Skip to main content

Angiogenesis and Oxygen Transport in Solid Tumors

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Angiogenesis, the formation of new vessels from existing microvasculature, is a tremendously complex and intricate process, essential for embryogenesis and development of multicellular organisms (1), but it occurs only rarely in adult tissues in a tightly controlled manner during normal wound healing and the female reproductive cycle (corpus luteum, placenta, and uterus) (2). When these tight controls are breached, the result is unchecked angiogenesis, which has been implicated in the development and progression of a variety of diseases (Table 1). The prevalence of pathologic angiogenesis in human diseases, and the significant mortality associated with these disorders, underscore the importance and emergence of antiangiogenesis therapy as a major clinical tool. In the case of solid malignancies, the generation of proangiogenic substances is in part caused by the pathologic microenvironment that develops in response to uncoordinated vascular production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hamilton, W. J., Boyd, J. D., and Mossman, H. W. (1962) Human Embryology, William and Wilkins, Baltimore.

    Google Scholar 

  2. Folkman, J. and Shing, Y. (1992) Angiogenesis. J. Biol. Chem. 267, 10,931–10,934.

    Google Scholar 

  3. Blood, C. A. and Zetter, B. R. (1990) Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim. Biophys. Acta 1032, 89–118.

    Google Scholar 

  4. Clark, R. A. F. (1996) Wound repair: overview and general considerations, in Molecular and Cellular Biology of Wound Repair, 2nd ed. (Clark, R. A. F., ed.), Plenum, New York, pp. 1–50.

    Google Scholar 

  5. Ausprunk, D. H. and Folkman, J. (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14, 53–65.

    Article  PubMed  CAS  Google Scholar 

  6. Mustohen, T. and Alitalo, K. (1995) Endothelial receptor tyrosine kinases involved in angiogenesis. J. Cell Biol. 129, 895–898.

    Article  Google Scholar 

  7. Brown, L. F., Detmar, M., Claffey, K, Nagy, J. A., Feng, D., Dvorak, A. M., and Dvorak, H. F. (1997) Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS. Regul. Angiogenesis 79, 233–269.

    Google Scholar 

  8. Dvorak, H. F., Brown, L. F., Detmar, M., and Dvorak, A. M. (1995) Vascular permeability factor/ vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J Pathol. 146, 1029–1039.

    Google Scholar 

  9. Folkman, J. (1997) Angiogenesis and angiogenesis inhibition: an overview. EXS Regul. Angiogenesis 79, 1–7.

    Google Scholar 

  10. Pepper, M. S., Montesano, R., Mandriota, S. J., Orci, L., and Vassalli, J-D (1996) Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 49, 138–162.

    PubMed  CAS  Google Scholar 

  11. Flaumenhaft, R. and Rifkin, D. B. (1992) Extracellular regulation of growth factor action. Mol. Biol. Cell. 3, 1057–1065.

    Google Scholar 

  12. O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994) Angistatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.

    Article  PubMed  Google Scholar 

  13. Mignatti, P. and Rifkin, D. B. (1996) Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein 49, 117–137.

    PubMed  CAS  Google Scholar 

  14. Hu, D. E., Hori, Y., and Fan, T. P. (1993) Interleukin-8 stimulates angiogenesis in rats. Inflammation 17(2), 135–143.

    Article  PubMed  CAS  Google Scholar 

  15. Adams, D. H. and Lloyd, A. R. (1997) Chemokines: leucocyte recruitment and activation cytokines. Lancet 349, 490–495.

    Article  PubMed  CAS  Google Scholar 

  16. Polverini, P. J. (1997) Role of macrophages in angiogenesis-dependent disease. EXS Regul. Angiogenesis 79, 11–28.

    Google Scholar 

  17. Meininger, C. J. (1995) Mast cells and tumor associated angiogenesis. Chem. Immunol. 62, 239–257.

    Google Scholar 

  18. Battegay, E. J. (1995) Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J. Mol. Med. 73, 333–346.

    Google Scholar 

  19. Brooks, P. C. (1996) Role of integrins in angiogenesis. Eur. J. Cancer 32A, 2423–2429.

    Google Scholar 

  20. Varner, J. A. (1997) The role of vascular cell integrins avββ3 and avβ5 in angiogenesis. EXS Regul. Angiogenesis 79, 361–390.

    Google Scholar 

  21. Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S., Radziejewski, C., et al. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60.

    Article  PubMed  CAS  Google Scholar 

  22. Sato, T. N., Tazawa, Y., Deutsch, U., Wolburg, H., Risau, W., and Qin, Y. (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70–74.

    Article  PubMed  CAS  Google Scholar 

  23. Wong, A. L., Haroon, Z. A., Werner, S., Dewhirst, M. W., Greenberg, C. S., and Peters, K. G. (1997) Expression and phosphorylation of Tie-2 in adult rat tissue suggest a dual role in angiogenesis and vascular maintenance. Circ. Res. 81, 567–574.

    Google Scholar 

  24. Haddow, A. (1972) Molecular repair, wound healing, and carcinogenesis: tumor production a possible overhealing? Adv. Cancer Res. 16, 181–234.

    Article  CAS  Google Scholar 

  25. Dvorak, H. F. (1986) Tumors: wounds that do not heal. New Eng. J. Med. 315(26), 1650–1659.

    Article  CAS  Google Scholar 

  26. van Hinsbergh, V. W. M., Koolwijk, P., and Hanemaaijer, R. (1997) Role of fibrin and plasminogen activators in repair-associated angiogenesis: in vitro studies with human endothelial cells. EXS Regul. Angiogenesis 79, 391–411.

    Google Scholar 

  27. Enholm, B., Paavonen, K., Ristimaki, A., Kumar, V., Gunji, Y., Klefstrom, J., et al. (1997) Comparison of VEGF, VEGF-B, VEGF-C and Angiogenesis-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14, 2475–2483.

    Article  PubMed  CAS  Google Scholar 

  28. Kuwabara, K., Ogawa, S., Matsumoto, M., Koga, S., Clauss, M., Pinsky, D., et al. (1995) Hypoxiamediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc. Natl. Acad. Sci. USA 922, 4606–4610.

    Google Scholar 

  29. Waltenberger J., Mayr, U., Pentz, S., and Hombach, V. (1996) Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation 94, 1647–1654.

    Article  PubMed  CAS  Google Scholar 

  30. Detmar, M., Brown, L., Berse, B., Jackman, R., Elicker, B., Dvorak, H., and Claffey, K. (1997) Hypoxia regulates the expression of VPF/VEGF and its receptors in human skin. J. Inves. Dermatol. 108,263–268.

    Google Scholar 

  31. Karakurum, M., Shreeniwas, R., Chen, J., Pinsky, D., Yan, S.-D., Anderson, M., et al. (1994) Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J. Clin. Invest. 93, 1564–1570.

    Article  PubMed  CAS  Google Scholar 

  32. Gleadle, J., Ebert, B., Firth, J., and Ratcliffe, P. (1995) Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am. J. Physiol. 268, C 1362–C 1368.

    Google Scholar 

  33. Patel, B., Khaliq, A., Jarvis-Evans, J., Mcleod, D., Mackness, M., and Boulton, M. (1994) Oxygen regulation of TGF β1 mRNA in human hepatoma (HEP G2) cells. Biochem. Mol. Biol. Int. 34, 639–644.

    PubMed  CAS  Google Scholar 

  34. Sampson, L. and Chaplin, D. (1996) The influence of oxygen and carbon dioxide tension on the production of TNF a by activated macrophages. Br. J. Cancer 74(Suppl. XXVII), S133–S135.

    Google Scholar 

  35. Minchenko, A., Salceda, S., Bauer, T., and Caro, J. (1994) Hypoxia regulatory elements of the human VEGF gene. Cell Mol. Biol. Res. 40, 35–39.

    CAS  Google Scholar 

  36. Brizel, D. M., Scully, S. P., Harrelson, J. M., Layfield, L., Bean, J., Prosnitz, L., and Dewhirst, M. (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 56, 941–943.

    PubMed  CAS  Google Scholar 

  37. Hockel, M., Schlenger, K., Aral, B., Mitze, M., Schaffer, U., and Vaupel, P. (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 56, 4509–4515.

    PubMed  CAS  Google Scholar 

  38. Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. (1991) Tumor angiogenesis and metastasiscorelation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8.

    Google Scholar 

  39. Rak, J., Filmus, J., Finkenzeller, G., Grugel, S., Marme, D., and Kerbel, R. S. (1995) Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev. 14, 263–277.

    Article  PubMed  CAS  Google Scholar 

  40. Relf, M., LeJeune, S., Scott, P., Fox, S., Smith, K., Leek, R., et al. (1997) Expression of the angiogenic factors VEGF, acidic and basic FGF, TGF β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57, 963–969.

    Google Scholar 

  41. Thomlinson, R. H. and Gray, L. H. (1955) Histological structure of some human lung cancers and the possible implications for radiotherapy.Br. J. Cancer 9, 539–549.

    Article  PubMed  CAS  Google Scholar 

  42. Overgaard, J. and Horsman, M. R. (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin. Radiat. Oncol. 6, 10–21.

    Article  PubMed  Google Scholar 

  43. Dewhirst, M. W., Ong, E. T., Klitzman, B., Secomb, T., Vinuya, R., Dodge, R., Brizel, D., and Gross, J. (1992) Perivascular oxygen tensions in a transplantable mammary tumor growing in a dorsal flap window chamber. Radiat. Res. 130, 171–182.

    Google Scholar 

  44. Helmlinger, G., Yuan, F., Dellian, M., Jain, R. K. (1997) Interstitial pH and P02 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3, 177–182.

    Article  PubMed  CAS  Google Scholar 

  45. Dewhirst, M. W., Ong, E. T., Rosner, G. L., Rhemus, S., Shan, S., Braun, R., Brizel, D., and Secomb, T. (1996) Arteriolar oxygenation in tumour and subcutaneous arterioles: effects of inspired air oxygen content. Br. J. Cancer 74(Suppl. XXVII), S241–S246.

    Google Scholar 

  46. Intaglietta, M., Johnson, P. C., and Winslow, R. M. (1996) Microvascular and tissue oxygen distribution. Cardiovasc. Res. 32, 632–643.

    PubMed  CAS  Google Scholar 

  47. Vaupel, P., Kallinowski, F., and Okunieff, P. (1989) Blood flow, oxygen, nutrient supply and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465.

    PubMed  CAS  Google Scholar 

  48. Secomb, T. W., Hsu, R., Braun, R. D., Ross, J. R., Gross, J., and Dewhirst, M. (1997) Theoretical simulation of oxygen transport to tumors by three-dimensional networks of microvessels. Adv. Exp. Biol. Med., in press.

    Google Scholar 

  49. Dewhirst, M., Ong, E., Smith, B., Evans, S., Secomb, T., and Wilson, D. (1996) Longitudinal gradients of vascular PO2 in R3230AC tumor microvessels in dorsal flap window chambers, in Sixth World CongressforMicrocirculation (Messmer, K. and Kubler, W., eds.), Monduzzi Editore S. p. A., Bologna, Italy, pp. 343–346.

    Google Scholar 

  50. Kavanagh, B. D., Coffey, B. E., Needham, D., Hochmuth, R., and Dewhirst, M. (1993) The effect of flunarizine on the viscosity of human and rat erythrocyte suspensions in conditions of extreme hypoxia and lactic acidosis. Br. J. Cancer 67, 734–741.

    Article  PubMed  CAS  Google Scholar 

  51. Dewhirst, M. W., Ong, E. T., Madwed, D., Klitzman, B., Secomb, T., Brizel, D., et al. (1992) Effects of the calcium channel blocker flunarizine on the hemodynamics and oxygenation of tumor microvasculature. Radiat. Res. 132, 61–68.

    Article  PubMed  CAS  Google Scholar 

  52. Dewhirst, M. W., Secomb, T. W., Ong, E. T., Hsu, R., and Gross, J. (1994) Determination of local oxygen consumption rates in tumors. Cancer Res. 54, 3333–3336.

    PubMed  CAS  Google Scholar 

  53. Secomb, T. W., Hsu, R., Dewhirst, M. W., Klitzman, B., and Gross, J. F. (1993) Analysis of oxygen transport to tumor tissue by microvascular networks. Int. J. Radiat. Oncol. Biol. Phys. 25, 481–489.

    Article  PubMed  CAS  Google Scholar 

  54. Dewhirst, M. W., Kimura, H., Rehmus, S. W. E., Braun, R., Papahadjopoulos, D., Hong, K., and Secomb, T. (1996) Microvascular studies on the origins of perfusion-limited hypoxia. Br. J. Cancer 74, S247–S251.

    Google Scholar 

  55. Kallinowski, F., Schlenger, K. H., Runkel, S., Kloes, M., Stohrer, M., Okunieff, P., and Vaupel, P. (1989) Blood flow, metabolism, cellular microenvironment, and growth rate ofhuman tumor xenografts.Cancer Res. 49, 3759–3764.

    PubMed  CAS  Google Scholar 

  56. Secomb, T. W., Hsu, R., Ong, E. T., Gross, J., and Dewhirst, M. (1995) Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol. 34, 313–316.

    Google Scholar 

  57. Kimura, H., Braun, R. D., Ong, E. T., Hsu, R., Secomb, T., Papahadjopoulos, D., Hong, K., and Dewhirst, M. (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res. 56, 5522–5528.

    PubMed  CAS  Google Scholar 

  58. Chaplin, D. J., Durand, R. E., and Olive, P. (1986) Acute hypoxia in tumors: implications for modifiers of radiation effects. Int. J. Radiat. Oncol. Biol. Phys. 12, 1279–1282.

    Article  PubMed  CAS  Google Scholar 

  59. Trotter, M. J., Olive, P. L., and Chaplin, D. J. (1990) Effect ofvascular marker Hoechst 33342 on tumour perfusion and cardiovascular function in the mouse. Br. J. Cancer 62, 903–908.

    Article  PubMed  CAS  Google Scholar 

  60. Chaplin, D. J. and Hill, S. A. (1995) Temporal heterogeneity in microregional erythrocyte flux in experimental solid tumors. Br. J. Cancer 71, 1210–1213.

    Article  PubMed  CAS  Google Scholar 

  61. Hill, S. A., Pigott, K. H., Saunders, M. I., Powell, M., Arnold, S., Obeid, A., et al. (1996) Microregional blood flow in murine and human tumours assessed using laser Doppler microprobes. Br. J. Cancer 74, S260–S263.

    Google Scholar 

  62. Li, X., Brown, S. L., and Hill, R. P. (1992) Factors influencing the thermosensitivity of two rodent tumors. Radiat. Res. 130, 211–219.

    Article  PubMed  CAS  Google Scholar 

  63. Dewhirst, M. W., Braun, R. D., and Lanzen, J. L. (1998) Temporal changes in PO2 of R3230 Ac tumors, in Fischer-344 rats. Int. J. Radiat. Oncol. Biol. Phys., submitted.

    Google Scholar 

  64. Graeber, T. G., Osmanian, C., and Jacks, T. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours [see comments]. Nature 379, 88–91.

    Article  PubMed  CAS  Google Scholar 

  65. Welbourn, C. R. B., Goldman, G., Paterson, I. S., Valeri, C., Shepro, D., and Hechtman, H. (1991) Pathophysiology of ischemia reperfusion injury-central role of the neutrophil. Br. J. Surg. 78, 651.

    Article  PubMed  CAS  Google Scholar 

  66. Reynolds, T. Y., Rockwell, S., and Glazer, P. M.(1996) Genetic instability induced by the tumor microenvironment. Cancer Res. 56, 5754–5757.

    PubMed  CAS  Google Scholar 

  67. Patan, S., Munn, L. L., and Jain, R. K. (1996) Intussusceptive microvascular growth in a human colon adneocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc. Res. 51, 260–272.

    Article  PubMed  CAS  Google Scholar 

  68. Kiani, M. F., Pries, A. R., Hsu, L. L., Saralius, H., and Cokelet, G. (1994) Fluctuations in microvascular blood flow parameters caused by hemodynarnic mechanisms. Am. J. Physiol. 266, H1822–H1828.

    Google Scholar 

  69. Schmidt-Schoenbein, G. W., Skalak, R., Usami, S., and Chien, S. (1980) Cell distribution in capillary networks. Microvasc. Res. 19, 18–44.

    Article  Google Scholar 

  70. Tozer, G. M. and Everett, S. A. (1997) Nitric oxide in tumour biology and cancer therapy. Part 1. Physiological aspects. Clin. Oncol. 9, 282–293.

    Article  CAS  Google Scholar 

  71. Wu, H. M., Huang, Q., Yuan, Y., and Granger, H. J. (1996) VEGF induces NO-dependent hyperpermeability in coronary venules. Am. J. Physiol. 271, H2735–H2739.

    Google Scholar 

  72. Chin, K., Kurashima, Y., Ogura, T., Tajiri, H., Yoshida, S., and Esumi, H. (1997) Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene 15, 437–442.

    Article  PubMed  CAS  Google Scholar 

  73. Ziche, M., Morbidelli, L., Masini, E., Amerini, S., Granger, H. J., Maggi, C. A., Geppetti, P., and Ledda, F. (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J. Clin. Invest. 94, 2036–2044.

    Article  PubMed  CAS  Google Scholar 

  74. Morbidelli, L., Chang, C. H., Douglas, J. G., Granger, H. J., Ledda, F., and Ziche, M. (1996) Nitric oxide mediates mitogenic effect ofVEGF on coronary venular endothelium. Am. J. Physiol. 270, H411–H415.

    Google Scholar 

  75. Jenkins, D. C., Charles, I. G., Thomsen, L. L., Moss, D. W., Holmes, L. S., Baylis, S. A., et al. (1995) Roles of nitric oxide in tumor growth. Proc. Natl. Acad. Sci. USA 92, 4392–4396.

    Article  PubMed  CAS  Google Scholar 

  76. Tsurumi, Y., Murohara, T., Krasinski, K., Chen, D., Witzenbichler, B., Kearney, M., Couffinhal, T., and Isner, J. M. (1997) Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nature Med. 3, 879–886.

    Article  PubMed  CAS  Google Scholar 

  77. Tuder, R. M., Flook, B. E., and Voelkel, N. F. (1995) Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J. Clin. Invest. 95, 1798–1807.

    Article  PubMed  CAS  Google Scholar 

  78. Pipili-Synetos, E., Sakkoula, E., Haralabopoulos, G., Andriopoulou, P., Peristeris, P., and Maragoudakis, M. E. (1994) Evidence that nitric oxide is an endogenous antiangiogenic mediator. Br. J. Pharmacol. 111, 894–902.

    Google Scholar 

  79. Pipili-Synetos, E., Papageorgiou, A., Sakkoula, E., Sotiropoulou, G., Fotsis, T., Karakiulakis, G., and Maragoudakis, M. E. (1995) Inhibition of angiogenesis, tumour growth and metastasis by the NOreleasing vasodilators, isosorbide mononitrate and dinitrate. Br. J. Pharmacol. 116, 1829–1834.

    Article  PubMed  CAS  Google Scholar 

  80. Yang, W., Ando, J., Korenaga, R., Toyo-oka, T., and Kamiya, A. (1994) Exogenous nitric oxide inhibits proliferation of cultured vascular endothelial cells. Biochem. Biophys. Res. Commun. 203, 1160–1167.

    Google Scholar 

  81. Lau, Y. T. and Ma, W. C. (1996) Nitric oxide inhibits migration of cultured endothelial cells. Biochem. Biophys. Res. Commun. 221, 670–674.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haroon, Z.A., Peters, K.G., Greenberg, C.S., Dewhirst, M.W. (1999). Angiogenesis and Oxygen Transport in Solid Tumors. In: Teicher, B.A. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-453-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-453-5_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4518-4

  • Online ISBN: 978-1-59259-453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics