Advertisement

Molecular Imaging of Cancer Using Fluorescent Probe Technology

  • Farouc A. Jaffer
  • Vasilis Ntziachristos
  • Ralph Weissleder
Chapter

Abstract

Clinical imaging is the traditional cornerstone of cancer diagnosis. Detailed anatomic, physiologic, and metabolic information can be obtained by conventional techniques, such as X-ray, computed tomography (CT), ultrasound, nuclear, and magnetic resonance imaging (MRI). In our opinion, the next major advance in clinical imaging will be the ability to image specific molecules and molecular function, broadly encompassed in the field of molecular imaging. Molecular imaging couples sensitive clinical imaging systems with “smart” probes that interact with specific molecules. With this approach, image contrast can be directly ascribed to the presence or function of a target molecule. Ultimately, molecular imaging of tumor receptors and enzyme function is expected to have a major impact in the diagnosis and treatment of cancer, as well as in the field of cancer biology (1).

Keywords

Activatable Probe Molecular Beacon Reflectance Imaging Diffuse Optical Tomography NIRF Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2001;2:11–18.CrossRefGoogle Scholar
  2. 2.
    Andersson-Engels S, Klinteberg C, Svanberg K, Svanberg S. In vivo fluorescence imaging for tissue diagnostics. Phys Med Biol 1997;42:815–824.PubMedCrossRefGoogle Scholar
  3. 3.
    Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2000;2: 89–117.PubMedCrossRefGoogle Scholar
  4. 4.
    Shah N, Cerussi A, Eker C, et al. Noninvasive functional optical spectroscopy of human breast tissue. Proc Nall Acad Sci USA 2001;98:4420–4425.CrossRefGoogle Scholar
  5. 5.
    Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001;19:316–317.PubMedCrossRefGoogle Scholar
  6. 6.
    Ballou B, Fisher GW, Waggoner AS, et al. Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies. Cancer Immunol Immunother 1995;41:257–263.PubMedCrossRefGoogle Scholar
  7. 7.
    Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R. Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest Radiol 2000;35:479–485.PubMedCrossRefGoogle Scholar
  8. 8.
    Weissleder R, Tung CH, Mahmood U, Bogdanov A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotech 1999;17:375–378.CrossRefGoogle Scholar
  9. 9.
    Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 2000;97:11990–11995.PubMedCrossRefGoogle Scholar
  10. 10.
    Contag CH, Spilman SD, Contag PR, et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 1997;66:523–531.PubMedCrossRefGoogle Scholar
  11. 11.
    Hope-Ross M, Yannuzzi LA, Gragoudas ES, et al. Adverse reactions due to indocyanine green. Ophthalmology 1994;101:529–533.PubMedGoogle Scholar
  12. 12.
    Ntziachristos V, Yodh AG, Schnall M, Chance B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci USA 2000;97:2767–2772.PubMedCrossRefGoogle Scholar
  13. 13.
    Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 2000;72: 392–398.PubMedCrossRefGoogle Scholar
  14. 14.
    Becker A, Hessenius C, Licha K, et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol 201;19:327–331.Google Scholar
  15. 15.
    Neri D, Carnemolla B, Nissim A, et al. Targeting by affinity-matured recombinant antibody fragments on an angiogenesis associated fibronectin isoform. Nat Biotechnol 1997;15:1271–1275.PubMedCrossRefGoogle Scholar
  16. 16.
    Zaheer A, Lenkinski RE, Mahmood A, Jones AG, Cantley LC, Frangioni JV. In vivo nearinfrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 2001;19:1148–1154.PubMedCrossRefGoogle Scholar
  17. 17.
    Tyagi, S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 1996;14:303–308.PubMedCrossRefGoogle Scholar
  18. 18.
    Tyagi S, Marras SAE, Kramer FR. Wavelength-shifting molecular beacons. Nat Biotechnol 2000;18: 1191–1196.PubMedCrossRefGoogle Scholar
  19. 19.
    Weissleder, R, Mahmood U. Molecular imaging. Radiology 2001;219:316–333.PubMedGoogle Scholar
  20. 20.
    Tung C, Mahmood U, Bredow, S, Weissleder R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 2000;60:4953–4958.PubMedGoogle Scholar
  21. 21.
    Tung CH, Gerszten RE, Jaffer FA, Weissleder R. A novel near infrared fluorescence sensor for detection of thrombin activation in blood. Chem Biochem 2002;3:207–211.Google Scholar
  22. 22.
    Bremer C, Tung C, Weissleder R. Imaging of metalloproteinase inhibition in vivo. Nat Med 201;7:743–748.Google Scholar
  23. 23.
    Tung CH, Bredow S, Mahmood U, Weissleder R. Preparation of a cathepsin D sensitive near infrared fluorescence probe for imaging. Bioconjug Chem 1999;10:892–896.PubMedCrossRefGoogle Scholar
  24. 24.
    Callahan RJ, Bogdanov A, Fischman AJ, Brady TJ, Weissleder R. Preclinical evaluation and phase I clinical trial of a 99mTc-labeled synthetic polymer used in blood pool imaging. AJR Am J Roentgenol 1998;71:137–143.Google Scholar
  25. 25.
    Marecos E, Weissleder R, Bogdanov A Jr. Antibody-mediated versus nontargeted delivery in a human small cell lung carcinoma model. Bioconjug Chem 1998;9:184–191.PubMedCrossRefGoogle Scholar
  26. 26.
    Korlach J, Schwille P, Webb WW, Feigenson GW. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 1999;96:8461–8466.PubMedCrossRefGoogle Scholar
  27. 27.
    Rajadhyaksha M, Grossman M, Esterowitz D, Webb RH, Anderson RR. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol 1995;104:946–952.PubMedCrossRefGoogle Scholar
  28. 28.
    So PT, Konig K, Berland K, et al. New time-resolved techniques in two-photon microscopy. Cell Mol Biol 1998;44:771–793.PubMedGoogle Scholar
  29. 29.
    Masters BR, So PT, Gratton E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J 1997;72:2405–2412.PubMedCrossRefGoogle Scholar
  30. 30.
    Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura, D, Jain RK. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 2001;7:864–868.PubMedCrossRefGoogle Scholar
  31. 31.
    Dellian M, Yuan F, Trubetskoy VS, Torchilin VP, Jain RK. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br J Cancer 2000;82:1513–1518.PubMedCrossRefGoogle Scholar
  32. 32.
    Monsky WL, Fukumura D, Gohongi T, et al. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res 1999;59:4129–4135.PubMedGoogle Scholar
  33. 33.
    Tearney GJ, Brezinski ME, Bouma BE, et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 1997;276:2037–2039.PubMedCrossRefGoogle Scholar
  34. 34.
    Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000;2:9–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Farkas DL, Becker D. Applications of spectral imaging: detection and analysis of human melanoma and its precursors. Pigment Cell Res 2001;14:2–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Mahmood U, Tung C, Bogdanov A, Weissleder R. Near infrared optical imaging system to detect tumor protease activity. Radiology 1999;211:866–870.Google Scholar
  37. 37.
    Reynolds JS, Troy TL, Mayer RH, et al. Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem Photobiol 1999;70:87–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Ntziachristos V, Hielscher AH, Yodh AG, Chance B. Diffuse optical tomography of highly heterogeneous media. IEEE Trans Med Imaging 2001;20:470–478.PubMedCrossRefGoogle Scholar
  39. 39.
    Chance B, Kang K, He L, Weng J, Sevick E. Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions. Proc Natl Acad Sci USA 1993;90:3423–3427.PubMedCrossRefGoogle Scholar
  40. 40.
    Pasricha PJ, Motamedi M. Optical biopsies, “bioendoscopy,” and why the sky is blue: the coming revolution in gastrointestinal imaging. Gastroenterology 2002;122:571–575.PubMedCrossRefGoogle Scholar
  41. 41.
    Schotland J-C Continuous wave diffusion imaging. J Opt Soc Am 1997;A-14:275–279.CrossRefGoogle Scholar
  42. 42.
    Yodh AG, Chance B. Spectroscopy and Imaging with Diffusing Light. Physics Today 1995;48:34–40.CrossRefGoogle Scholar
  43. 43.
    Barbour R, Graber H, Chang J, Barbour S, Koo P, Aronson R. MRI-guided optical tomography: Prospects and computation for a new imaging method. IEEE Comp Sci Eng 1995;2:63–77.CrossRefGoogle Scholar
  44. 44.
    Colak S, van der Mark M, Hooft G, Hoogenraad J, van der Linden E, Kuijpers F. Clinical optical tomography and NIR spectroscopy for breast cancer detection. IEEE J Selected Topics Quantum Electronics 1999;5:1143–1158.CrossRefGoogle Scholar
  45. 45.
    Arridge SR. Optical tomography in medical imaging. Inverse Problems 1999;15:R41–R93.CrossRefGoogle Scholar
  46. 46.
    Jiang H, Paulsen K, Osterberg U, Patterson M. Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms. Phys Med Biol 1998;43:675–693.PubMedCrossRefGoogle Scholar
  47. 47.
    Ntziachristos V, Ma XH, Chance B. Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography. Rev Sci Instru 1998;69:4221–4233.CrossRefGoogle Scholar
  48. 48.
    Chernomordik V, Hattery D, Gannot I, Gandjbakhche AH. Inverse method 3-D reconstruction of localized in vivo fluorescence Application to Sjogren syndrome. IEEE J Selected Topics Quantum Electronics 1999;5:930–935.CrossRefGoogle Scholar
  49. 49.
    Ntziachristos V, Weissleder R. Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation. Optics Lett 2001;26:893–895.CrossRefGoogle Scholar
  50. 50.
    Pogue B, Poplack S, McBride T, Wells W, Osterman K, Osterberg U. Hemoglobin imaging of breast tumors with near-infrared tomography. Radiology 2000;214:GO5H.Google Scholar
  51. 51.
    Hillman EMC, Hebden JC, Schweiger M, et al. Time resolved optical tomography of the human forearm. Phys Med Biol 2001;46:1117–1130.PubMedCrossRefGoogle Scholar
  52. 52.
    Benaron DA, Hintz SR, Villringer A, et al. Noninvasive functional imaging of human brain using light. J Cerebral Blood Flow Metab 2000;20:469–477.CrossRefGoogle Scholar
  53. 53.
    Ntziachristos V, Tung C-H, Bremer C, Weissleder R. Fluorescence-mediated tomography reslves protease activity in vivo. Nat. Med, 2002;8:757–760.PubMedCrossRefGoogle Scholar
  54. 54.
    Ntziachristos V, Ripoll J, Weissleder R. Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Opt Lett 2002;27:333–335.PubMedCrossRefGoogle Scholar
  55. 55.
    Hashida S, Towatari T, Kominami, E, Katunuma N. Inhibitions by E-64 derivatives of rat liver cathepsin B and cathepsin L in vitro and in vivo. J Biochem (Tokyo) 1980;88:1805–1811.Google Scholar
  56. 56.
    Bogdanov A, Lin C, Matuszewski L, Weissleder R. Cellular activation of self-quenched fluorescent reporter probe in tumor microenvironment. Neoplasia, 2002;4:228–236.PubMedCrossRefGoogle Scholar
  57. 57.
    Reubi JC, Lang W, Maurer R, Koper JW, Lamberts SW. Distribution and biochemical characterization of somatostatin receptors in tumors of the human central nervous system. Cancer Res. 1987;47:5758–5764.PubMedGoogle Scholar
  58. 58.
    Demchik LL, Sameni M, Nelson K, Mikkelsen, T, Sloane BF. Cathepsin B and glioma invasion. Int J Dev Neurosci 1999;17:483–494.PubMedCrossRefGoogle Scholar
  59. 59.
    Winawer SJ, Fletcher RH, Miller L, et al. Colorectal cancer screening: clinical guidelines and rationale. Gastroenterology 1997;112:594–642.PubMedCrossRefGoogle Scholar
  60. 60.
    Marten K, Bremer C, Khazaie K, et al. Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology 2002;122:406–414.PubMedCrossRefGoogle Scholar
  61. 61.
    Emmert-Buck MR, Roth MJ, Zhuang Z, et al. Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am. J. Pathol 1994;145:1285–1290.PubMedGoogle Scholar
  62. 62.
    Herszenyi L, Plebani M, Carraro P, et al. The role of cysteine and serine proteases in colorectal carcinoma. Cancer 1999;86:1135–1142.PubMedCrossRefGoogle Scholar
  63. 63.
    Shoemaker AR, Gould KA, Luongo C, Moser AR, Dove WF. Studies of neoplasia in the Min mouse. Biochim Biophys Acta 1997;1332:F25-F48.PubMedGoogle Scholar
  64. 64.
    Stearns ME, Wang M. Type IV collagenase (M(r) 72,000) expression in human prostate: benign and malignant tissue. Cancer Res. 1993;63:878–883.Google Scholar
  65. 65.
    Davies B, Waxman J, Wasan H, et al. Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Res 1993;53:5365–5369.PubMedGoogle Scholar
  66. 66.
    Moses MA, Wiederschain D, Loughlin KR, Zurakowski D, Lamb CC, Freeman MR. Increased incidence of matrix metalloproteinases in urine of cancer patients. Cancer Res 1998;58:1395–1399.PubMedGoogle Scholar
  67. 67.
    Fang J, Shing Y, Wiederschain D, et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci USA 2000;97:3884–3889.PubMedCrossRefGoogle Scholar
  68. 68.
    Morgunova E, Tuuttila A, Bergmann U, et al. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 1999;284:1667–1670.PubMedCrossRefGoogle Scholar
  69. 69.
    Koivunen E, Arap W, Valtanen H, et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 1999;17:768–774.PubMedCrossRefGoogle Scholar
  70. 70.
    Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000;407:258–264.PubMedCrossRefGoogle Scholar
  71. 71.
    Jaffer FA, Tung CT, Gerszten RE, Weissleder R. In vivo imaging of thrombolin activity in experimental thrombi using a thrombin-sensittive near-infrared molecular probe. Arterioscler Thromb Vasc Biol 2002;22:1929–1935.PubMedCrossRefGoogle Scholar
  72. 72.
    Patterson C, Stouffer GA, Madamanchi N, Runge MS. New tricks for old dogs: nonthrombotic effects of thrombin in vessel wall biology. Circ Res 2001;88:987–997.PubMedCrossRefGoogle Scholar
  73. 73.
    Griffin CT, Srinivasan Y, Zheng YW, Huang W, Coughlin SR. A role for thrombin receptor signaling in endothelial cells during embryonic development. Science 2001;293:1666–1670.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. Totowa, NJ 2003

Authors and Affiliations

  • Farouc A. Jaffer
  • Vasilis Ntziachristos
  • Ralph Weissleder

There are no affiliations available

Personalised recommendations