Skip to main content

Molecular Pathology of Hematological Malignancies

  • Chapter
Principles of Molecular Pathology

Abstract

Hematological malignancies are a heterogeneous group of disorders characterized by malignant expansion of hematopoietic cells. Our knowledge of the molecular etiology of these diseases has advanced significantly in recent years, and our understanding of the genetics of these disorders is among the most comprehensive of all tumors. Increasingly, this understanding of the molecular underpinnings of hematological malignancies is leading to development of classification systems that are based on demonstration of cytogenetic or molecular abnormalities, or on the pattern of genes expressed in these tumors. This represents a significant departure from older classification schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002; 3: 179–98.

    Article  PubMed  CAS  Google Scholar 

  2. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science 1960; 142: 1397.

    Google Scholar 

  3. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–3.

    Article  PubMed  CAS  Google Scholar 

  4. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–42.

    Article  PubMed  CAS  Google Scholar 

  5. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–7.

    Article  PubMed  CAS  Google Scholar 

  6. Sawyers CL. Chronic myeloid leukemia. N Engl J Med 1999; 340: 1330–40.

    Article  PubMed  CAS  Google Scholar 

  7. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–30.

    Article  PubMed  CAS  Google Scholar 

  8. Baltimore D, Ren R, Cheng G, Alexandropoulos K, Cicchetti P. A nuclear tyrosine kinase becomes a cytoplasmic oncogene. Ann NY Acad Sci 1995; 758: 339–44.

    Article  PubMed  CAS  Google Scholar 

  9. Ahuja H, Bar-Eli M, Arlin Z, et al. The spectrum of molecular alterations in the evolution of chronic myelocytic leukemia. J Clin Invest 1991; 87: 2042–7.

    Article  PubMed  CAS  Google Scholar 

  10. Bernstein R. Cytogenetics of chronic myelogenous leukemia. Semin Hematol 1988; 25: 20–34.

    PubMed  CAS  Google Scholar 

  11. Advani AS, Pendergast AM. Bcr-Abl variants: biological and clinical aspects. Leuk Res 2002; 26: 713–20.

    Article  PubMed  CAS  Google Scholar 

  12. Melo JV, Myint H, Galton DA, Goldman JM. P190BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia 1994; 8: 208–11.

    PubMed  CAS  Google Scholar 

  13. Sinclair PB, Nacheva EP, Leversha M, et al. Large deletions at the t(9; 22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood 2000; 95: 738–43.

    PubMed  CAS  Google Scholar 

  14. Huntly BJ, Reid AG, Bench AJ, et al. Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 2001; 98: 1732–8.

    Article  PubMed  CAS  Google Scholar 

  15. Schoch C, Schnittger S, Bursch S, et al. Comparison of chromosome banding analysis, interphase-and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 2002; 16: 53–9.

    Article  PubMed  CAS  Google Scholar 

  16. Hochhaus A, Reiter A, Saussele S, et al. Molecular heterogeneity in complete cytogenetic responders after interferon-alpha therapy for chronic myelogenous leukemia: low levels of minimal residual disease are associated with continuing remission. German CML Study Group and the UK MRC CML Study Group. Blood 2000; 95: 62–6.

    PubMed  CAS  Google Scholar 

  17. Nimmanapalli R, Bhalla K. Mechanisms of resistance to imatinib mesylate in BcrAbl-positive leukemias. Curr Opin Oncol 2002; 14: 616–20.

    Article  PubMed  CAS  Google Scholar 

  18. Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001; 344: 1052–6.

    Article  PubMed  CAS  Google Scholar 

  19. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997; 89: 2079–88.

    PubMed  CAS  Google Scholar 

  20. Anonymous. Loss of the Y chromosome from normal and neoplastic bone marrows. United Kingdom Cancer Cytogenetics Group (UKCCG). Genes Chromosomes Cancer 1992; 5: 83–8.

    Article  Google Scholar 

  21. Harris NL, Jaffe ES, Diebold J, et al. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November, 1997. Ann Oncol 1999; 10: 1419–32.

    Article  PubMed  CAS  Google Scholar 

  22. Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  PubMed  CAS  Google Scholar 

  23. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med 1999; 341: 1051–62.

    Article  PubMed  CAS  Google Scholar 

  24. Licht JD. AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8; 21) AML. Oncogene 2001; 20: 5660–79.

    Article  PubMed  CAS  Google Scholar 

  25. Downing JR. The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol 1999; 106: 296–308.

    Article  PubMed  CAS  Google Scholar 

  26. Willman CL. Molecular evaluation of acute myeloid leukemias. Semin Hematol 1999; 36: 390–400.

    PubMed  CAS  Google Scholar 

  27. Linggi B, Muller-Tidow C, van de Locht L, et al. The t(8; 21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 2002; 8: 743–50.

    Article  PubMed  CAS  Google Scholar 

  28. Osato M, Asou N, Abdalla E, et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999; 93: 1817–24.

    PubMed  CAS  Google Scholar 

  29. Roumier C, Eclache V, Imbert M, et al. Mo AML, clinical and biological features of the disease including AML1 gene mutations: a report of 59 cases by the Groupe Français d’Hématologie Cellulaire (GFHC) and the Groupe Français de Cytogénétique Hématologique (GFCH). Blood 2003; 101: 1277–83.

    Article  PubMed  CAS  Google Scholar 

  30. Tobal K, Newton J, Macheta M, et al. Molecular quantitation of minimal residual disease in acute myeloid leukemia with t(8; 21) can identify patients in durable remission and predict clinical relapse. Blood 2000; 95: 815–9.

    PubMed  CAS  Google Scholar 

  31. Nucifora G, Larson RA, Rowley JD. Persistence of the 8; 21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 1993; 82: 712–5.

    PubMed  CAS  Google Scholar 

  32. Jurlander J, Caligiuri MA, Ruutu T, et al. Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8; 21) leukemia. Blood 1996; 88: 2183–91.

    PubMed  CAS  Google Scholar 

  33. Liu PP, Hajra A, Wijmenga C, Collins FS. Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia. Blood 1995; 85: 2289–302.

    PubMed  CAS  Google Scholar 

  34. Lutterbach B, Hou Y, Durst KL, Hiebert SW. The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. Proc Natl Acad Sci USA 1999; 96: 12822–7.

    Article  PubMed  CAS  Google Scholar 

  35. Yin JA, Grimwade D. Minimal residual disease evaluation in acute myeloid leukaemia. Lancet 2002; 360: 160–2.

    Article  PubMed  Google Scholar 

  36. Kaneko Y, Maseki N, Takasaki N, et al. Clinical and hematologic characteristics in acute leukemia with 1 1q23 translocations. Blood 1986; 67: 484–91.

    PubMed  CAS  Google Scholar 

  37. Rowley JD. The critical role of chromosome translocations in human leukemias. Annu Rev Genet 1998; 32: 495–519.

    Article  PubMed  CAS  Google Scholar 

  38. Caligiuri MA, Strout MP, Schichman SA, et al. Partial tandem duplication of ALL1 as a recurrent molecular defect in acute myeloid leukemia with trisomy 11. Cancer Res 1996; 56: 1418–25.

    PubMed  CAS  Google Scholar 

  39. Dohner K, Tobis K, Ulrich R, et al. Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol 2002; 20: 3254–61.

    Article  PubMed  Google Scholar 

  40. Cuthbert G, Thompson K, McCullough S, et al. MLL amplification in acute leukaemia: a United Kingdom Cancer Cytogenetics Group (UKCCG) study. Leukemia 2000; 14: 1885–91.

    Article  PubMed  CAS  Google Scholar 

  41. Andersen MK, Christiansen DH, Kirchhoff M, Pedersen-Bjergaard J. Duplication or amplification of chromosome band 11q23, including the unrearranged MLL gene, is a recurrent abnormality in therapy-related MDS and AML, and is closely related to mutation of the TP53 gene and to previous therapy with alkylating agents. Genes Chromosomes Cancer 2001; 31: 33–41.

    Article  PubMed  CAS  Google Scholar 

  42. Rubnitz JE, Raimondi SC, Tong X, et al. Favorable impact of the t(9; 11) in childhood acute myeloid leukemia. J Clin Oncol 2002; 20: 2302–9.

    Article  PubMed  CAS  Google Scholar 

  43. Mattson JC. Acute promyelocytic leukemia. From morphology to molecular lesions. Clin Lab Med 2000; 20: 83–103.

    PubMed  CAS  Google Scholar 

  44. Zhong S, Salomoni P, Pandolfi PP. The transcriptional role of PML and the nuclear body. Nat Cell Biol 2000; 2: E85–90.

    Article  PubMed  CAS  Google Scholar 

  45. Grignani F, De Matteis S, Nervi C, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391: 815–8.

    Article  PubMed  CAS  Google Scholar 

  46. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391: 811–4.

    Article  PubMed  CAS  Google Scholar 

  47. Weil SC. Minimal residual disease in acute promyelocytic leukemia. Clin Lab Med 2000; 20: 105–17.

    PubMed  CAS  Google Scholar 

  48. Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. Translocations of the RAR-alpha gene in acute promyelocytic leukemia. Oncogene 2001; 20: 7186–203.

    Article  PubMed  CAS  Google Scholar 

  49. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–42.

    Article  PubMed  CAS  Google Scholar 

  50. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–8.

    PubMed  CAS  Google Scholar 

  51. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–9.

    Article  PubMed  CAS  Google Scholar 

  52. Spiekermann K, Bagrintseva K, Schoch C, Haferlach T, Hiddemann W, Schnittger S. A new and recurrent activating length mutation in exon 20 of the FLT3 gene in acute myeloid leukemia. Blood 2002; 100: 3423–5.

    Article  PubMed  CAS  Google Scholar 

  53. Sawyers CL. Finding the next Gleevec: FLT3 targeted kinase inhibitor therapy for acute myeloid leukemia. Cancer Cell 2002; 1: 413–5.

    Article  PubMed  CAS  Google Scholar 

  54. Brunning RD, Borowitz M, Matutes E, et al. Precursor B lymphoblastic leukaemia/lymphoblastic lymphoma (precursor B-cell acute lymphoblastic leukaemia). In: Jaffe ES, Lee Harris N, Stein H, Vardiman JW, eds. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC, 2001; 111–114.

    Google Scholar 

  55. Kelly L, Clark J, Gilliland DG. Comprehensive genotypic analysis of leukemia: clinical and therapeutic implications. Curr Opin Oncol 2002; 14: 10–8.

    Article  PubMed  CAS  Google Scholar 

  56. Loh ML, Rubnitz JE. TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol 2002; 9: 345–52.

    Article  PubMed  Google Scholar 

  57. Kempski HM, Sturt NT. The TEL-AML1 fusion accompanied by loss of the untranslocated TEL allele in B-precursor acute lymphoblastic leukaemia of childhood. Leuk Lymphoma 2000; 40: 39–47.

    Article  PubMed  CAS  Google Scholar 

  58. Gale KB, Ford AM, Repp R, et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997; 94: 13950–4.

    Article  PubMed  CAS  Google Scholar 

  59. Borowitz MJ, Hunger SP, Carroll AJ, et al. Predictability of the t(1; 19)(q23; p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood 1993; 82: 1086–91.

    PubMed  CAS  Google Scholar 

  60. Aspland SE, Bendall HH, Murre C. The role of E2A-PBX1 in leukemogenesis. Oncogene 2001; 20: 5708–17.

    Article  PubMed  CAS  Google Scholar 

  61. McKenna RW. Multifaceted approach to the diagnosis and classification of acute leukemias. Clin Chem 2000; 46: 1252–9.

    PubMed  CAS  Google Scholar 

  62. Müller-Hermelink HK, Montserrat E, Catovsky D, Harris NL. Chronic lymphocytic leukemia/small lymphocytic lymphoma. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of the Hematopoietic and Lymphoid Tissues. Lyon: IARC, 2001: 127–130.

    Google Scholar 

  63. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–6.

    Article  PubMed  CAS  Google Scholar 

  64. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–54.

    PubMed  CAS  Google Scholar 

  65. Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–7.

    PubMed  CAS  Google Scholar 

  66. Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nature Rev Cancer 2002; 2: 175–87.

    Article  CAS  Google Scholar 

  67. Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene 2001; 20: 5611–22.

    Article  PubMed  CAS  Google Scholar 

  68. Albinger-Hegyi A, Hochreutener B, Abdou MT, et al. High frequency of t(14; 18)- translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am J Pathol 2002; 160: 823–32.

    Article  PubMed  CAS  Google Scholar 

  69. Aster JC, Longtine JA. Detection of BCL2 rearrangements in follicular lymphoma. Am J Pathol 2002; 160: 759–63.

    Article  PubMed  CAS  Google Scholar 

  70. Liu Y, Hernandez AM, Shibata D, Cortopassi GA. BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci USA 1994; 91: 8910–4.

    Article  PubMed  CAS  Google Scholar 

  71. Hankin RC, Hunter SV. Mantle cell lymphoma. Arch Pathol Lab Med 1999; 123: 1182–8.

    PubMed  CAS  Google Scholar 

  72. Foucar K, Catovsky D. Hairy cell leukemia. In: Jaffe ES, Lee Harris N, Stein H., Vardiman JW, eds. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC, 2001: 138–141.

    Google Scholar 

  73. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–11.

    Article  PubMed  CAS  Google Scholar 

  74. Ye BH, Chaganti S, Chang CC, et al. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. EMBO J 1995; 14: 6209–17.

    PubMed  CAS  Google Scholar 

  75. Dent AL, Vasanwala FH, Toney LM. Regulation of gene expression by the proto-oncogene BCL-6. Crit Rev Oncol Hematol 2002; 41: 1–9.

    Article  PubMed  Google Scholar 

  76. Napoli C, Lerman LO, de Nigris F, Sica V. c-Myc oncoprotein: a dual pathogenic role in neoplasia and cardiovascular diseases? Neoplasia 2002; 4: 185–90.

    Article  PubMed  CAS  Google Scholar 

  77. Basso K, Frascella E, Zanesco L, Rosolen A. Improved long-distance polymerase chain reaction for the detection of t(8; 14)(q24; q32) in Burkitt’s lymphomas. Am J Pathol 1999; 155: 1479–85.

    Article  PubMed  CAS  Google Scholar 

  78. Boxer LM, Dang CV. Translocations involving c-myc and c-myc function. Oncogene 2001; 20: 5595–610.

    Article  PubMed  CAS  Google Scholar 

  79. Kutok JL, Aster JC. Molecular biology of anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma. J Clin Oncol 2002; 20: 3691–702.

    Article  PubMed  CAS  Google Scholar 

  80. Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21: 3314–33.

    Article  PubMed  CAS  Google Scholar 

  81. Gorczyca W, Weisberger J, Liu Z, et al. An approach to diagnosis of T-cell lymphoproliferative disorders by flow cytometry. Cytometry 2002; 50: 177–90.

    Article  PubMed  Google Scholar 

  82. Rezuke WN, Abernathy EC, Tsongalis GJ. Molecular diagnosis of B- and T-cell lymphomas: fundamental principles and clinical applications. Clin Chem 1997; 43: 1814–23.

    PubMed  CAS  Google Scholar 

  83. NCCLS. Immunoglobulin and T-Cell Receptor Gene Rearrangment Assays; Approved Guideline, 2nd ed. Wayne, PA: NCCLS, 2002.

    Google Scholar 

  84. Bagg A, Braziel RM, Arber DA, Bijwaard KE, Chu AY. Immunoglobulin heavy chain gene analysis in lymphomas: a multi-center study demonstrating the heterogeneity of performance of polymerase chain reaction assays. J Mol Diagn 2002; 4: 81–9.

    Article  PubMed  CAS  Google Scholar 

  85. Tsongalis GJ, Rezuke WN. Molecular genetic applications to the diagnosis of nonHodgkin’s lymphoma. In: Coleman WB, Tsongalis GJ, eds. The Molecular Basis of Human Cancer. Totowa, NJ: Humana, 2002: 461–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Killeen, A.A. (2004). Molecular Pathology of Hematological Malignancies. In: Principles of Molecular Pathology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-431-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-431-3_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-348-0

  • Online ISBN: 978-1-59259-431-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics