Recent Advances in Cancer Imaging as Applied to Radiotherapy



A century has passed since the discovery of X-rays by Roentgen and of radium by Curie. From those cradles, the use of radiation for disease diagnosis and treatment has steadily grown and expanded to become important branches of medicine, particularly for human cancers. As radiation sciences and their clinical application matured, subspecialties emerged, eventually resulting in diagnostic radiology and radiation oncology developing into distinct entities.


Nuclear Magnetic Resonance Intensity Modulate Radiation Therapy Primary Central Nervous System Lymphoma Cancer Image Central Nervous System Lymphoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ling CC Fuks Z. Conformal radiation treatment: a critical appraisal. Eur J Cancer 1995;5:799–803.CrossRefGoogle Scholar
  2. 2.
    Goitein M, Abrams M, Rowell D, Pollari H, Wiles J. Multidimensional treatment planning. II: Beam’s eye view, back projection and projection through CT sections. Int J Radiat Oncol Phys 1983;9:789–797.CrossRefGoogle Scholar
  3. 3.
    McShan DL, Fraass BA, Lichter AS. Full integration of the beam’s eye view concept into computerized treatment planning. Int J Radiat Oncol Phys 1990;18:1485–1494.CrossRefGoogle Scholar
  4. 4.
    Brahme A. Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 1988;12:129–140.PubMedCrossRefGoogle Scholar
  5. 5.
    Carol M, Grant WH, Pavord D, et al. Initial clinical experience with the Peacock intensity modulation of a 3-D conformal radiation therapy system. Stereotactic Functional Neurosurg 1996;6:30–34.CrossRefGoogle Scholar
  6. 6.
    Spirou SV, Chui CS. A gradient inverse planning algorithm with dose-volume constraints. Med Phys 1998;25:321–333.PubMedCrossRefGoogle Scholar
  7. 7.
    Ling CC, Burman C, Chui CS, et al. Conformal radiation treatment of prostate cancer using inversely- planned intensity-modulated photon beams produced with dynamic multileaf collimation [see comments]. Int J Radiat Oncol Phys 1996;35:721–730.CrossRefGoogle Scholar
  8. 8.
    Burman C, Chui CS, Kutcher G, et al. Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 1997;39:863–873.PubMedCrossRefGoogle Scholar
  9. 9.
    Spirou S, Chui CS. Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators. Med Phys 1994;21:1031.PubMedCrossRefGoogle Scholar
  10. 10.
    LoSasso T, Chui CS, Ling CC. Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy. Med Phys 1998;25:1919–1927.PubMedCrossRefGoogle Scholar
  11. 11.
    Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51:880–914.Google Scholar
  12. 12.
    Yu CX. Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 1995;40:1435–1449.PubMedCrossRefGoogle Scholar
  13. 13.
    Sherouse GW, Bourland JD, Reynolds K, et al. Virtual simulation in the clinical setting: some practical considerations. Int J Radiat Oncol Phys 1990;19:1059–1065.CrossRefGoogle Scholar
  14. 14.
    Koutcher JA, Alfieri AA, Devitt ML, et al. Quantitative changes in tumor metabolism, partial pressure of oxygen, and radiobiological oxygenation status postradiation. Cancer Res 1992;52:4620–4627.PubMedGoogle Scholar
  15. 15.
    Okunieff P, Walsh CS, Vaupel P, et al. Effects of hydralazine on in vivo tumor energy metabolism, hematopoietic radiation sensitivity, and cardiovascular parameters. Int J Radiat. Oncol Biol Phys 1989;16:1145–1148.PubMedCrossRefGoogle Scholar
  16. 16.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401–407.PubMedGoogle Scholar
  17. 17.
    Ballon D, Dyke J, Schwartz LH, et al. Bone marrow segmentation in leukemia using diffusion and T (2) weighted echo planar magnetic resonance imaging. NMR Biomed 2000;13:321–328.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim KH, Relkin NR, Lee KM, Hirsch J. Distinct cortical areas associated with native and second languages. Nature 1997; 388: 171–174.PubMedCrossRefGoogle Scholar
  19. 19.
    Kim SG, Ashe J, Hendrich K, et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 1993; 261: 615–617.PubMedCrossRefGoogle Scholar
  20. 20.
    Belliveau JW, Kennedy DN Jr, McKinstry RC, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 1991; 254:716–719.PubMedCrossRefGoogle Scholar
  21. 21.
    Kurhanewicz J, Vigneron DB, Nelson SJ, et al. Citrate as an in vivo marker to discriminate prostate cancer from benign prostatic hyperplasia and normal prostate peripheral zone: detection via localized proton spectroscopy. Urology 1995;45:459–466.PubMedCrossRefGoogle Scholar
  22. 22.
    Behar KL, den Hollander JA, Stromski ME, et al. High-resolution 1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proc Natl Acad Sci USA 1983;80:4945–4948.PubMedCrossRefGoogle Scholar
  23. 23.
    Schwickert G, Walenta S, Sundfor K, Rofstad EK, Mueller-Klieser W. Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res 1995;55:4757–4759.PubMedGoogle Scholar
  24. 24.
    Walenta S, Salameh A, Lyng H, et al. Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 1997;150:409–415.PubMedGoogle Scholar
  25. 25.
    Koutcher JA, Ballon D, Graham M, et al. 31P NMR spectra of extremity sarcomas: diversity of metabolic profiles and changes in response to chemotherapy. Magn Reson Med 1990;16:19–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Scheidhauer K, Scharl A, Pietrzyk U, et al. Qualitative [18F]FDG positron emission tomography in primary breast cancer: clinical relevance and practicability. Eur J Nucl Med 1996;23:618–623.PubMedCrossRefGoogle Scholar
  27. 27.
    Rigo P, Paulus P, Kaschten BJ, et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med 1996;23:1641–1674.PubMedCrossRefGoogle Scholar
  28. 28.
    Avril N, Bense S, Ziegler SI, et al. Breast imaging with fluorine-18-FDG PET: Quantitative image analysis. J Nucl Med 1997;38:1186–1191.PubMedGoogle Scholar
  29. 29.
    Brock CS, Meikle SR, Price P. Does fluorine-18 fluorodeoxyglucose metabolic imaging of tumours benefit oncology? [see comments]. Eur J Nucl Med 1997;24:691–705.PubMedGoogle Scholar
  30. 30.
    Utech CI, Young CS, Winter PF. Prospective evaluation of fluorine-18 fluorodeoxyclucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 1996;23:1588–1593.PubMedCrossRefGoogle Scholar
  31. 31.
    Mac Manus MP, Hicks RJ, Ball DL, et al. F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with non-small cell lung carcinoma. Cancer 2001;92:886–895.PubMedCrossRefGoogle Scholar
  32. 32.
    Munley MT, Marks LB, Scarfone C, et al. Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 1999;23:105–114.PubMedCrossRefGoogle Scholar
  33. 33.
    Kiffer JD, Berlangieri SU, Scott AM, et al. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 1998;19:167–177.PubMedCrossRefGoogle Scholar
  34. 34.
    Erdi YE, Yorke ED, Erdi AK, et al. Radiotherapy treatment planning for patients with nonsmall cell lung cancer using poistron emission tomography. Eur J Nucl Med 2000;34:861–866.CrossRefGoogle Scholar
  35. 35.
    Haberkorn U, Strauss LG, Dimitrakopoulou A, et al. PET studies of fluorodeoxyglufluorodeoxy glucosefluorodeoxy glucosefluorodeoxy glucose;cose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 1991;32:1485–1490.PubMedGoogle Scholar
  36. 36.
    Minn H, Lapela M, Klemi PJ, et al. Prediction of survival with fluorine-18-fluorodeoxyglucose and PET in head and neck cancer. J Nucl Med 1997;38:1907–1911.PubMedGoogle Scholar
  37. 37.
    Fischman AJ, Thornton AF, Frosch MP, Swearinger B, Gonzalez RG, Alpert NM. FDG hypermetabolism associated with inflammatory necrotic changes following radiation of meningioma. J Nucl Med 1997;38:1027–1029.PubMedGoogle Scholar
  38. 38.
    Macapinlac HA, Humm JL, Akhurst T, et al. Differential metabolism and pharmacokinetics of C-11 methionine and F-18 fluorodeoxyglucose (FDG) in androgen independent prostate cancer. Clin Positron Imaging 1999;2:173–181.PubMedCrossRefGoogle Scholar
  39. 39.
    Vaupel PW. Blood Flow, Oxygenation, Tissue pH Distribution, and Bioenergetic Status of Tumors. Berlin, Hellmich, 1994.Google Scholar
  40. 40.
    Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509–4515.PubMedGoogle Scholar
  41. 41.
    Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Dodge RK, Charles HC. Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res 1996;56:5347–5350.PubMedGoogle Scholar
  42. 42.
    Rasey JS, Koh WJ, Evans ML, et al. (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a prethera:py study of 37 patients. Int J Radiat Oncol Phys 1996;36:417–428.CrossRefGoogle Scholar
  43. 43.
    Chapman JD, Engelhardt EL, Stobbe CC, Schneider RF, Hanks GE. Measuring hypoxia and predicting tumor radioresistence with nuclear medicine assays. Radiother Oncol 1998;46:229–237.PubMedCrossRefGoogle Scholar
  44. 44.
    Chapman JD, Schneider RF, Urbain JL, Hanks GE. Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation. Semin Radiat Oncol 2001;11:47–57.PubMedCrossRefGoogle Scholar
  45. 45.
    Evans SM, Kachur AV, Shiue CY, et al. Noninvasive detection of tumor hypoxia using the 2-nitroimidazole [18F]EF1. J Nucl Med 2000;41:327–336.PubMedGoogle Scholar
  46. 46.
    Chao KS, Bosch WR, Mutic S, et al. A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Phys 2001;49:1171–1182.CrossRefGoogle Scholar
  47. 47.
    Ling CC, Humm JL, Larson SM, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47:551–560.PubMedCrossRefGoogle Scholar
  48. 48.
    Weissleder R, Simonova M, Bogdanova A, Bredow S, Enochs WS, Bogdanov A Jr. MR imaging and scintigraphy of gene expression through melanin induction. Radiology 1997; 204:425–429.PubMedGoogle Scholar
  49. 49.
    Tjuvajev J, Finn R, Watanabe K, et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 1996;56:4087–4095.PubMedGoogle Scholar
  50. 50.
    Doubrovin M, Ponomarev V, Beresten T, et al. Imaging transcriptional regulation of p53 dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci USA 2001;98:9300–9305.PubMedCrossRefGoogle Scholar
  51. 51.
    ICRU. Dose specification for reporting external beam therapy with photons and electrons. 1993 Report.Google Scholar
  52. 52.
    Pickett B, Vigneault E, Kurhanewicz J, Verhey L, Roach M. Static field intensity modulations to treat a dominant intra-prostatic lesion to 90 Gy compared to seven field 3-dimensional radiotherapy. Int J Radiat Oncol Biol Phys 1999;43:921–929.CrossRefGoogle Scholar
  53. 53.
    Moore A, Basilion JP, Chiocca EA, Weissleder R. Measuring transferrin receptor gene expression by NMR imaging. Biochimica Biophysica Acta 1998;1402:239–249.CrossRefGoogle Scholar
  54. 54.
    Kayyem JF, Kumar RM, Fraser SE, Meade TJ. Receptor-targeted co-transport of DNA and magnetic resonance contrast agents. Chem Biol 1995;2:615–620.PubMedCrossRefGoogle Scholar
  55. 55.
    Urbain JL. Oncogenes, cancer and imaging. J Nucl Med 1999;40:498–504.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. Totowa, NJ 2003

Authors and Affiliations

There are no affiliations available

Personalised recommendations