Advertisement

Magnetic Resonance Imaging-Guided Stereotactic Biopsy in the Central Nervous System

  • Ion-Florin Talos
  • Peter M. Black
Chapter

Abstract

Neurobiopsy allows for sampling of central nervous system (CNS) lesions with high accuracy and represents one of the most common neurosurgical procedures. The rapid development of new imaging modalities (computed tomography [CT] and magnetic resonance imaging [MRI]) and surgical navigation techniques over the past three decades have significantly impacted brain biopsy techniques. Moreover, they have altered the indications spectrum for biopsies of CNS lesions. Tumors previously considered inoperable because of their deep location and/or involvement of functionally critical structures gradually became more accessible for radical surgical therapy.

Keywords

Magn Reson Image Brain Biopsy Brain Shift White Matter Fiber Tract Frameless Stereotaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landi AMR, DeGrandi C, Crespi A, Montanari G, Sganzerla EP, Gaini SM. Accuracy of stereotactic localisation with magnetic resonance compared to CT scan: experimental findings. Acta Neurochir 2001;143:59:1–601.Google Scholar
  2. 2.
    Schulder MFP, Lavenhar MA, Carmel PW. The relationship of imaging techniques to the accuracy of frameless stereotaxy. Stereotact Funct Neurosurg 1999;72:131–141.Google Scholar
  3. 3.
    Black PM, Alexander E III, Martin C, et al. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 1999;45:42:1–433.Google Scholar
  4. 4.
    Moriarty TM, Quinones-Hinojosa A, Larson PS, et al. Frameless stereotactic neurosurgery using intraoperative magnetic resonance imaging: stereotactic brain biopsy. Neurosurgery 2000;47:113:1–1146.Google Scholar
  5. 5.
    Dietrich J, et al. [Brain tumor resections in an open 0.5-T MRT. 2 years’ experiences from the neuroradiological viewpoint]. Radiology 1999;39:1998:1–94.CrossRefGoogle Scholar
  6. 6.
    Schneider JP, et al. Gross-total surgery of supratentorial low-grade gliomas under intraoperative MR guidance. Am J Neuroradiol 2001;22:81–98.Google Scholar
  7. 7.
    Liu H, Hall WA, Martin AJ, Maxwell RE, Truwit CL. (2000) MR-guided and MR-monitored neurosurgical procedures at 1.5 T. J Computer Assist Tomogr 2000;24:90:1–918.Google Scholar
  8. 8.
    Giese A, Westphal M. Glioma invasion in the central nervous system. Neurosurgery 1996;39:23:1–50; discussion 25:1–2.CrossRefGoogle Scholar
  9. 9.
    Kumar, AJ, Leeds NE, Fuller GN, et al. Malignant gliomas: MR imaging spectrum of radiation therapy-and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000;217:37:1–384.Google Scholar
  10. 10.
    Hall WA, Martin A, Liu H, Truwit CL. Improving diagnostic yield in brain biopsy: Coupling spectroscopic targeting with real-time needle placement. J Magn Reson Imaging 2001;13:11–15.CrossRefGoogle Scholar
  11. 11.
    Schwartz RB, Hsu L, Kacher DF, et al. Intraoperative dynamic MR imaging: localization of sites of brain tumor recurrence after high-dose radiotherapy. J Magn Reson Imaging 1998;8:108:1–1089.Google Scholar
  12. 12.
    Cipri S, et al. Clinical evaluation of thallium-201 single photon emission computed tomography in equivocal neuroradiological supratentorial lesions. J Neurosurg Sci 2001;45: 71–82.Google Scholar
  13. 13.
    Kinuya K, et al. Differential diagnosis in patients with ring-like thallium-201 uptake in brain SPECT. Ann Nucl Med 2002;16: 411–421.Google Scholar
  14. 14.
    Lam WW, et al. Pre-operative grading of intracranial glioma. Acta Radiol 2001;42: 541–554.CrossRefGoogle Scholar
  15. 15.
    Schlemmer HP, et al. Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy. Neuroradiology 2002;44 211–222.Google Scholar
  16. 16.
    Chao ST, et al. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 2001;96:191–197.PubMedCrossRefGoogle Scholar
  17. 17.
    De Witte O, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 2001;95:741–750.Google Scholar
  18. 18.
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001;412:151–157.CrossRefGoogle Scholar
  19. 19.
    Mamata H, Mamata Y, Westin C-F, Shenton ME, Kikinis R, Jolesz FA, Maier SE. Highresolution line-scan diffusion-tensor MRI of white matter fiber tract anatomy. AJNR Am J Neuroradiol 2002;23:61–75.Google Scholar
  20. 20.
    Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 1999;42:521–540.CrossRefGoogle Scholar
  21. 21.
    Catani M, Howard RJ, Pajevic S, Jones DK. Virtulal in vivo dissection of white matter fasciculi in the human brain. Neuroimage 2002;17:71–94.CrossRefGoogle Scholar
  22. 22.
    Atlas SW, Thulborn KR. MR detection of hyperacute parenchymal hemorrhage of the brain. Am J Neuroradiol 1998;19: 1471–1507.PubMedGoogle Scholar
  23. 23.
    Golfinos JG, et al. Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 1995;83:191–205.CrossRefGoogle Scholar
  24. 24.
    Guthrie BL, Adler JR Jr. Computer-assisted preoperative planning, interactive surgery, and frameless stereotaxy. Clin Neurosurg 1992;38:111–131.Google Scholar
  25. 25.
    Olivier A et al. Frameless stereotaxy for surgery of the epilepsies: preliminary experience. Technical note. J Neurosurg 1994;81:621–33.Google Scholar
  26. 26.
    Barnett GH, et al. Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging. Neurosurgery 1993;33:671–678.Google Scholar
  27. 27.
    Pattisapu JV, Walker ML, Heilbrun MP. Stereotactic surgery in children. Pediatr Neurosci 1989;15:61–65.CrossRefGoogle Scholar
  28. 28.
    Walker DG, Ohaegbulam C, Black PM. Frameless stereotaxy as an alternative to fluoroscopy for transsphenoidal surgery: use of the InstaTrak-3000 and a novel headset. J Clin Neurosci 2002;9:291–297.Google Scholar
  29. 29.
    Zaaroor M, Bejerano Y, Weinfeld Z, Ben-Haim S. Novel magnetic technology for intraoperative intracranial frameless navigation: in vivo and in vitro results. Neurosurgery 2001;48:1101–1108.CrossRefGoogle Scholar
  30. 30.
    Manwaring, KHMM, Moss SD. Magnetic field guided endoscopic dissection through a burr hole may avoid more invasive craniotomies. A preliminary report. Acta Neurochir Suppl (Wien)1994;61:31–39. Google Scholar
  31. 31.
    Nabavi A, Black PM, Gering DT, et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 2001;48:781–798.Google Scholar
  32. 32.
    Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch G. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 2000;47:1071–1080.CrossRefGoogle Scholar
  33. 33.
    Bonsanto MM, et al. Initial experience with an ultrasound-integrated single-RACK neuronavigation system. Acta Neurochir (Wien) 2001;143:1121–1132.CrossRefGoogle Scholar
  34. 34.
    Trantakis C, et al. Iterative neuronavigation using 3D ultrasound. A feasibility study. Neurol Res 2002;24:661–670.CrossRefGoogle Scholar
  35. 35.
    Lee JY, et al. Brain surgery with image guidance: current recommendations based on a 20year assessment. Stereotact Funct Neurosurg 2000;75:31–48.CrossRefGoogle Scholar
  36. 36.
    Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J. A mobile highfield magnetic resonance system for neurosurgery. J Neurosurg 1999;91:804–813.PubMedCrossRefGoogle Scholar
  37. 37.
    Fahlbusch R, Ganslandt O, Nimsky C. Intraoperative imaging with open magnetic resonance imaging and neuronavigation. Childs Nery Syst 2000;16:821–831.CrossRefGoogle Scholar
  38. 38.
    Hadani M, Feldman Z, Berkenstadt H, Ram Z. Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery 2001;48 791–808.Google Scholar
  39. 39.
    Gering DT, et al. An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 2001;13:961–975.CrossRefGoogle Scholar
  40. 40.
    Wells WM III, Kikinis R, Jolesz FA. Adaptive segmentation of MRI Data. IEEE Trans Med Imaging 1996;15:421–443.CrossRefGoogle Scholar
  41. 41.
    Lorensen W, Marching cubes: a high resolution 3D surface construction algorithm. Computer Graphics 1987;21:161–189.CrossRefGoogle Scholar
  42. 42.
    Warfield SK, Talos F, Tei A, et al. Real-time registration of volumetric brain MRI by biomechanical simulation of deformation during image guided neurosurgery. Comput Visual Sci 2002;5:1–11.CrossRefGoogle Scholar
  43. 43.
    Truwit CL, Liu H. Prospective stereotaxy: a novel method of trajectory alignment using real-time image guidance. J Magn Reson Imaging 2001;13: 451–457.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. Totowa, NJ 2003

Authors and Affiliations

  • Ion-Florin Talos
  • Peter M. Black

There are no affiliations available

Personalised recommendations