Skip to main content

Differentiation of Neuroepithelia from Human Embryonic Stem Cells

  • Chapter
  • 135 Accesses

Abstract

Neural tissue is derived from the embryonic ectoderm. The initial step in the generation of the vertebrate nervous system is the specification of neuroepithelia from ectodermal cells—a process known as neural induction. The specified neuroepithelia in the midline dorsal ectoderm rapidly grow into a pseudostratified layer of neural plate, which later folds and closes to form the neural tube, the rudiment of the central nervous system (CNS). The lateral lip of the neural plate detaches when the neural plate closes and gives rise to neural crest derivatives. In mouse, neural plate forms at embryonic day 7, whereas in humans, it develops around embryonic day 18 (1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Rahilly, R. and Muller, F. (ed.) (1994) The Embryonic Human Brain, Wiley-Liss, New York.

    Google Scholar 

  2. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts, Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  3. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., and Bongso, A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro, Nature Biotechnol. 18, 399–404.

    Article  CAS  Google Scholar 

  4. Bain, G., Kitchens, D., Yao, M., Huettner, J. E., and Gottlieb, D. I. (1995) Embryonic stem cells express neuronal properties in vitro, Dey. Biol. 168, 342–357.

    Article  CAS  Google Scholar 

  5. Jones-Villeneuve, E. M. V., McBurney M. W., Rogers, K. A., and Kamins, V. I. (1982) Retinoic acid induces embryonic carcinoma cells to differentiate into neurons and glial cells, J. Cell Biol. 94, 253–262.

    Article  PubMed  CAS  Google Scholar 

  6. Wobus, A. M., Grosse, R., and Schoneich, J. (1988) Specific effects of nerve growth factor on the differentiation pattern of mouse embryonic stem cells in vitro, Biomed. Biochim. Acta 47, 965–973.

    PubMed  CAS  Google Scholar 

  7. Fraichard, A., Chassande, O., Bilbaut, G., Dehay, C., Savatier, P., and Samarut, J. (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons, J. Cell Sci. 108, 3181–3188.

    PubMed  CAS  Google Scholar 

  8. Strubing, C., Ahnert-Hlger, G., Shan, J., Wiedenmann, B., Hescheler, J., and Wobus, A. M. (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons, Mech. Dey. 53, 275–287.

    Article  CAS  Google Scholar 

  9. Dinsmore, J., Ratliff, J., Deacon, T., et al. (1996) Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation, Cell Transplant. 5, 131–143.

    Article  PubMed  CAS  Google Scholar 

  10. Renoncourt, Y., Carroll, P., Filippi, P., Arce, V., and Alonso, S. (1998) Neurons derived in vitro from ES cells express homeoproteins characteristic of motoneurons and interneurons, Mech. Dey. 79, 185–197.

    Article  CAS  Google Scholar 

  11. Maden, M. (2002) Retinoid signaling in the development of the central nervous system, Nat. Rev. Neurosci. 3, 843–853.

    Article  PubMed  CAS  Google Scholar 

  12. Gottlieb, D. I. and Heuttner, J. E. (1999) An in vitro pathway from embryonic stem cells to neurons and glia, Cells Tissues Organs 165, 165–172.

    Article  PubMed  CAS  Google Scholar 

  13. Muhr, J., Graziano, E., Wilson, S., Jessell, T. M., and Edlund, T. (1999) Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos, Neuron 23, 689–702.

    Article  PubMed  CAS  Google Scholar 

  14. Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M., and McKay, R. D. G. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro, Mech. Dey. 59, 89–102.

    Article  CAS  Google Scholar 

  15. Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A., and Stern, C. D. (2000) Initiation of neural induction by FGF signaling before gastrulation, Nature 406, 74–78.

    Article  PubMed  CAS  Google Scholar 

  16. Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M., and Edlund, T. (2000) An early requirement for FGF signaling in the acquisition of neural cell fate in the chick embryo, Curr. Biol. 10, 421–429.

    Article  PubMed  CAS  Google Scholar 

  17. Brustle, O. Jones, K. N., Learish, R. D., et al. (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants, Science 285, 754–756.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, S.-H., Lumelsky, N., Studer, L., Auerbach, J. M., and McKay, R. D. (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells, Nat. Biotechnol. 18, 675–679.

    Google Scholar 

  19. Kim, J.-H. Auerbach, J. M., Rodriguez-Gomez, J. A., (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease, Nature 418 50–56.

    Google Scholar 

  20. Kawasaki, H Mizuseki, K., Nishikawa, S., (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity, Neuron 28 31–40.

    Google Scholar 

  21. Kawasaki, H., Suemori, H., Mizuseki, K., (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity, Proc. Natl. Acad. Sci. USA 99, 1580–1585.

    Google Scholar 

  22. Rathjen, J., Haines, B. P., Hudson, K. M., Nesci, A., Dunn, S., and Rathjen, P. D. (2002) Directed differentiation of pluripotent cells to neural lineages: homogeneous formation and differentiation of a neuroectoderm population, Development 129, 2649–2661.

    PubMed  CAS  Google Scholar 

  23. Tropepe, V., Hitoshi, S., Sirard, C., Mak, T. W., Rossant, J., and van der Kooy, D. (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism, Neuron 30, 65–78.

    Google Scholar 

  24. Finley, M. F., Devata, S., and Huettner, J. E. (1999) BMP-4 inhibits neural differentiation of murine embryonic stem cells, J. Neurobiol. 40, 271–287.

    Article  PubMed  CAS  Google Scholar 

  25. Wichterle, H Lieberam, I Porter, J. A., and Jessell, T. M. (2002) Directed differentiation of embryonic stem cells into motor neurons, Cell 110 385–397.

    Google Scholar 

  26. Mujtaba, T., Piper, D. R., Kalyani, A., Groves, A. K., Lucero, M. T., and Rao, M. S. (1999) Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells, Dev. Biol. 214, 113–127.

    Article  PubMed  CAS  Google Scholar 

  27. Li, M., Pevny, L., Lovell-Badge, R., and Smith, A. (1998) Generation of purified neural precursors from embryonic stem cells by lineage selection, Curr. Biol. 8, 971–977.

    Google Scholar 

  28. Smith, A. G. (2001) Embryo-derived stem cells: of mice and men, Annu. Rev. Cell Dev. Biol. 17, 435–462.

    Article  PubMed  CAS  Google Scholar 

  29. Reubinoff, B. E., Itsykson, P., Turetsky, T., et al. (2001) Neural progenitors from human embryonic stem cells, Nature Biotechnol. 19, 1134–1140.

    Article  CAS  Google Scholar 

  30. Carpenter, M. K., Inokuma, M. S., Denham, J., Mujtaba, T., Chiu, C. P., and Rao, M. S. (2001) Enrichment of neurons and neural precursors from human embryonic stem cells, Exp. Neurol. 172, 383–397.

    Google Scholar 

  31. Schuldiner, M., Eiges, R., Eden, A., et al. (2001) Induced neuronal differentiation of human embryonic stem cells, Brain Res. 913, 201–205.

    Article  PubMed  CAS  Google Scholar 

  32. Wilson, S. I. and Edlund, T. (2001) Neural induction: toward a unifying mechanism Nature Neurosci 4, 1161–1168.

    Google Scholar 

  33. Edlund, T. and Jessell, T. M. (1999) Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system Cell 96, 211–224.

    Google Scholar 

  34. Wiles, M. V. (1995) Embryonic stem cell differentiation in vitro Methods Enzymol 225, 900–918.

    Google Scholar 

  35. O’Shea, K. S. (1999) Embryonic stem cell models of development Anat. Rec. 257, 32–41.

    Google Scholar 

  36. Lake, J.-A., Rathjen, J., Remiszewski, J., and Rathjen, P. D. (2000) Reversible programming of pluripotent cell differentiation J. Cell Sci. 113, 555–566.

    Google Scholar 

  37. Zhang, S.-C., Wernig, M., Duncan, I. D., Brüstle, O., and Thomson, J. A. (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cellsNature Biotechnol 19, 1129–1133.

    Google Scholar 

  38. Piscitelli, G. M. and Zhang, S.-C. (2002) Differentiation of neural precursors from rhesus monkey embryonic stem cells, Soc. Neurosci. Abstr. 7, 5.

    Google Scholar 

  39. Qian, X., Shen, Q., Goderie, S. K., et al. (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells, Neuron 28, 69–80.

    Article  PubMed  CAS  Google Scholar 

  40. McDonald, J. W., Liu, X. Z., Qu, Y., et al. (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord, Nature Med. 5, 1410–1412.

    Article  PubMed  CAS  Google Scholar 

  41. Yan, Y. P., Lyons, E., Moreno, P., and Zhang, S.-C. (2002) Survival and differentiation of human embryonic stem cell-derived neural precursors in a rat model of Parkinson’s disease.Soc. Neurosci. Abstr. 429, 8.

    Google Scholar 

  42. Hitoshi, S., Tropepe, V., Ekker, M., and van der Kooy, D. (2002) Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain Development 129, 233–244.

    Google Scholar 

  43. Ostenfeld, T., Joly, E., Tai, Y. T., (2002) Regional specification of rodent and human neurospheres Dev. Brain Res. 134, 43–55.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, SC. (2003). Differentiation of Neuroepithelia from Human Embryonic Stem Cells. In: Chiu, A.Y., Rao, M.S. (eds) Human Embryonic Stem Cells. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-423-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-423-8_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-484-5

  • Online ISBN: 978-1-59259-423-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics