Skip to main content

Hematopoietic Progenitors Derived from Human Embryonic Stem Cells

  • Chapter
  • 131 Accesses

Abstract

The field of hematology has pioneered both basic research and clinical applications of stem cell biology. Over 40 yr ago, studies to demonstrate clonal cells within bone marrow could be transferred between animals and give rise to multiple blood cell lineages within the spleen were the first experiments to define basic stem cell principles—the ability for a single cell to both self-renew and differentiate into two or more cell types (1,2).Subsequent clinical studies showed the effectiveness of bone marrow transplantation to effectively treat and cure a variety of hematologic disorders, including (but not limited to) aplastic anemia, immunodeficienies, leukemia, lymphoma, and multiple myeloma. Indeed, the National Marrow Donor Program now identifies over 50 diseases that can be treated by bone marrow transplantation. Therefore, although “stem cell therapy” is often described as futuristic medicine, it should be remembered that bone marrow transplantation is, indeed, a form of stem cell therapy and has been successfully used for over three decades (3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Till, J. E. and McCullough, E. A. (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat. Res. 14, 213–222.

    Article  PubMed  CAS  Google Scholar 

  2. Becker, A. J., McCulloch, E. A., and Till, J. E. (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells, Nature 197, 452–454.

    Article  PubMed  CAS  Google Scholar 

  3. Thomas, E. D. (1999) Bone marrow transplantation: a review, Semin. Hematol. 36, 95–103.

    PubMed  CAS  Google Scholar 

  4. Spangrude, G. J., Heimfeld, S., and Weissman, I. L. (1988) Purification and characterization of mouse hematopoietic stem cells, Science 241, 58–62.

    Article  PubMed  CAS  Google Scholar 

  5. Baum, C. M., Weissman, I. L., Tsukamoto, A. S., Buckle, A. M., and Peault, B. (1992) Isolation of a candidate human hematopoietic stem-cell population, Proc. Natl. Acad. Sci. USA 89, 2804–2808.

    Article  PubMed  CAS  Google Scholar 

  6. Bhatia, M., Bonnet, D., Murdoch, B., Gan, O. I., and Dick, J. E. (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity, Nature Med. 4, 1038–1045.

    Article  PubMed  CAS  Google Scholar 

  7. Sato, T., Laver, J. H., and Ogawa, M. (1999) Reversible expression of CD34 by murine hematopoietic stem cells, Blood 94, 2548–2554.

    PubMed  CAS  Google Scholar 

  8. Weaver, C. H., Hazelton, B., Birch, R., et al. (1995) An analysis of engraft-ment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy, Blood 86, 3961–3969.

    PubMed  CAS  Google Scholar 

  9. Wagner, J. E., Barker, J. N., DeFor, T. E., et al. (2002) Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival, Blood 100, 1611–1618.

    PubMed  CAS  Google Scholar 

  10. Orkin, S. H. (2000) Diversification of haematopoietic stem cells to specific lineages, Nat. Rev. Genet. 1, 57–64.

    Article  PubMed  CAS  Google Scholar 

  11. Akashi, K., Traver, D., Miyamoto, T., and Weissman, I. L. (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages, Nature 404, 193–197.

    Article  PubMed  CAS  Google Scholar 

  12. Verfaillie, C. M. (2000) Meeting report on an NHLBI workshop on ex vivo expansion of stem cells, July 29, 1999, Washington, D.C. National Heart Lung and Blood Institute, Exp. Hematol. 28, 361–364.

    Article  PubMed  CAS  Google Scholar 

  13. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos, Nature 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  14. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, Proc. Natl. Acad. Sci. USA 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  15. Smith, A. G. (2001) Embryo-derived stem cells: of mice and men, Annu. Rev. Cell Dev. Biol. 17, 435–462.

    Article  PubMed  CAS  Google Scholar 

  16. Keller, G. M. (1995) In vitro differentiation of embryonic stem cells, Curr. Opin. Cell Biol. 7, 862–869.

    Article  PubMed  CAS  Google Scholar 

  17. Lacaud, G., Robertson, S., Palis, J., Kennedy, M., and Keller, G. (2001) Regulation of hemangioblast development, Ann. NY Acad. Sci. 938, 96–107; discussion, 8.

    Google Scholar 

  18. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45.

    PubMed  CAS  Google Scholar 

  19. Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M. V. (1993) Hematopoietic commitment during embryonic stem cell differentiation in culture, Mol. Cell. Biol. 13, 473–486.

    PubMed  CAS  Google Scholar 

  20. Lindenbaum, M. H. and Grosveld, F. (1990) An in vitro globin gene switching model based on differentiated embryonic stem cells, Genes Dev. 4, 2075–2085.

    Article  PubMed  CAS  Google Scholar 

  21. Schmitt, R. M., Bruyns, E., and Snodgrass, H. R. (1991) Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression, Genes Dev. 5, 728–740.

    Article  PubMed  CAS  Google Scholar 

  22. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., and Keller, G. (1998) A common precursor for hematopoietic and endothelial cells, Development 125, 725–732.

    PubMed  CAS  Google Scholar 

  23. Nakano, T., Kodama, H., and Honjo, T. (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture, Science 265, 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  24. Bigas, A., Martin, D. I., and Bernstein, I. D. (1995) Generation of hematopoietic colony-forming cells from embryonic stem cells: synergy between a soluble factor from NIH-3T3 cells and hematopoietic growth factors, Blood 85, 3127–3133.

    PubMed  CAS  Google Scholar 

  25. Nishikawa, S. I., Nishikawa, S., Hirashima, M., Matsuyoshi, N., and Kodama, H. (1998) Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages, Development 125, 1747–1757.

    PubMed  CAS  Google Scholar 

  26. Yamashita, J., Itoh, H., Hirashima, M., et al. (2000) Flkl-positive cells derived from embryonic stem cells serve as vascular progenitors, Nature 408, 92–96.

    Article  PubMed  CAS  Google Scholar 

  27. Johansson, B. M. and Wiles, M. V. (1995) Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development, Mol. Cell. Biol. 15, 141–151.

    PubMed  CAS  Google Scholar 

  28. Adelman, C. A., Chattopadhyay, S., and Bieker, J. J. (2002) The BMP/BMPR/Smad pathway directs expression of the erythroid-specific EKLF and GATA1 transcription factors during embryoid body differentiation in serum-free media, Development 129, 539–549.

    PubMed  CAS  Google Scholar 

  29. Faloon, P., Arentson, E., Kazarov, A., et al. (2000) Basic fibroblast growth factor positively regulates hematopoietic development, Development 127, 1931–1941.

    PubMed  CAS  Google Scholar 

  30. Nakayama, N., Lee, J., and Chiu, L. (2000) Vascular endothelial growth factor synergistically enhances bone morphogenetic protein-4-dependent lymphohematopoietic cell generation from embryonic stem cells in vitro, Blood 95, 2275–2283.

    PubMed  CAS  Google Scholar 

  31. Pevny, L., Simon, M. C., Robertson, E., et al. (1991) Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1, Nature 349, 257–260.

    Article  PubMed  CAS  Google Scholar 

  32. Robb, L., Lyons, I., Li, R., et al. (1995) Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene, Proc. Natl. Acad. Sci. USA 92, 7075–7079.

    Article  PubMed  CAS  Google Scholar 

  33. Tsai, F. Y., Keller, G., Kuo, F. C., et al. (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2, Nature 371, 221–226.

    Article  PubMed  CAS  Google Scholar 

  34. Warren, A. J., Colledge, W. H., Carlton, M. B., Evans, M. J., Smith, A. J., and Rabbitts, T. H. (1994) The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development, Cell 78, 45–57.

    Article  PubMed  CAS  Google Scholar 

  35. Shivdasani, R. A., Mayer, E. L., and Orkin, S. H. (1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL, Nature 373, 432–434.

    Article  PubMed  CAS  Google Scholar 

  36. Shalaby, F., Rossant, J., Yamaguchi, T. P., et al. (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice, Nature 376, 62–66.

    Article  PubMed  CAS  Google Scholar 

  37. Palacios, R., Golunski, E., and Samaridis, J. (1995) In vitro generation of hematopoietic stem cells from an embryonic stem cell line, Proc. Natl. Acad. Sci. USA 92, 7530–7534.

    Article  PubMed  CAS  Google Scholar 

  38. Hole, N., Graham, G. J., Menzel, U., and Ansell, J. D. (1996) A limited temporal window for the derivation of multilineage repopulating hematopoietic progenitors during embryonal stem cell differentiation in vitro, Blood 88, 1266–1276.

    PubMed  CAS  Google Scholar 

  39. Muller, A. M. and Dzierzak, E. A. (1993) ES cells have only a limited lymphopoietic potential after adoptive transfer into mouse recipients, Development 118, 1343–1351.

    PubMed  CAS  Google Scholar 

  40. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells, Proc. Natl. Acad. Sci. USA 90, 8424–8428.

    Article  PubMed  CAS  Google Scholar 

  41. Perlingeiro, R. C., Kyba, M., and Daley, G. Q. (2001) Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential, Development 128, 4597–4604.

    PubMed  CAS  Google Scholar 

  42. Kyba, M., Perlingeiro, R. C., and Daley, G. Q. (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors, Cell 109, 29–37.

    Article  PubMed  CAS  Google Scholar 

  43. Rideout, W. M., 3rd, Hochedlinger, K., Kyba, M., Daley, G. Q., and Jaenisch, R. (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy, Cell 109, 17–27.

    Article  PubMed  CAS  Google Scholar 

  44. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts, Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  45. Palis, J. and Yoder, M. C. (2001) Yolk-sac hematopoiesis: the first blood cells of mouse and man, Exp. Hematol. 29, 927–936.

    Article  PubMed  CAS  Google Scholar 

  46. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., and Bongso, A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro, Nature Biotechnol. 18, 399–404.

    Article  CAS  Google Scholar 

  47. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., et al. (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers, Mol. Med. 6, 88–95.

    PubMed  CAS  Google Scholar 

  48. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A., and Benvenisty, N. (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells, Proc. Natl. Acad. Sci. USA 97, 11,307–11, 312.

    Google Scholar 

  49. Lacaud, G., Gore, L., Kennedy, M., et al. (2002) Runxl is essential for hematopoietic commitment at the hemangioblast stage of development in vitro, Blood 100, 458–466.

    Article  PubMed  CAS  Google Scholar 

  50. Robertson, S. M., Kennedy, M., Shannon, J. M., and Keller, G. (2000) A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1, Development 127, 2447–2459.

    PubMed  CAS  Google Scholar 

  51. Pfeifer, A., Ikawa, M., Dayn, Y., and Verma, I. M. (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos, PNAS 99, 2140–2145.

    Article  PubMed  CAS  Google Scholar 

  52. Collins, L. S. and Dorshkind, K. (1987) A stromal cell line from myeloid longterm bone marrow cultures can support myelopoiesis and B lymphopoiesis, J. Immunol. 138, 1082–1087.

    PubMed  CAS  Google Scholar 

  53. Lu, L. S., Wang, S. J., and Auerbach, R. (1996) In vitro and in vivo differentiation into B cells, T cells, and myeloid cells of primitive yolk sac hematopoietic precursor cells expanded > 100-fold by coculture with a clonal yolk sac endothelial cell line, Proc. Natl. Acad. Sci. USA 93, 14,782–14, 787.

    Google Scholar 

  54. Moore, K. A., Erna, H., and Lemischka, I. R. (1997) In vitro maintenance of highly purified, transplantable hematopoietic stern cells, Blood 89, 4337–4347.

    PubMed  CAS  Google Scholar 

  55. Simmons, P. J. and Torok-Storb, B. (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1, Blood 78, 55–62.

    PubMed  CAS  Google Scholar 

  56. Roecklein, B. A. and Torok-Storb, B. (1995) Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus E6/E7 genes, Blood 85, 997–1005.

    PubMed  CAS  Google Scholar 

  57. Watt, S. M., Williamson, J., Genevier, H., et al. (1993) The heparin binding PECAM-1 adhesion molecule is expressed by CD34+ hematopoietic precursor cells with early myeloid and B-lymphoid cell phenotypes, Blood 82, 2649-2663.

    Google Scholar 

  58. Fina, L., Molgaard, H. V., Robertson, D., et al. (1990) Expression of the CD34 gene in vascular endothelial cells, Blood 75, 2417–2426.

    PubMed  CAS  Google Scholar 

  59. Sutherland, H. J., Lansdorp, P. M., Henkelman, D. H., Eaves, A. C., and Eaves, C. J. (1990) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers, Proc. Natl. Acad. Sci. USA 87, 3584–3588.

    Article  PubMed  CAS  Google Scholar 

  60. Punzel, M., Wissink, S. D., Miller, J. S., Moore, K. A., Lemischka, I. R., and Verfaillie, C. M. (1999) The myeloid-lymphoid initiating cell (ML-IC) assay assesses the fate of multipotent human progenitors in vitro, Blood 93, 3750–3756.

    PubMed  CAS  Google Scholar 

  61. Lapidot, T., Fajerman, Y., and Kollet, O. (1997) Immune-deficient SCID and NOD/SCID mice models as functional assays for studying normal and malignant human hematopoiesis, J. Mol. Med. 75, 664–673.

    Article  PubMed  CAS  Google Scholar 

  62. Dao, M. A. and Nolta, J. A. (1999) Immunodeficient mice as models of human hematopoietic stem cell engraftment, Curr. Opin. Immunol. 11, 532–537.

    Article  PubMed  CAS  Google Scholar 

  63. Larochelle, A., Vormoor, J., Hanenberg, H., et al. (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy, Nature Med. 2, 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  64. Glimm, H., Eisterer, W., Lee, K., et al. (2001) Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice, J. Clin. Invest. 107, 199–206.

    Article  PubMed  CAS  Google Scholar 

  65. Kollet, O., Peled, A., Byk, T., et al. (2000) ß2 microglobulin-deficient (B2mnult) NOD/SCID mice are excellent recipients for studying human stem cell function, Blood 95, 3102–3105.

    PubMed  CAS  Google Scholar 

  66. Civin, C. I., Almeida-Porada, G., Lee, M. J., Olweus, J., Terstappen, L. W., and Zanjani, E. D. (1996) Sustained, retransplantable, multilineage engraft-ment of highly purified adult human bone marrow stem cells in vivo, Blood 88, 4102–4109.

    PubMed  CAS  Google Scholar 

  67. Lewis, I. D., Almeida-Porada, G., Du, J., et al. (2001) Umbilical cord blood cells capable of engrafting in primary, secondary, and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system, Blood 97, 3441–3449.

    Article  PubMed  CAS  Google Scholar 

  68. Almeida-Porada, G., Porada, C. D., Tran, N., and Zanjani, E. D. (2000) Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation, Blood 95, 3620–3627.

    PubMed  CAS  Google Scholar 

  69. Narayan, A. D., Thomson, J. A., Lewis, R. L., et al. (2002) In vitro and in vivo potential of human embryonic stem cells, Blood 100, 1546 (abstract).

    Google Scholar 

  70. Gluckman, E., Rocha, V., Boyer-Chammard, A., et al. (1997) Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group, N. Engl. J. Med. 337, 373–381.

    Article  PubMed  CAS  Google Scholar 

  71. Rubinstein, P., Carrier, C., Scaradavou, A., et al. (1998) Outcomes among 562 recipients of placental-blood transplants from unrelated donors, N. Engl. J. Med. 339, 1565–1577.

    Article  PubMed  CAS  Google Scholar 

  72. Laughlin, M. J., Barker, J., Bambach, B., et al. (2001) Hematopoietic engraft-ment and survival in adult recipients of umbilical-cord blood from unrelated donors, N. Engl. J. Med. 344, 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  73. Odorico, J. A., Kaufman, D. S., and Thomson, J. A. (2001) Multilineage differentiation from human embryonic stem cell lines, Stem Cells 19, 193–204.

    Article  PubMed  CAS  Google Scholar 

  74. Kaufman, D. S., Odorico, J. S., and Thomson, J. A. (2000) Transplantation therapies from human embryonic stem cells—circumventing immune rejection, e-biomed: J. Regener. Med. 1, 11–15.

    Article  CAS  Google Scholar 

  75. Dey, B., Sykes, M., and Spitzer, T. R. (1998) Outcomes of recipients of both bone marrow and solid organ transplants. A review, Medicine (Balt.) 77, 355–369.

    Article  CAS  Google Scholar 

  76. Millan, M. T., Shizuru, J. A., Hoffmann, P., et al. (2002) Mixed chimerism and immunosuppressive drug withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation, Transplantation 73, 1386–1391.

    Article  PubMed  Google Scholar 

  77. Spitzer, T. R., Delmonico, F., Tolkoff-Rubin, N., et al. (1999) Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism, Transplantation 68, 480–484.

    Article  PubMed  CAS  Google Scholar 

  78. Fandrich, F., Lin, X., Chai, G. X., et al. (2002) Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning, Nature Med. 8, 171–178.

    Article  PubMed  CAS  Google Scholar 

  79. Sutherland, D. E., Goetz, F. C., and Sibley, R. K. (1989) Recurrence of disease in pancreas transplants, Diabetes 38, 85–87.

    Article  PubMed  Google Scholar 

  80. Centers for Disease Control and Prevention (2002) Investigation of blood transfusion recipients with West Nile virus infections, MMWR 51, 823.

    Google Scholar 

  81. Neildez-Nguyen, T. M., Wajcman, H., Marden, M. C., et al. (2002) Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo, Nat. Biotechnol. 20, 467–472.

    Article  PubMed  CAS  Google Scholar 

  82. Pick, M., Eldor, A., Grisaru, D., Zander, A., Shenhav, M., and Deutsch, V. (2002) Ex vivo expansion of megakaryocyte progenitors from cryopreserved umbilical cord blood. A potential source of megakaryocytes for transplantation, Exp. Hematol. 30, 1079.

    Article  PubMed  Google Scholar 

  83. Zwaka, T. P. and Thomson, J. A. (2003) Homologous recombination in human embryonic stem cells, Nat. Biotechnol. 21, 319–321.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaufman, D.S. (2003). Hematopoietic Progenitors Derived from Human Embryonic Stem Cells. In: Chiu, A.Y., Rao, M.S. (eds) Human Embryonic Stem Cells. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-423-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-423-8_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-484-5

  • Online ISBN: 978-1-59259-423-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics