S., Milholland, R. J., Lopez, R. E., and Rosen, F. (1981) Glucocorticoid receptors and the effect of glucocorticoids on the growth of B 16 melanoma. CancerRes. 41,1695–1701.Google Scholar
  52. 52.
    Sakamoto, N. and Tanaka, N. G. (1987) Effect of angiostatic steroid with or without glucocorticoid activity on metastasis. Invasion Metastasis 7, 208–216.PubMedGoogle Scholar
  53. 53.
    Li, W. W., Casey, R., Gonzalez, E. M., and Folkman, J. (1991) Angiostatic steroids potentiated by sulfated cyclodextrins inhibit corneal neovascularization. Invest. Ophthalmol. Vis. Sci. 32, 2898–2905.PubMedGoogle Scholar
  54. 54.
    Tominaga, T., Kitamura, M., Hayashi, K., Kaneko, H., and Takahashi, I. (1981) Effects of high-dose oral administration of medroxyprogesterone acetate (MPA) on the patients with advanced breast cancer. Jpn. J. Cancer Chemother. 8, 1727–1730.Google Scholar
  55. 55.
    Jakobsen, A., Frederiksen, P. L., Møller, K., Andersen, A. P., Brincker, H., Dombernowsky, P., et al. (1986) Medroxyprogesterone acetate and prednisone in advanced breast cancer. A randomized trial. Eur. J. Cancer Clin. Oncol. 22, 1067–1072.PubMedCrossRefGoogle Scholar
  56. 56.
    Dowsett, M., Lal, A., Smith, I. E., and Jeffcoate, S. L. (1987) Effects of low and high dose medroxyprogesterone acetate on sex steroids and sex hormone binding globulin in postmenopausal breast cancer patients. Br. J. Cancer 55, 311–313.PubMedCrossRefGoogle Scholar
  57. 57.
    Ashino-Fuse, H., Takano, Y., Oikawa, T., Shimamura, M., and Iwaguchi, T. (1989) Medroxyprogesterone acetate, an anti-cancer and anti-angiogenic steroid, inhibits the plasminogen activator in bovine endothelial cells. Int. J. Cancer 44, 859–864.PubMedCrossRefGoogle Scholar
  58. 58.
    Moore, K. S., Wehrli, S., Roder, H., Rogers, M., Forrest, J. N., Jr., McCrimmon, D., and Zasloff, M. (1993) Squalamine: an aminosterol antibiotic from the shark. Proc. Natl. Acad. Sci. USA 90,1354–1358.PubMedCrossRefGoogle Scholar
  59. 59.
    Takano, S., Gately, S., Neville, M. E., Herblin, W. F., Gorss, J. L., et al. (1994) Suramin, an anticancer and angiosuppressive agent, inhibits endothelial cell binding of basic fibroblastic growth factor, migration, proliferation, and induction of urokinase-type plasminogen activator. Cancer Res. 54, 2654–2660.PubMedGoogle Scholar
  60. 60.
    Coomber, B. L. (1995) Suramin inhibits C6 glioma-induced angiogenesis in vitro. J. Cell. Biochem 58, 199–207.CrossRefGoogle Scholar
  61. 61.
    Kusaka, M., Sudo, K., Fujita, T., Maroi, S., Itoh, F., Ingber, D., and Folkman, J. (1991) Potent antiangiogenic action of AGM-1470: comparison to the fumagillin parent. Biochem. Biophys. Res. Comm. 174, 1070–1076.PubMedCrossRefGoogle Scholar
  62. 62.
    Sills, A. K., Jr., Epstein, D., Sipos, E. P., Williams, J., Zasloff, M., and Brem, H. (1996) Inhibition of tumor-induced neovascularization by squalamine, a novel angiogenesis inhibitor. Poster no. 1435 at the 64th Annual Meeting of the American Association of Neurological Surgeons, Minneapolis, MN.Google Scholar
  63. 63.
    Kubota, Y., Kleinman, H. K., Martin, G. R., and Lawley, T. J. (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107, 1589–1598.PubMedCrossRefGoogle Scholar
  64. 64.
    Nicosia, R. F., Bonanno, E., and Villaschi, S. (1992) Large-vessel endothelium switches to a microvascular phenotype during angiogenesis in collagen gel culture of rat aorta. Atherosclerosis 95, 191–199.PubMedCrossRefGoogle Scholar
  65. 65.
    Pepper, M. S., Ferrara, N., Orci, L., and Montesano, R. (1992) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Comm. 189, 821–831.Google Scholar
  66. 66.
    Epstein, D. S., Sills, A. K., Jr., Brem, H., Collins, D., Williams, J., and Zasloff, M. (1996) Selective inhibition of VEGF-stimulated endothelial cells by squalamine. Poster no. 1425 at the 64th Annual Meeting of the American Association of Neurological Surgeons, Minneapolis, MN.Google Scholar
  67. 67.
    Sills, A. K., Jr., Tyler, B., Laterra, J., and Brem, H. (1996) Squalamine blocks endothelial activation by common brain tumor mitogens. Abstract from First Scientific Meeting, Society for Neuro-Oncology, Santa Fe, NM.Google Scholar
  68. 68.
    Blood, C. H. and Zetter, B. R. (1990) Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim. Biophys. Acta 1032, 89–118.PubMedGoogle Scholar
  69. 69.
    Paku, S. and Paweletz, N. (1991) First steps of tumor-related angiogenesis. Lab. Invest. 65, 334–346.PubMedGoogle Scholar
  70. 70.
    Parker, M. G., ed. (1993) Steroid Hormone Action, IRL, New York.Google Scholar
  71. 71.
    Wolff, J. E. A., Guerin, C., Laterra, J., Bressler, J., Indurti, R. R., Brem, H., and Goldstein, G. W. (1993) Dexamethasone reduces vascular density and plasminogen activator activity in 9L rat brain tumors. Brain Res. 604, 79–85.PubMedCrossRefGoogle Scholar
  72. 72.
    Pepper, M. S., Vassalli, J.-D., Wilks, J. W., Schweigerer, L., Orci, L., and Montesano, R. (1994) Modulation of bovine microvascular endothelial cell proteolytic properties by inhibitors of angiogenesis. J. Cell. Biochem. 55, 419–434.PubMedCrossRefGoogle Scholar
  73. 73.
    Yamamoto, T., Terada, N., Nishizawa, Y., and Petrow, V. (1994) Angiostatic activities of medroxyprogesterone acetate and its analogues. Int. J. Cancer 56, 393–399.PubMedCrossRefGoogle Scholar
  74. 74.
    Blei, F., Wilson, E. L., Mignatti, P., and Rifkin, D. B. (1993) Mechanism ofaction ofangiostatic steroids: suppression ofplasminogen activator activity via stimulation of plasminogen activator inhibitor synthesis. J. Cell. Physiol. 155, 568–578.PubMedCrossRefGoogle Scholar
  75. 75.
    Oikawa, T., Hiragun, A., Yoshida, Y., Ashino-Fuse, H., Tominaga, T., and Iwaguchi, T. (1988) Angiogenic activity ofrat mammary carcinomas induced by 7,12-dimethylbenz[a]anthracene and its inhibition by medroxyprogesterone acetate: possible involvement of antiangiogenic action of medroxyprogesterone acetate in its tumor growth inhibition. Cancer Lett. 43, 85–92.PubMedCrossRefGoogle Scholar
  76. 76.
    Akhter, S., Nath, S. K., Bowser, J. M., Tse, C. M., Williams, J., Zasloff, M., and Donowitz, M. (1996) Squalamine, a novel aminosterol antibiotic, is a specific inhibitor of epithelial brush border Na+/H+ exchanger isoform, NHE-3. Poster no. 514 from FASEB Annual Meeting in New Orleans, LA.Google Scholar
  77. 77.
    Nath, S. K., Akhter, S., Tse, C. M., Bowser, J., Williams, J., Zasloff, M., and Donowitz, M. (1996) The novel aminosterol antibiotics squalamine and 1436 are specific inhibitors of epithelial brush border Na+/H+ exchanger (NHE) isoform, NHE-3. Poster no. A337 from Annual Meeting of the American Gastroenterological Association in Washington, DC.Google Scholar
  78. 78.
    Livne, A. A., Sardet, C., and Pouyssegur, J. (1991) The Na+/H+ exchanger is phosphorylated in human platelets in response to activating agents. FEBS Lett. 284, 219–222.PubMedCrossRefGoogle Scholar
  79. 79.
    Brem, H. and Folkman, J. (1993) Analysis of experimental antiangiogenic therapy. J. Ped. Surg. 28, 445–451.CrossRefGoogle Scholar
  80. 80.
    Schoof, D. D., Obando, J. A., Cusack, J. C., Jr., Goedegebuure, P. S., Brem, H., and Eberlein, T. J. (1993) Influence of angiogenesis inhibitor AGM-1470 on immune system status and tumor growth in vitro. Int. J. Cancer 55, 630–635.CrossRefGoogle Scholar
  81. 81.
    Smith, L. E. H., Wesolowski, E., McLellan, A., Kostyk, S. K., D’Amato, R., Sullivan, R., and D’Amore, P. A. (1994) Oxygen-induced retinopathy in the mouse. Invest. Ophthal. Vis. Science 35, 101–111.Google Scholar
  82. 82.
    Tamargo, R. J., Myseros, J. S., Epstein, J. I., Yang, M. B., Chasin, M., and Brem, H. (1993) Interstitial chemotherapy of the 9L gliosarcoma: controlled release polymers for drug delivery in the brain. Cancer Res. 53, 329–333.PubMedGoogle Scholar
  83. 83.
    Walter, K. A., Cahan, M. A., Gur, A., Tyler, B., Hilton, J., Colvin, O. M., et al. (1994) Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res. 54, 2207–2212.PubMedGoogle Scholar
  84. 84.
    Wilson, J. T. and Penar, P. L. (1994) Effect of AGM-1470 in an improved intracranial 9L gliosarcoma rat model. Neurol. Res. 16, 121–124.PubMedGoogle Scholar
  85. 85.
    Judy, K. D., Olivi, A., Buahin, K. G., Domb, A., Epstein, J. I., Colvin, O. M., and Brem, H. (1995) Effectiveness of controlled release of a cyclophosphamide derivative with polymers against rat gliomas. J. Neurosurg. 82, 481–486.PubMedCrossRefGoogle Scholar
  86. 86.
    Davis, J. D., Pinn, M., Tyler, B. M., Williams, J., Zasloff, M., and Brem, H. (1997) Inhibition of 9L glioma growth by squalamine, a novel angiogenesis inhibitor. Abstract submitted to 65th Annual Meeting of the American Association of Neurological Surgeons, Philadelphia, PA.Google Scholar
  87. 87.
    Schiller, J. H., Bittner, G. N., Williams, J. I., and Zasloff, M. (1997) Antitumor effects of squalamine, a novel antiangiogenic agent, plus cisplatin in human lung cancer xenografts. Abstract no. 1378 in Proc. Am. Assoc. Cancer Res. 38, 205.Google Scholar
  88. 88.
    Sanders, R. S. and Higgins, R. D. (1996) Inhibition of oxygen induced retinopathy in the mouse by squalamine. Abstract from International Conference on Retinopathy of Prematurity, Chicago, IL.Google Scholar
  89. 89.
    Sparks, R. L., Pool, T. B., Smith, N. K. R., and Cameron, I. L. (1983) Effects of amiloride on tumor growth and intracellular element content of tumor cells in vivo. Cancer Res. 43, 73–77.Google Scholar
  90. 90.
    Kellen, J. A., Mirakian, A., and Kolin, A. (1988) Antimetastatic effect of amiloride in an animal tumour model. Anticancer Res. 8, 1373–1376.PubMedGoogle Scholar
  91. 91.
    Teicher, B. A., Williams, J. I., Takeuchi, H., Ara, G., Herbst, R. S., and Buxton, D. (1998) Potential of the aminosterol squalamine in combination therapy in the rat 13762 mammary carcinoma and the murine Lewis lung carcinoma. Anticancer Res. 18, 2567–2574.PubMedGoogle Scholar
  92. 92.
    Folkman, J. (1997) Antiangiogenic therapy, in Cancer: Principles & Practice ofOncology, 5th ed. (DeVita, V. T., Jr., Hellman, S., and Rosenberg, S. A., eds.), Lippincott-Raven, Philadelphia, pp. 3075–3085.Google Scholar
  93. 93.
    Teicher, B. A., Holden, S. A., Ara, G., Sotomayor, E. A., Huang, Z. D., Chen, Y.-N., and Brem, H. (1994) Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int. J. Cancer 57, 920–925.PubMedCrossRefGoogle Scholar
  94. 94.
    Brem, H., Gresser, I., Grosfeld, J., and Folkman, J. (1993) Combination of antiangiogenic agents to inhibit primary tumor growth and metastasis. J. Ped. Surg. 28, 1253–1257.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Jon I. Williams

There are no affiliations available

Personalised recommendations