Magnetic Resonance Imaging-Guided Neurosurgery



The advent of magnetic resonance imaging (MRI) has had a tremendous impact on medicine and specifically on the field of neurosurgery. Diagnosis of lesions within the central nervous system (CNS), which not so long ago was dependent on such invasive techniques as pneumoencephalography, cerebral angiography, and gas cisternography, has been revolutionized by MRI. MRI provides superb anatomic resolution, the ability to view the lesion in various planes, and the vast capability to localize functional cortex, map white matter tracts, ascertain tissue composition, and to define vascular anatomy. It has supplemented neurosurgical diagnosis and has enhanced the treatment of neoplastic diseases of the CNS. The goal of neurosurgical treatment of neoplastic disease is optimal resection with preservation of essential and viable tissue that may be adjacent to the lesion. MRI has had a tremendous impact toward this end. MRI as we know it today is the culmination of the independent efforts of numerous individuals and later on several commercial interests. Raymond Damadian is credited with the development of the first MRI machine. The notion of using nuclear magnetic resonance (NMR) to differentiate cancerous and noncancerous tissue had been an exciting topic in the late 1960s, and in 1971 Damadian, a physician at the State University of New York at Brooklyn, published an article in Science entitled “Tumor Detection by Nuclear Magnetic Resonance” (1). He had been able to detect Tl relaxation times in rats with and without various tumors and had demonstrated a prolonged relaxation time in the rats with tumors.


Magnetic Resonance Imaging Brain Tumor Magnetic Resonance Angiography Digital Subtraction Angiography Magn Reson Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Damadian R.Tumor detection by nuclear magnetic resonance. Science 1971;171,1151&#x20131153.PubMedCrossRefGoogle Scholar
  2. 2.
    Lauterbur PC. Image formation by induced local interaction: examples employing nuclear magnetic resonance. Nature 1973;242:190–191.CrossRefGoogle Scholar
  3. 3.
    Mattson J, Simon M. (1996) The Story of MRI: Pioneers of NMR and Magnetic Resonance in Medicine Jericho, NY, Dean Books, 1996.Google Scholar
  4. 4.
    Edelstein WA, Hutchinson JMS, Johnson G, Redpath T. Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol 1980;25:751–756.PubMedCrossRefGoogle Scholar
  5. 5.
    Schenck JF, Foster TH, Henkes JL, et al. High-field surface-coil MR imaging of localized anatomy. Am J Neuroradiol 1985;6:181–186.PubMedGoogle Scholar
  6. 6.
    Edelman RR, Warach S. Magnetic resonance imaging (1). N Engl J Med 1993;328:708–716.PubMedCrossRefGoogle Scholar
  7. 7.
    Weber AL. Imaging of the skull base. Eur J Radiol 1996;22:68–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Han JS, Huss RG, Benson JE, et al. MR imaging of the skull base. J Comput Assist Tomogr 1984;8:944–952.PubMedCrossRefGoogle Scholar
  9. 9.
    Meyers SP, Hirsch WL Jr, Curtin HD, Barnes L, Sekhar LN, Sen C. Chordomas of the skull base: MR features. AJNR Am J Neuroradiol 1992:13:1627–1636.PubMedGoogle Scholar
  10. 10.
    Meyers SP, Hirsch WL, Jr., Curtin HD, Barnes L, Sekhar LN, Sen C. Chondrosarcomas of the skull base: MR imaging features. Radiology 1992;184:103–108.PubMedGoogle Scholar
  11. 11.
    Yoshizumi K, Korogi Y, Sugahara T, et al. Skull base tumors: evaluation with contrastenhanced MP-RAGE sequence. Comput Med Imaging Graph 2001;25:23–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Jackler RK, Shapiro MS, Dillon WP, Pitts L, Lanser MJ. Gadolinium-DTPA enhanced magnetic resonance imaging in acoustic neuroma diagnosis and management. Otolaryngol Head Neck Surg 1990;102:670–677.PubMedGoogle Scholar
  13. 13.
    Oliver TW Jr, Braun IF, Hoffman JC Jr. Gas computed tomographic cisternography: evaluation of small and intracanalicular acoustic neuromas. J Comput Tomogr 1984;8:187–190.PubMedCrossRefGoogle Scholar
  14. 14.
    Solti-Bohman LG, Magaram DL, Lo WW, et al. Gas-CT cisternography for detection of small acoustic nerve tumors. Radiology 1984;150:403–407.PubMedGoogle Scholar
  15. 15.
    Pinto RS, Kricheff II, Bergeron RT, Cohen N. Small acoustic neuromas: detection by high resolution gas CT cisternography. Am J Roentgenol 1982;139:129–132.Google Scholar
  16. 16.
    Sortland O. Computed tomography combined with gas cisternography for the diagnosis of expanding lesions in the cerebellopontine angle. Neuroradiology 1979;18:19–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Dietemann JL, Cromero C, Tajahmady T, et al. CT and MRI of suprasellar lesions. J Neuroradiol 1992;19:1–22.PubMedGoogle Scholar
  18. 18.
    Kucharczyk W, Montanera WJ. The sella and parasellar region, in Magnetic Resonance Imaging of the Brain and Spine (Atlas SW, ed.). New York, Raven Press, 1991; pp. 625–627.Google Scholar
  19. 19.
    Osborn AG. Diagnostic Neuroradiology. St. Louis, Mosby, 1994.Google Scholar
  20. 20.
    Masaryk TJ. Neoplastic disease of the spine. Radiol Clin North Am 1991;29:829–845.PubMedGoogle Scholar
  21. 21.
    Williams MP, Cherryman GR, Husband JE. Magnetic resonance imaging in suspected metastatic spinal cord compression. Clin Radiol 1989;40:286–290.PubMedCrossRefGoogle Scholar
  22. 22.
    Quencer RM. Spine imaging. AJNR Am J Neuroradiol 2000;21:2–8.PubMedGoogle Scholar
  23. 23.
    Hollis PH, Malis LI, Zappulla RA. Neurological deterioration after lumbar puncture below complete spinal subarachnoid block. J Neurosurg 1986;64:253–256.PubMedCrossRefGoogle Scholar
  24. 24.
    Frank JA, Ling A, Patronas NJ, et al. Detection of malignant bone tumors: MR imaging vs scintigraphy. AJR Am J Roentgenol 1990;155:1043–1048.PubMedGoogle Scholar
  25. 25.
    Gosfield E, III, Alavi A, Kneeland B. Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med 1993;34:2191–2198.PubMedGoogle Scholar
  26. 26.
    Galligioni F, Bernardi R, Mingrino S. Anatomic variation of the height of the falx cerebri. its relationship to displacement of the anterior cerebral artery in frontal space-occupying lesions. Am J Roentgenol Radium Ther Nucl Med 1969;106:273–278.PubMedGoogle Scholar
  27. 27.
    Goree JA, Dukes HT. The angiographic differential diagnosis between the vascularized malignant glioma and the intracranial arteriovenous malformation. Am J Roentgenol 1963;90:512–521.Google Scholar
  28. 28.
    Blatt ES, McLaurin RL. The arteriographic pattern accompanying centrosylvian mass lesions. Am J Roentgenol Radium Ther Nucl Med 1967;101:52–60.PubMedGoogle Scholar
  29. 29.
    Kricheff I. I.Taveras JM. The angiographic diagnosis of suprasylvian space-occupying lesions. Am J Roentgenol 1964;82:602–614.Google Scholar
  30. 30.
    Leeds NE, Goldberg HI. Abnormal vascular patterns in benign intracranial lesions: pseudotumors of the brain. Am J Roentgenol Radium Ther Nucl Med1964 118:576–585.Google Scholar
  31. 31.
    Edelman RR, Mattle HP, Atkinson DJ, Hoogewoud HM. MR angiography. AJR Am J Roentgenol 1990;154:937–946.PubMedGoogle Scholar
  32. 32.
    el Gammal T, Brooks BS. Conventional MR neuroangiography. AJR Am J Roentgenol 1991;156:1075–1080.PubMedGoogle Scholar
  33. 33.
    Dumoulin CL, Cline HE, Souza SP, Wagle WA, Walker MF. Three-dimensional time-offlight magnetic resonance angiography using spin saturation. Magn Reson Med 1989;11:35–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Dumoulin CL, Souza SP, Walker MF, Wagle W. Three-dimensional phase contrast angiography. Magn Reson Med 1989;9:139–149.PubMedCrossRefGoogle Scholar
  35. 35.
    Pernicone JR, Siebert JE, Potchen EJ, Pera A, Dumoulin CL, Souza SP. Three-dimensional phase-contrast MR angiography in the head and neck: preliminary report. AJNR Am J Neuroradiol 1990;11:457–466.PubMedGoogle Scholar
  36. 36.
    Blatter DD, Parker DL, Ahn SS, et al. Cerebral MR angiography with multiple overlapping thin slab acquisition. Part II. Early clinical experience. Radiology 1992;183:379–389.PubMedGoogle Scholar
  37. 37.
    Lewin JS. , Laub G. Intracranial MR angiography: a direct comparison of three time-offlight techniques. AJNR Am J Neuroradiol 1991;12:1133–1139.PubMedGoogle Scholar
  38. 38.
    Frayne R, Grist TM, Korosec FR, et al. MR angiography with three-dimensional MR digital subtraction angiography. Top Magn Reson Imaging 1996;8:366–388.PubMedCrossRefGoogle Scholar
  39. 39.
    Marchal G, Michiels J, Bosmans H, Van Hecke P. Contrast-enhanced MRA of the brain. J Comput Assist Tomogr 1992;16:25–29.PubMedCrossRefGoogle Scholar
  40. 40.
    Bosmans H, Wilms G, Marchal G, Demaerel P, Baert AL. Characterisation of intracranial aneurysms with MR angiography. Neuroradiology 1995;37:262–266.PubMedCrossRefGoogle Scholar
  41. 41.
    Laub G. A. Kaiser WA. MR angiography with gradient motion refocusing. J Comput Assist Tomogr 1988;12:377–382.PubMedCrossRefGoogle Scholar
  42. 42.
    Creasy JL, Price RR, Presbrey T, Goins D, Partain CL, Kessler RM. Gadolinium-enhanced MR angiography. Radiology 1990;175:280–283.PubMedGoogle Scholar
  43. 43.
    Kadota T, Kuriyama K, Inoue E, Fujita M, Nakagawa H, Kuroda C. MR angiography of meningioma. Magn Reson Imaging 1993;11:473–483.PubMedCrossRefGoogle Scholar
  44. 44.
    Kadota T, Nakagawa H, Kuroda C. Malignant glioma. Evaluation with 3D time-of-flight MR angiography. Acta Radiol 1998;39:227–232.PubMedGoogle Scholar
  45. 45.
    Yanaka K, Shirai S, Shibata Y, Kamezaki T, Matsumura A, Nose T. Gadolinium-enhanced magnetic resonance angiography in the planning of supratentorial glioma surgery. Neurol Med Chir (Tokyo) 1993;33:439–443.CrossRefGoogle Scholar
  46. 46.
    Yoshikawa T, Aoki S, Hori M, Nambu A, Kumagai H, Araki T. Time-resolved two-dimensional thick-slice magnetic resonance digital subtraction angiography in assessing brain tumors. Eur Radiol 2000;10:736–744.PubMedCrossRefGoogle Scholar
  47. 47.
    Wilms G, Bosmans H, Marchal G, et al. Magnetic resonance angiography of supratentorial tumours: comparison with selective digital subtraction angiography. Neuroradiology 1995;37:42–47.PubMedCrossRefGoogle Scholar
  48. 48.
    Tanaka H, Numaguchi Y, Konno S, Shrier DA, Shibata DK, Patel U. Initial experience with helical CT and 3D reconstruction in therapeutic planning of cerebral AVMs: comparison with 3D time-of-flight MRA and digital subtraction angiography. J Comput Assist Tomogr 1997;21:811–817.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang AM. Intracranial venous magnetic resonance angiography, In: Cerebrovascular Disease: Imaging and Interventional Treatment Options (Rumbaugh CL, Wang AM, Tsai FY, eds.), New York: Igaku-Shoin.1994 pp. 346–356.Google Scholar
  50. 50.
    Ayanzen RH, Bird CR, Keller PJ, McCully FJ, Theobald MR, Heiserman JE. Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. AJNR Am J Neuroradiol 2000;21:74–78.PubMedGoogle Scholar
  51. 51.
    Rippe DJ, Boyko OB, Spritzer CE, et al. Demonstration of dural sinus occlusion by the use of MR angiography. AJNR Am J Neuroradiol 1990;11:199–201.PubMedGoogle Scholar
  52. 52.
    Liang L, Korogi Y, Sugahara T, et al. Evaluation of the intracranial dural sinuses with a 3D contrast-enhanced MP-RAGE sequence: prospective comparison with 2D-TOF MR venography and digital subtraction angiography. AJNR Am J Neuroradiol 2001;22:481–492.PubMedGoogle Scholar
  53. 53.
    Heiserman JE, Dean BL, Hodak JA, et al. Neurologic complications of cerebral angiography. AJNR Am J Neuroradiol 1994;15:1401–1407;discussion 1408–1411.PubMedGoogle Scholar
  54. 54.
    Bullock PR, Mansfield P, Gowland P, Worthington BS, Firth JL. Dynamic imaging of contrast enhancement in brain tumors. Magn Reson Med 1991;19:293–298.PubMedCrossRefGoogle Scholar
  55. 55.
    Ikushima I, Korogi Y, Kuratsu J, et al. Dynamic MRI of meningiomas and schwannomas: is differential diagnosis possible? Neuroradiology 1997;39:633–638.PubMedCrossRefGoogle Scholar
  56. 56.
    Tedeschi G, Lundbom N, Raman R, et al. Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 1997;87:516–24.PubMedCrossRefGoogle Scholar
  57. 57.
    Rand SD, Prost R, Haughton V, et al. Accuracy of single-voxel proton MR spectroscopy in distinguishing neoplastic from nonneoplastic brain lesions. AJNR Am J Neuroradiol 1997;18:1695–1704.PubMedGoogle Scholar
  58. 58.
    Sijens PE, Knopp MV, Brunetti A, et al. 1H MR spectroscopy in patients with metastatic brain tumors: a multicenter study. Magn Reson Med 1995;33:818–826.PubMedCrossRefGoogle Scholar
  59. 59.
    Poptani H, Gupta RK, Roy R, Pandey R, Jain VK, Chhabra DK. Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR Am J Neuroradiol 1995;16:1593–1603.PubMedGoogle Scholar
  60. 60.
    Ott D, Hennig J, Ernst T. Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 1993;186:745–752.PubMedGoogle Scholar
  61. 61.
    Fulham MJ, Bizzi A, Dietz MJ, et al. Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 1992;185:675–686.PubMedGoogle Scholar
  62. 62.
    Segebarth CM, Baleriaux DF, Luyten PR, den Hollander JA. Detection of metabolic heterogeneity of human intracranial tumors in vivo by 1H NMR spectroscopic imaging. Magn Reson Med 1990;13:62–76.PubMedCrossRefGoogle Scholar
  63. 63.
    Negendank WG, Sauter R, Brown TR, et al. Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 1996;84:449–458.PubMedCrossRefGoogle Scholar
  64. 64.
    Preul MC, Caramanos Z, Collins DL, et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 1996;2:323–325.PubMedCrossRefGoogle Scholar
  65. 65.
    Bruhn H, Frahm J, Gyngell ML, et al. Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 1989;172:541–548.PubMedGoogle Scholar
  66. 66.
    Meyerand ME, Pipas JM, Mamourian A, Tosteson TD, Dunn JF. Classification of biopsyconfirmed brain tumors using single-voxel MR spectroscopy. AJNR Am J Neuroradiol 1999;20:117–1123.PubMedGoogle Scholar
  67. 67.
    Shimizu H, Kumabe T, Tominaga T, et al. Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy. AJNR Am J Neuroradiol 1996;17:737–747.PubMedGoogle Scholar
  68. 68.
    Dowling C, Bollen AW, Noworolski SM, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 2001;22:604–612.PubMedGoogle Scholar
  69. 69.
    Croteau D, Scarpace L, Hearshen D, et al. Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 2001;49:823–829.PubMedGoogle Scholar
  70. 70.
    Castillo M. Neuroimaging and cartography: mapping brain tumors. AJNR Am J Neuroradiol 2001;22:597–598.PubMedGoogle Scholar
  71. 71.
    Kim YJ, Chang KH, Song IC, et al. Brain abscess and necrotic or cystic brain tumor: discrimination with signal intensity on diffusion-weighted MR imaging. AJR Am J Roentgenol 1998;171:1487–1490.PubMedGoogle Scholar
  72. 72.
    Noguchi K, Watanabe N, Nagayoshi T, et al. Role of diffusion-weighted echo-planar MRI in distinguishing between brain brain abscess and tumour: a preliminary report. Neuroradiology 1999;41:171–174.PubMedCrossRefGoogle Scholar
  73. 73.
    Tsuruda JS, Chew WM, Moseley ME, Norman D. Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. AJR Am J Roentgenol 1990;155:1059–1065;discussion 1066–1068.PubMedGoogle Scholar
  74. 74.
    Park SH, Chang KH, Song IC, Kim YJ, Kim SH, Han MH. Diffusion-weighted MRI in cystic or necrotic intracranial lesions. Neuroradiology 2000;42:716–721.PubMedCrossRefGoogle Scholar
  75. 75.
    Krings T, Coenen VA, Axer H, et al. In vivo 3D visualization of normal pyramidal tracts in human subjects using diffusion weighted magnetic resonance imaging and a neuronavigation system. Neurosci Lett 2001;307:192–196.PubMedCrossRefGoogle Scholar
  76. 76.
    Eriksson SH, Rugg-Gunn FJ, Symms MR, Barker GJ, Duncan JS. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 2001;124:617–626.PubMedCrossRefGoogle Scholar
  77. 77.
    Coenen VA, Krings T, Mayfrank L, et al. Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 2001;49:86–92;discussion 92–93.PubMedGoogle Scholar
  78. 78.
    Peled S, Gudbjartsson H, Westin CF, Kikinis R, Jolesz FA. Magnetic resonance imaging shows orientation and asymmetry of white matter fiber tracts. Brain Res. 1998;780:27–33.PubMedCrossRefGoogle Scholar
  79. 79.
    Holodny AI, Menschleger MD, Liu WC, Schulder M, Kalnin AJ. Identification of the corticospinal tracts achieved using blood-oxygen-level-dependent and diffusion functional MR imaging in patients with brain tumors. AJNR Am J Neuroradiol 2001;22:83–88.PubMedGoogle Scholar
  80. 80.
    Mamata Y, Mamata H, Nabavi A, et al. Intraoperative diffusion imaging on a 0.5 Tesla interventional scanner. J Magn Reson Imaging 2001;13:115–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Inoue T, Shimizu H, Yoshimoto T. Imaging the pyramidal tract in patients with brain tumors. Clin Neurol Neurosurg 1999;101:4–10.PubMedCrossRefGoogle Scholar
  82. 82.
    Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS. Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 1993;30:161–173.PubMedCrossRefGoogle Scholar
  83. 83.
    Belliveau JW, Kennedy DN, Jr., McKinstry RC, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 1991;254:716–719.PubMedCrossRefGoogle Scholar
  84. 84.
    Kim SG, Ashe J, Hendrich K, et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 1993;261:615–617.PubMedCrossRefGoogle Scholar
  85. 85.
    Mueller WM, Yetkin FZ, Hammeke TA, et al. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 1996;39:515–520;discussion 520–521.PubMedGoogle Scholar
  86. 86.
    Yetkin FZ, Mueller WM, Morris GL, et al. Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol 1997;18:1311–1315.PubMedGoogle Scholar
  87. 87.
    Castelijns JA, Lycklama a Nijeholt GJ, Mukherji SK. Functional MRI: background and clinical applications. Semin Ultrasound CT MR 2000;21:428–433.PubMedCrossRefGoogle Scholar
  88. 88.
    Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 1993;64:803–812.PubMedCrossRefGoogle Scholar
  89. 89.
    Engel SA, Rumelhart DE, Wandell BA, et al. fMRI of human visual cortex. Nature 1994;369:525.PubMedCrossRefGoogle Scholar
  90. 90.
    Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992;89:5675–5679.PubMedCrossRefGoogle Scholar
  91. 91.
    Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Nall Acad Sci USA 1992;89:5951–5955.CrossRefGoogle Scholar
  92. 92.
    Cosgrove GR, Buchbinder BR, Jiang H. Functional magnetic resonance imaging for intracranial navigation. Neurosurg Clin North Am 1996;7:313–322.Google Scholar
  93. 93.
    Gallen CC, Sobel DF, Waltz T, et al. Noninvasive presurgical neuromagnetic mapping of somatosensory cortex. Neurosurgery 1993;33:260–268;discussion 268.PubMedCrossRefGoogle Scholar
  94. 94.
    Pujol J, Conesa G, Deus J, Lopez-Obarrio L, Isamat F, Capdevila A. Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg 1998;88:863–869.PubMedCrossRefGoogle Scholar
  95. 95.
    Maldjian JA, Schulder M, Liu WC, et al. Intraoperative functional MRI using a real-time neurosurgical navigation system. J Comput Assist Tomogr 1997;21:910–912.PubMedCrossRefGoogle Scholar
  96. 96.
    Schulder M, Maldjian JA, Liu WC, et al. Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg 1998;89:412–418.PubMedCrossRefGoogle Scholar
  97. 97.
    Puce A, Constable RT, Luby ML, et al. Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 1995;83:262–270.PubMedCrossRefGoogle Scholar
  98. 98.
    Yousry TA, Schmid UD, Jassoy AG, et al. Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 1995;195:23–29.PubMedGoogle Scholar
  99. 99.
    Jack CR, Jr., Thompson RM, Butts RK, et al. Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 1994;190:85–92.PubMedGoogle Scholar
  100. 100.
    Berger MS. , Ojemann GA. Techniques of functional localization during removal of tumors involving cerebral hemispheres, in Intraoperative Monitoring Techniques in Neurosurgery (Loftus CM, Traynelis VC, eds.), New York, McGraw-Hill, 1994; pp. 113–127.Google Scholar
  101. 101.
    Fried I, Nenov VI, Ojemann SG, Woods RP. Functional MR and PET imaging of rolandic and visual cortices for neurosurgical planning. J Neurosurg 1995;83:854–861.PubMedCrossRefGoogle Scholar
  102. 102.
    Boling W, Olivier A, Bittar RG, Reutens D. Localization of hand motor activation in Broca’s pli de passage moyen. J Neurosurg 1999;91:903–910.PubMedCrossRefGoogle Scholar
  103. 103.
    Bittar RG, Olivier A, Sadikot AF, et al. Localization of somatosensory function by using positron emission tomography scanning: a comparison with intraoperative cortical stimulation. J Neurosurg 1999;90:478–483.PubMedCrossRefGoogle Scholar
  104. 104.
    Rezai AR, Hund M, Kronberg E, et al. The interactive use of magnetoencephalography in stereotactic image-guided neurosurgery. Neurosurgery 1996;39:92–102.PubMedCrossRefGoogle Scholar
  105. 105.
    Baumann SB, Noll DC, Kondziolka DS, et al. Comparison of functional magnetic resonance imaging with positron emission tomography and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous malformation. J Image Guid Surg 1995;1:191–197.PubMedCrossRefGoogle Scholar
  106. 106.
    George JS, Aine CJ, Mosher JC, et al. Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J Clin Neurophysiol 1995;12:406–431.PubMedCrossRefGoogle Scholar
  107. 107.
    Ganslandt O, Fahlbusch R, Nimsky C, et al. Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg 1999;91:73–79.PubMedCrossRefGoogle Scholar
  108. 108.
    Nakasato N, Seki K, Kawamura T, et al. Cortical mapping using an MRI-linked whole head MEG system and presurgical decision making. Electroencephalogr Clin Neurophysiol Suppl 1996;47:333–341.PubMedGoogle Scholar
  109. 109.
    Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 1999;91:238–250.PubMedCrossRefGoogle Scholar
  110. 110.
    Dillon WP, Roberts T. The limitations of functional MR imaging: a caveat. AJNR Am J Neuroradiol 1999;20:536.PubMedGoogle Scholar
  111. 111.
    Yousry TA, Schmid UD, Schmidt D, Hagen T, Jassoy A, Reiser MF. The central sulcal vein: a landmark for identification of the central sulcus using functional magnetic resonance imaging. J Neurosurg 1996;85:608–617.PubMedCrossRefGoogle Scholar
  112. 112.
    Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA, Kalnin AJ. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 2000;21:1415–2422.PubMedGoogle Scholar
  113. 113.
    Horsley V. , Clarke RH. The structure and function of the cerebellum examined by new method. Brain 1908;31:45–124.CrossRefGoogle Scholar
  114. 114.
    Spiegel EA, T. WH, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science 1947;106:349–350.PubMedCrossRefGoogle Scholar
  115. 115.
    Brown RA. A computerized tomography-computer graphics approach to stereotaxic localization. J Neurosurg 1979;50:715–720.PubMedCrossRefGoogle Scholar
  116. 116.
    Heilbrun MP, Roberts TS, Apuzzo ML, Wells TH, Jr., Sabshin JK. Preliminary experience with Brown-Roberts-Wells (BRW) computerized tomography stereotaxic guidance system. J Neurosurg 1983;59:217–222.PubMedCrossRefGoogle Scholar
  117. 117.
    Couldwell WT. , Apuzzo ML. Initial experience related to the use of the Cosman-RobertsWells stereotactic instrument. Technical note. J Neurosurg 1990;72:145–148.PubMedCrossRefGoogle Scholar
  118. 118.
    Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry 1983;46:797–803.PubMedCrossRefGoogle Scholar
  119. 119.
    Apuzzo M. LSabshin JK. Computed tomographic guidance stereotaxis in the management of intracranial mass lesions. Neurosurgery 1983;12:277–285.PubMedCrossRefGoogle Scholar
  120. 120.
    Kelly PJ, Kall BA, Goerss S, Earnest F.t. Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms. J Neurosurg 1986;64:427–439.PubMedCrossRefGoogle Scholar
  121. 121.
    Paleologos TS, Wadley JP, Kitchen ND, Thomas DG. Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided meningioma surgery. Neurosurgery 2000;47:40–47;discussion 47–48.PubMedGoogle Scholar
  122. 122.
    Hall WA, Liu H, Martin AJ, Pozza CH, Maxwell RE, Truwit CL. Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery. Neurosurgery 2000;46:632–641;discussion 641–642.PubMedCrossRefGoogle Scholar
  123. 123.
    Golfinos JG, Fitzpatrick BC, Smith LR, Spetzler RF. Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 1995;83:197–205.PubMedCrossRefGoogle Scholar
  124. 124.
    Gumprecht HK, Widenka DC, Lumenta CB. BrainLab VectorVision Neuronavigation System: technology and clinical experiences in 131 cases. Neurosurgery 1999;44:97–104;discussion 104–105.PubMedCrossRefGoogle Scholar
  125. 125.
    Sipos EP, Tebo SA, Zinreich SJ, Long DM, Brem H. In vivo accuracy testing and clinical experience with the ISG Viewing Wand. Neurosurgery 1996;39:194–202; discussion 202–204.PubMedCrossRefGoogle Scholar
  126. 126.
    Sure U, Alberti O, Petermeyer M, Becker R, Bertalanffy H. Advanced image-guided skull base surgery. Surg. Neurol. 2000;53:563–572;discussion 572.PubMedCrossRefGoogle Scholar
  127. 127.
    Barnett GH, Kormos DW, Steiner CP, Weisenberger J. Intraoperative localization using an armless, frameless stereotactic wand. Technical note. J Neurosurg 1993;78:510–514.PubMedCrossRefGoogle Scholar
  128. 128.
    Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 1986;65:545–549.PubMedCrossRefGoogle Scholar
  129. 129.
    Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol 1987;27:543–547.PubMedCrossRefGoogle Scholar
  130. 130.
    Zinreich SJ, Tebo SA, Long DM, et al. Frameless stereotaxic integration of CT imaging data: accuracy and initial applications. Radiology 1993;188:735–742.PubMedGoogle Scholar
  131. 131.
    Chalif DJ, Dufresne CR, Ransohoff J, McCarthy JA. Three-dimensional computed tomographic reconstructions of intracranial meningiomas. Neurosurgery 1988;23:570–575.PubMedCrossRefGoogle Scholar
  132. 132.
    Barnett GH, Steiner CP, Weisenberger J. Intracranial meningioma resection using frameless stereotaxy. J Image Guid Surg 1995;1:46–52.PubMedCrossRefGoogle Scholar
  133. 133.
    Gering DT, Nabavi A, Kikinis R, et al. An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 2001;13:967–975.PubMedCrossRefGoogle Scholar
  134. 134.
    Walton L, Hampshire A, Forster DM, Kemeny AA. Accuracy of stereotactic localisation using magnetic resonance imaging: a comparison between two- and three-dimensional studies. Stereotact Funct Neurosurg 1996;66(Suppl 0:49–56.PubMedCrossRefGoogle Scholar
  135. 135.
    Walton L, Hampshire A, Forster DM, Kemeny AA. A phantom study to assess the accu-racy of stereotactic localization, using T1-weighted magnetic resonance imaging with the Leksell stereotactic system. Neurosurgery 1996;38:170–176;discussion 176–178.PubMedCrossRefGoogle Scholar
  136. 136.
    Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD. Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 1998;43:749–758;discussion 758–760.PubMedCrossRefGoogle Scholar
  137. 137.
    Black PM, Alexander E, III, Martin C, et al. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 1999;45:423–431;discussion 431–433.PubMedCrossRefGoogle Scholar
  138. 138.
    Maurer CR, Jr., Hill DL, Martin AJ, et al. Investigation of intraoperative brain deformation using a 1.5-T interventional MR system: preliminary results. IEEE Trans Med Imaging 1998;17:817–825.PubMedCrossRefGoogle Scholar
  139. 139.
    Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 2000;47:1070–1079;discussion 1079–1080.PubMedCrossRefGoogle Scholar
  140. 140.
    Nauta HJ. Error assessment during “image guided” and “imaging interactive” stereotactic surgery. Comput Med Imaging Graph 1994;18:279–287.PubMedCrossRefGoogle Scholar
  141. 141.
    Hill DL, Maurer CR, Jr., Maciunas RJ, Barwise JA, Fitzpatrick JM, Wang MY. Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery 1998;43:514–526;discussion 527–528.PubMedCrossRefGoogle Scholar
  142. 142.
    Dorward NL, Alberti O, Velani B, et al. Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 1998;88:656–662.PubMedCrossRefGoogle Scholar
  143. 143.
    Knauth M, Wirtz CR, Tronnier VM, Aras N, Kunze S, Sartor K. Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol 1999;20:1642–1646.PubMedGoogle Scholar
  144. 144.
    Nabavi A, Black PM, Gering DT, et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 2001;48:787–797;discussion 797–798.PubMedGoogle Scholar
  145. 145.
    Lipson AC, Gargollo PC, Black PM. Intraoperative magnetic resonance imaging: considerations for the operating room of the future. J Clin Neurosci 2001;8:305–310.PubMedCrossRefGoogle Scholar
  146. 146.
    Lunsford LD, Parrish R, Albright L. Intraoperative imaging with a therapeutic computed tomographic scanner. Neurosurgery 1984;15:559–561.PubMedCrossRefGoogle Scholar
  147. 147.
    Lunsford LD. A dedicated CT system for the stereotactic operating room. Appl Neurophysiol 1982;45:374–378.PubMedGoogle Scholar
  148. 148.
    Steinmeier R, Fahlbusch R, Ganslandt O, et al. Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 1998;43:739–747;discussion 747–748.PubMedCrossRefGoogle Scholar
  149. 149.
    Jolesz FA. , Blumenfeld SM. Interventional use of magnetic resonance imaging. Magn Reson Quart 1994;10:85–96.Google Scholar
  150. 150.
    Black PM, Moriarty T, Alexander E, III, et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 1997;41: 831–842;discussion 842–845.PubMedCrossRefGoogle Scholar
  151. 151.
    Albert FK, Forsting M, Sartor K, Adams HP, Kunze S. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 1994;34:45–60;discussion 60–61.PubMedCrossRefGoogle Scholar
  152. 152.
    Simpson JR, Horton J, Scott C, et al. Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 1993;26:239–244.PubMedCrossRefGoogle Scholar
  153. 153.
    Devaux BC, O’Fallon JR, Kelly PJ. Resection, biopsy, and survival in malignant glial neoplasms. A retrospective study of clinical parameters, therapy, and outcome. J Neurosurg 1993;78:767–775.PubMedCrossRefGoogle Scholar
  154. 154.
    Alexander E, III, Moriarty TM, Kikinis R, Jolesz FA. Innovations in minimalism: intraoperative MRI. Clin Neurosurg 1996;43:338–352.PubMedGoogle Scholar
  155. 155.
    Moriarty T, Kikinis R, Jolesz FA, Black PM, Alexander E, III. Magnetic resonance imaging therapy: Intraoperative MR imaging, in Neurosurgery Clinics ofNorth America: Clinical Frontiers of Interactive Image Guided Neurosurgery (Maciunas RJ, ed). Philadelphia, W.B. Saunders, 1996; pp. 323–331.Google Scholar
  156. 156.
    Lenz GW. , Dewey C. An open MRI system used for interventional procedures: Current research and initial clinical results, in: Computer Assisted Radiology (Lemke HU, Inamura K, Jaffe CC, and Vannier MW, eds.). Berlin, Springer Verlag, 1995; pp. 1180–1187.Google Scholar
  157. 157.
    Wirtz CR, Bonsanto MM, Knauth M, et al. Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg 1997;2:172–179.PubMedGoogle Scholar
  158. 158.
    Hall WA, Martin AJ, Liu H, Nussbaum ES, Maxwell RE, Truwit CL. Brain biopsy using high-field strength interventional magnetic resonance imaging. Neurosurgery 1999;44:807–813;discussion 813–814.PubMedCrossRefGoogle Scholar
  159. 159.
    Hall WA, Martin AJ, Liu H, et al. High-field strength interventional magnetic resonance imaging for pediatric neurosurgery. Pediatr Neurosurg 1998;29:253–259.PubMedCrossRefGoogle Scholar
  160. 160.
    Sutherland GR, Louw DF. Intraoperative MRI: a moving magnet. Cmaj 1999;161:1293.PubMedGoogle Scholar
  161. 161.
    Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J. A mobile highfield magnetic resonance system for neurosurgery. J Neurosurg 1999;91:804–813.PubMedCrossRefGoogle Scholar
  162. 162.
    Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z. Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery 2001;48:799–807;discussion 807–809.PubMedGoogle Scholar
  163. 163.
    Schulder M, Liang D, Carmel PW. Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 2001;94:936–945.PubMedCrossRefGoogle Scholar
  164. 164.
    Bohinski RJ, Warnick RE, Gaskill-Shipley MF, et al. Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transphenoidal microsurgery. Neurosurgery 2001;49:1133–1144.PubMedGoogle Scholar
  165. 165.
    Ammirati M, Vick N, Liao YL, Ciric I, Mikhael M. Effect of the extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplastic astrocytomas. Neurosurgery 1987;21:201–206.PubMedCrossRefGoogle Scholar
  166. 166.
    Ciric I, Ammirati M, Vick N, Mikhael M. Supratentorial gliomas: surgical considerations and immediate postoperative results. Gross total resection versus partial resection. Neurosurgery 1987;21:21–26.PubMedCrossRefGoogle Scholar
  167. 167.
    Chandler KL, Prados MD, Malec M, Wilson CB. Long-term survival in patients with glioblastoma multiforme. Neurosurgery 1993;32:716–720;discussion 720.PubMedCrossRefGoogle Scholar
  168. 168.
    Bricolo A, Turazzi S, Cristofori L, et al. Experience in “radical” surgery of supratentorial gliomas in adults. J Neurosurg Sci 1990;34:297–298.Google Scholar
  169. 169.
    Obwegeser A, Ortler M, Seiwald M, Ulmer H, Kostron H. Therapy of glioblastoma multiforme: a cumulative experience of 10 years. Acta Neurochir (Wien) 1995;137:29–33.CrossRefGoogle Scholar
  170. 170.
    Berger MS. Intraoperative MR imaging: making an impact on outcomes for patients with brain tumors. AJNR Am J Neuroradiol 2001;22:2.PubMedGoogle Scholar
  171. 171.
    Keles GE, Lamborn KR, Berger MS. Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg 2001;95:735–745.PubMedCrossRefGoogle Scholar
  172. 172.
    Berger MS, Deliganis AV, Dobbins J, Keles GE. The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer 1994;74:1784–1791.PubMedCrossRefGoogle Scholar
  173. 173.
    Niranjan A. , Lunsford LD. Radiosurgery: where we were, are, and may be in the third millennium. Neurosurgery 2000;46:531–543.PubMedCrossRefGoogle Scholar
  174. 174.
    Leksell L. The stereotactic method and radiosurgery of the brain. Acta Chir Scand 1951;102:316–319.PubMedGoogle Scholar
  175. 175.
    Kondziolka D, Dempsey PK, Lunsford LD, et al. A comparison between magnetic resonance imaging and computed tomography for stereotactic coordinate determination. Neurosurgery 1992;30:402–406;discussion 406–407.PubMedCrossRefGoogle Scholar
  176. 176.
    Flickinger JC, Kondziolka D, Niranjan A, Lunsford LD. Results of acoustic neuroma radiosurgery: an analysis of 5 years’ experience using current methods. J Neurosurg 2001;94:1–6.PubMedCrossRefGoogle Scholar
  177. 177.
    Guo WY, Chu WC, Wu MC, et al. An evaluation of the accuracy of magnetic-resonanceguided Gamma Knife surgery. Stereotact Funct Neurosurg 1996;66(suppl 1):85–92.PubMedCrossRefGoogle Scholar
  178. 178.
    Kondziolka D. , Flickinger JC. Use of magnetic resonance imaging in stereotactic surgery. A survey of members of the American Society of Stereotactic and Functional Neurosurgery. Stereotact Funct Neurosurg 1996;66:193–197.PubMedCrossRefGoogle Scholar
  179. 179.
    Gerdes JS, Hitchon PW, Neerangun W, Tomer JC. Computed tomography versus magnetic resonance imaging in stereotactic localization. Stereotact Funct Neurosurg 1994;63:124–129.PubMedCrossRefGoogle Scholar
  180. 180.
    Carter DA, Parsai EI, Ayyangar KM. Accuracy of magnetic resonance imaging stereotactic coordinates with the cosman-roberts-wells frame. Stereotact Funct Neurosurg 1999;72:35–46.PubMedCrossRefGoogle Scholar
  181. 181.
    Foote KD, Friedman WA, Buatti JM, Bova FJ, Meeks SA. Linear accelerator radiosurgery in brain tumor management. Neurosurg Clin North Am 1999;10:203–242.Google Scholar
  182. 182.
    Cohen DS, Lustgarten JH, Miller E, Khandji AG, Goodman RR. Effects of coregistration of MR to CT images on MR stereotactic accuracy. J Neurosurg 1995;82:772–779.PubMedCrossRefGoogle Scholar
  183. 183.
    Noren G, Greitz D, Hirsch A, Lax I. Gamma knife surgery in acoustic tumours. Acta Neurochir Suppl (Wien) 1993;58:104–107.Google Scholar
  184. 184.
    Foote KD, Friedman WA, Buatti JM, Meeks SL, Bova FJ, Kubilis PS. Analysis of risk factors associated with radiosurgery for vestibular schwannoma. J Neurosurg 2001;95:440 149.Google Scholar
  185. 185.
    Lunsford LD, Kondziolka D, Flickinger JC. Acoustic Neuroma management: Evolution and revolution, in Radiosurgery (Kondziolka D, ed.). Basel, Karger, 1998; pp. 1–7.Google Scholar
  186. 186.
    Kondziolka D. Functional radiosurgery. Neurosurgery 1999;44:12–20;discussion 20–22.PubMedCrossRefGoogle Scholar
  187. 187.
    Witt TC, Kondziolka D, Baumann SB, Noll DC, Small SL, Lunsford LD. Preoperative cortical localization with functional MRI for use in stereotactic radiosurgery. Stereotact Funct Neurosurg 1996;66:24–29.PubMedCrossRefGoogle Scholar
  188. 188.
    Lunsford LD, Kondziolka D, Maitz A, Flickinger JC. Black holes, white dwarfs and supernovas: imaging after radiosurgery. Stereotact. Funct. Neurosurg. 1998;70(Suppl l):210.Google Scholar

Copyright information

© Humana Press Inc. Totowa, NJ 2003

Authors and Affiliations

There are no affiliations available

Personalised recommendations