Image-Guided Thermal Therapy for Prostate Cancer



Prostate cancer is the most commonly diagnosed noncutaneous malignancy in the American male population. Since the advent of prostate-specific antigen (PSA) screening, an increasing number of men are diagnosed with potentially curable prostate cancer. The PSA era has led to new predicaments, however, with an increasing number of asymptomatic men with low-risk organ confined disease diagnosed with prostate cancer as a result of a PSA test leading to biopsy. In this population, often difficult choices must be made between radical prostatectomy, external beam radiation, or brachytherapy. Each of these modalities is associated with significant risk of complications for what is typically an asymptomatic and often indolent disease. In men with locally advanced disease, another dilemma arises in regard to maximizing local control in the setting of greater tumor burden and more aggressive biologic behavior.


Prostate Cancer Benign Prostatic Hyperplasia Thermal Ablation Focus Ultrasound Magnetic Resonance Spectroscopic Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Busch W. Uber den einfluss wlechen heftigere erysipelen zuweilen auf organsierte neubildungenambien. Verh Naturh Preuss Rheinl 1866;23:28.Google Scholar
  2. 2.
    Coley W. The treatment of malignant tumors by repeated inncoulations of erysipelas: with a report of 10 original cases. Am J Med Sci 1893;105:487.Google Scholar
  3. 3.
    Westermark F. Uber die behandlung des ulcerireneded cerixaccarcinomas. Mittle Kontstanter Warme. Zentralbl Gynakol 1898;22:1335.Google Scholar
  4. 4.
    Warren S. Preliminary study of the effect of artificial fever upon hopeless tumor cases. Am J Roentgenol 1935;33:75.Google Scholar
  5. 5.
    Westra A, Dewey WC. Variation in sensitivity to heat shock during the cell cycle of Chinese hamster cells in vitro. Int J Radiat Biol 1971;19:467–477Google Scholar
  6. 6.
    Dewey WC, Hopwood LE, Sapareto SA, et al. Cellular responses to combinations of hyperthermia and radiation. Radiology 1977;123:463.PubMedGoogle Scholar
  7. 7.
    Emami B, Song CW. (199Physiological mechanisms in hyperthermia: A review. Int J Radiat Oncol Phys 1984;10:289.Google Scholar
  8. 8.
    Gerweck LE, Steele EL. Metabolic indices for hyperthermia in cancer therapy, in Biological, Physical, and Clinical Aspects of Hyperthermia, Medical Physics Monograph No. 16 (Paliwal BR, Jelzel F. W., and Dewhirst NW, eds.). New York, American Association of Physicists in Medicine, 1988; p. 2.Google Scholar
  9. 9.
    Allan DJ, Harmon BV. The morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs. Scan Electron Microsc 3:1121–1133.Google Scholar
  10. 10.
    Li WX, Franklin WA. Radiation- and heat-induced apoptosis in PC-3 prostate cancer cells. Radiat Res 1998;150:190–194.PubMedGoogle Scholar
  11. 11.
    Valdagni R, Amichetti M. Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymph nodes in stage IV head and neck patients Int J Radiat Oncol Phys 1994;28:163–169.Google Scholar
  12. 12.
    Vernon CC, Hand JW, Field SB, et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Phys 1996;35, 731–744.Google Scholar
  13. 13.
    Overgaard J, Gonzalez Gonzalez D, et al. Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology. Int J Hyperthermia 1996;12:3–20.PubMedGoogle Scholar
  14. 14.
    van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 2000;355:1119–1125.PubMedGoogle Scholar
  15. 15.
    Hanks GE, Hanlon AL, Schultheiss TE, Pinover WH, Movsas B, Epstein BE, Hunt MA. Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization, and future directions Int J Radiat Oncol Phys 1998;41: 501–510.Google Scholar
  16. 16.
    Zelefsky MJ, Leibel SA, Gaudin PB, et al. Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int J Radiat Oncol Phys 1998;41:491–500.Google Scholar
  17. 17.
    Pollack A, Zagars GK, Starkschall G, et al. Prostate cancer radiation dose response: Results of the M.D. Anderson phase randomized trial. Int J Radiat Oncol Biol Phys 2002;53(5):1097–1105.PubMedGoogle Scholar
  18. 18.
    Przepiorka D, Srivastava P. Heat shock protein-peptide complexes as immunotherapy for human cancer. Mol Med Today 1998;4:478–784.PubMedGoogle Scholar
  19. 19.
    Menoret A, Chandawarkar R. Heat-shock protein-based anticancer immunotherapy: an idea whose time has come. Semin Oncol 1998; 25:654–660.PubMedGoogle Scholar
  20. 20.
    Srivastava P, DeLeo A, Old L. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci USA 1986; 83:3407–3411.PubMedGoogle Scholar
  21. 21.
    Ullrich S, Robinson E. A mouse tumor-specific transplantation antigen is a heat shockrelated protein. Proc Natl Acad Sci USA 1986;83:3121–3125.PubMedGoogle Scholar
  22. 22.
    Blachere N, Udono H, Janetzki S, et al. Heat shock protein vaccines against cancer. J Immunother 1993;14:352–356.Google Scholar
  23. 23.
    Udono S, Srivastava P. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 1993;178:1391–1396.PubMedGoogle Scholar
  24. 24.
    Udono S, Srivastava P. Comparison of tumor-specific immunogenicities of stress induced proteins gp96:hsp 90:and hsp 70. J Immunol 1994;152:5398–5403PubMedGoogle Scholar
  25. 25.
    Udano S. Levy D, Srivastava P. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci USA 1994;91:3077–3081.Google Scholar
  26. 26.
    Sevadio C, Leib Z. Local hyperthermia for prostate cancer. Urology 1991;38:307–309.Google Scholar
  27. 27.
    Stawarz B, Zielinski H., Szmigielski S, et al. Transrectal hyperthermia as Palliative treatment for advanced adenocarcinoma of prostate and studies of cell-mediated immunity. Urology 1993;41:548–553.PubMedGoogle Scholar
  28. 28.
    Farahani K, Mischel PS, Black KL, De Salles AAF, Anzai Y, Lufkin B. Hyperacute thermal lesions: MR imaging evaluation of development in the brain Radiology 1995;196:517–520.PubMedGoogle Scholar
  29. 29.
    Neal DE. Evaluation and results of treatments for prostatism Urol. Res. 1994;22:61–66.PubMedGoogle Scholar
  30. 30.
    Sato M, Watanabe Y, Udeda S, et al. Microwave coagulation therapy for hepatocellular carcinoma. Gastroenterology 1996;110,1507–1514.PubMedGoogle Scholar
  31. 31.
    Vogl TJ, Mack MG. Percutaneous MR imaging-guided laser-induced thermotherapy of hepatic metastases. Eur Radiol 1997;7:1156.Google Scholar
  32. 32.
    Mumtaz H, Hall-Craggs MA, Wotherspoon A, et al. Laser therapy for breast cancer: MR imaging and histophatologic correlation. Radiology 1996;200:651–658.PubMedGoogle Scholar
  33. 33.
    Tucker RD, Huidobro C, Larson T, Platz CE. Use of permanent interstitial temperature self-regulating rods for ablation of prostate cancer. J Endourol 2000;14:511–517PubMedGoogle Scholar
  34. 34.
    Fry WJ, Barnard JW, Fry FJ, Krumins RF, Brennan JF. Ultrasonic lesions in the mammalian central nervous system. Science 1955;122:517–518.PubMedGoogle Scholar
  35. 35.
    Frizzell LA, Linke CA, Carstensen EL, Fridd CW. Thresholds for focal ultrasonic lesions in rabbit kidney, liver and testicle. IEEE Trans Biomed Eng 1977;24:393–396.PubMedGoogle Scholar
  36. 36.
    Lizzi FL. High-precision thermometry for small lesions. Eur Urol 1993;23(suppl. 1):23–28.PubMedGoogle Scholar
  37. 37.
    Coleman DJ, Lizzi FL, Driller J, et al. Therapeutic ultrasound in the treatment of glaucoma. Ophthalmology 1985;92:339–346.PubMedGoogle Scholar
  38. 38.
    Sanghvi NT, Hawes RH. High-intensity focused ultrasound. Exp Invest. Endosc 1994;4:383–395.Google Scholar
  39. 39.
    Cain CA, Umemura SA. Concentric-ring and sector vortex phased array applicators for ultrasound hyperthermia therapy. IEEE Trans Microwave Theory Tech 1986;34:542–551.Google Scholar
  40. 40.
    Ebbini ES, Cain CA. A spherical-section ultrasound phased array applicator for deep localized hyperthermia. IEEE Trans Biomed Eng 1991;38:634–643.PubMedGoogle Scholar
  41. 41.
    Bednarski MD, Lee JW, Callstrom MR, King CP. In vivo target-spesific delivery of macromolecular agents with MR-guided focused ultrasound. Radiology 1997;204:263–268.PubMedGoogle Scholar
  42. 42.
    Billard BE, Hynynen K, Roemer RB. Effects of physical parameters on high temperature ultrasound hyperthermia. Ultrasound Med Biol 1990;16:409–420.PubMedGoogle Scholar
  43. 43.
    Hunt JW, Lalonde R, Ginsberg H, Urchuk S, Worthington A. Rapid heating: critical theoretical assessment of thermal gradients found in hyperthermia treatments. Int J Hyperthermia 1991;7:703–718.PubMedGoogle Scholar
  44. 44.
    Field SB, Hand JW, eds. An Introduction to the Practical Aspects of Clinical Hyperthermia. London, Taylor & Francis, 1990.Google Scholar
  45. 45.
    Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000;2:9–25.PubMedGoogle Scholar
  46. 46.
    van der Zee J. Peer-Valstar JN, Rietveld PJ, de Graaf-Strukowska L, van Rhoon GC. Practical limitations of interstitial thermometry during deep hyperthermia. Int J Radiat Oncol Phys 1998;40:1205–1212.Google Scholar
  47. 47.
    Wust P, Gellermann J, Harder C, et al. Rationale for using invasive thermometry for regional hyperthermia of pelvic tumors. Int J Radiat Oncol Phys 1998;41:1129–1137.Google Scholar
  48. 48.
    Ascher MS, Samulski TV, Dodge R, et al. Combined external beam irradiationand external regional hyperthermia for locally advanced adenocarcinoma of the prostate. Int J Radiat Oncol Phys 1997;37:1059–1065.Google Scholar
  49. 49.
    Prionas S, Kapp D, Goffinet D, et al. Thermometry of interstitial hyperthermia given as an adjuvant to brachytherapy for the treatment of carcinoma of the prostate. Int J Radiat Oncol Phys 1994;28:151–162.Google Scholar
  50. 50.
    Mendecki J, Friedenthal E, Botstein C, et al. Microwave applicators for localized hyperthermia treatment of cancer of the prostate. Int J Radiat Oncol Phys 1980;6:1583–1588.Google Scholar
  51. 51.
    Yerushalmi A, Servadio C, Leib Z, et al. Local hyperthermia for treatment of carcinoma of the prostate: a preliminary report. Prostate 1982;3:623–630.PubMedGoogle Scholar
  52. 52.
    Fosmire H, Hynynen K, Drach GW, Stea B, Swift P, Cassady JR. Feasibility and toxicity of transrectal ultrasound hyperthermia in the treatment of locally advanced adenocarcinoma of the prostate. Int J Radiat Oncol Biol Phys 1993;26:253–259PubMedGoogle Scholar
  53. 53.
    Algan O, Fosmire H, Hynynen K, et al. External beam radiotherapy and hyperthermia in the treatment of patients with locally advanced prostate carcinoma. Cancer 2000;89:399–403.PubMedGoogle Scholar
  54. 54.
    Hurwitz MD, Kaplan ID, Svensson GK, Hynynen K, Hansen MS. Feasibility and patient tolerance of a novel transrectal ultrasound hyperthermia system for treatment of prostate cancer. Int J Hyperthermia 2001;17:31–37.PubMedGoogle Scholar
  55. 55.
    Yerushalmi A, Fishelovitz Y, Singer D, et al. Localized deep microwave hyperthermia in the treatment of poor operative risk patients with benign prostatic hyperplasia. J Urol 1985;133:873–876.PubMedGoogle Scholar
  56. 56.
    Francisca EA, Keijzers GB, d’Ancona FC, Debruyne FM, de la Rosette JJ. Lower-energy thermotherapy in the treatment of benign prostatic hyperplasia: long-term follow-up results of a multicenter international study. World J Urol 1999;17:279–284.PubMedGoogle Scholar
  57. 57.
    Madersbacher S, Kratzik C, Szabo N, Susani M, Vingers L, Marberger M. Tissue ablation in benign prostatic hyperplasia with high-intensity focused ultrasound. Eur Urol 1993;23(Suppl 1):39–43.PubMedGoogle Scholar
  58. 58.
    Gelet A, Chapelon JY, Margonari J, et al. High-intensity focused ultrasound experimentation on human benign prostatic hypertrophy. Eur Urol 1993;23(Suppl 1):44–47.PubMedGoogle Scholar
  59. 59.
    Madersbacher S, Kratzik C, Marberger M. Prostatic tissue ablation by transrectal high intensity focused ultrasound: histological impact and clinical application. Ultrason Sonochem 1997;4: 175–179.PubMedGoogle Scholar
  60. 60.
    Zlotta AR, Djavan B, Matos C, et al. Percutaneous transperineal radiofrequency ablation of prostate tumour: safety, feasibility and pathological effects on human prostate cancer. Br J Urol 1998;81:265–275.PubMedGoogle Scholar
  61. 61.
    Madersbacher S, Pedevilla M, Vingers L, Susani M, and Marberger M. Effect of highintensity focused ultrasound on human prostate cancer in vivo. Cancer Res 1995;55:3346–3351.PubMedGoogle Scholar
  62. 62.
    Bursa B, Wammack R, Djavan B, et al. Outcome predictors of high-energy transurethral microwave thermotherapy. Tech Urol 2000;6:262–266.PubMedGoogle Scholar
  63. 63.
    Gelet A, Chapelon JY, Bouvier R, Pangaud C, Lasne Y. Local control of prostate cancer by transrectal high intensity focused ultrasound therapy: preliminary results. J Urol 1999;161:156–162.PubMedGoogle Scholar
  64. 64.
    Gelet A, Chapelon JY, Bouvier R, Rouviere O, Lyonnet D, Dubernard JM. Transrectal high intensity focused ultrasound for the treatment of localized prostate cancer: factors influencing the outcome. Eur Urol 2001;40:124–129.PubMedGoogle Scholar
  65. 65.
    Don LN, Hynynen K. The effect of tissue heterogeneities and large blood vessels on the thermal exposure induced by short high power ultrasound pulses. Int J Hyperthermia 1992;8:45–59.Google Scholar
  66. 66.
    Chung A, Jolesz FA, Hynynen K. Thermal dosimetry of a focused ultrasound beam in vivo by MRI. Med Phys 1999;26:2017–2026.PubMedGoogle Scholar
  67. 67.
    Hynynen K, Vykhodtseva NI, Chung A, Sorrentino V, Colucci V, Jolesz FA. Thermal effects of focused ultrasound on the brain: determination with MR Imaging. Radiology, 1997;204:247–253.PubMedGoogle Scholar
  68. 68.
    Hynynen K, Shimm D, Anhalt D, et al. Temperature distributions during clinical scanned, focussed ultrasound hyperthermia treatments. Int J Hyperthermia 1990;6:891–908.PubMedGoogle Scholar
  69. 69.
    Hynynen K, Freund W, Cline HE, et al. A clinical noninvasive MRI monitored ultrasound surgery method. Radio Graphics 1996;16:185–195.Google Scholar
  70. 70.
    Hutchinson EB, Hynynen K. Intracavitary phased arrays for non-invasive prostate surgery. IEEE Trans Ultrason Ferroelectr Freq Contr 1996;43:1032–1042.Google Scholar
  71. 71.
    Hata N, Jinzaki M, Kacher D, et al. MR imaging-guided prostate biopsy with surgical navigation software: device validation and feasibility. Radiology 2001;220:263–268PubMedGoogle Scholar
  72. 72.
    Fallone BG, Moran PR, Podgorsak EB. Non-invasive thermometry with clinical X-ray CT scanner. Med Phys 1982;9:715–721.PubMedGoogle Scholar
  73. 73.
    Jenne JW, Bahner M, Spoo J, et al. CT on-line monitoring of HIFU therapy.IEEE Ultrasonics Symp 1997;2:1377–1380.Google Scholar
  74. 74.
    Leroy Y, Bocquet B, Mamouni, A. Non-invasive microwave radiometry thermometry. Physiol Meas 1998;19:127–148.PubMedGoogle Scholar
  75. 75.
    Moskowitz MJ, Paulsen KD, Ryan TP, Pang D. Temperature field estimation using electrical impedance profiling methods. II. Experimental system description and phantom results. Int J Hyperthermia 1994;10:229–245.PubMedGoogle Scholar
  76. 76.
    Seip R, VanBaren P, Cain CA, Ebbini ES. Noninvasive real-time multipoint temperature control for ultrasound phased array treatments. IEEE Trans Ultrason Ferroelectr Freq Contr 1996;43:1063–1073.Google Scholar
  77. 77.
    Simon C, VanBaren P, Ebbini, ES. Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Contr 1998;45: 1088–1099.Google Scholar
  78. 78.
    Maas-Moreno R, Damianou CA. Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model. J Acoust Soc Am 1996;100:2514–2521.Google Scholar
  79. 79.
    Maas-Moreno R, Damianou CA, Sanghvi NT. Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study. J Acoust Soc Am 100:2522–2530.Google Scholar
  80. 80.
    Sapareto S, Dewey W. Thermal dose determination in cancer therapy. Int J Radiat Oncol Phys 1984;10:787–800.Google Scholar
  81. 81.
    Parker DL. Applications on NMR imaging in hyperthermia: an evaluation of the potential for localized tissue heating and noninvasive temperature monitoring. IEEE Trans Biomed Eng 1984;31:161–167.PubMedGoogle Scholar
  82. 82.
    Dickinson RJ Hall AS, Hind AJ, Young IR. Measurement of changes in tissue temperature using MR imaging. J. Comp. Asst. Tomogr. 1996;10:468–472.Google Scholar
  83. 83.
    Delannoy J, Chen CN, Turner R, Lewin RL, Le Bihan D. Noninvasive temperature imaging using diffusion MRI Magn. Reson. Med. 1991;19:333–339.PubMedGoogle Scholar
  84. 84.
    Zhang Y, Samulski TV, Joines WT, Mattiello J, Levin RL, LeBihan D. On the accuracy of noninvasive thermometry using molecular diffusion magnetic resonance imaging. Int J Hyperthermia 1992;8:263–274.PubMedGoogle Scholar
  85. 85.
    Hall LD, Talagala SL Mapping of PH and temperature distribution using chemical-shiftresolved tomography. J Magn Reson 1985;65:501–505.Google Scholar
  86. 86.
    De Poorter J, De Wagter C, De Deene Y, Thomsen C, Stahlberg F, Achten E. The proton resonance frequency shift method compared with molecular diffusion for quantitative measurements of two dimensional time dependent temperature distributions in a phantom. J Magn Reson 1994;103: 234–241.Google Scholar
  87. 87.
    Wlodarczyk W, Hentschel M, Wust P, et al. Comparison of four magnetic resonance methods for mapping small temperature changes. Phys Med Biol 1999;44:607–624.PubMedGoogle Scholar
  88. 88.
    Hindman JC. Proton resonance shift of water in the gas and liquid states. J Chem Phys 1966;44:4582–4592.Google Scholar
  89. 89.
    Corbett RJT, Laptook AR, Tollefsbol G, Kim B. Validation of a noninvasive method to measure brain temperature in vivo using 1HNMR spectroscopy. J Neurochem 1995;64:1224–1230.PubMedGoogle Scholar
  90. 90.
    MacFall JR, Prescott DM, Charles HC, Samulski TV. 1H MRI phase thermometry in vivo in canine brain, muscle, and tumor tissue. Med Phys 1996;23:1775–1782.PubMedGoogle Scholar
  91. 91.
    De Poorter J, De Wagter C, De Deene Y, Thomsen C, Stahlberg F, Achten E. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: In vivo results in human muscle. Magn Reson Med 1995;33:74–81.PubMedGoogle Scholar
  92. 92.
    Asea A, Ara G, Teicher BA, Stevenson MA, Calderwood SK. Effects of the flavonoid drug quercetin on the response of human prostate tumours to hyperthermia in vitro and in vivo. Int J Hyperthermia 2001;17:347–356.PubMedGoogle Scholar
  93. 93.
    Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 2000,88:232–238.PubMedGoogle Scholar
  94. 94.
    Lohr F, Hu K, Huang Q, et al. Enhancement of radiotherapy by hyperthermia-regulated gene therapy. Int J Radiat Oncol Phys 2000;48: 1513–1518.Google Scholar
  95. 95.
    Garcia-Segura JM, Sanchez-Chapado M, Ibarburen C, et al. In vivo proton spectroscopy of diseased prostate: spectroscopic features of malignant versus benigh pathology. Magn Reson Imaging 1999;17:755–765.PubMedGoogle Scholar
  96. 96.
    Kurhanewicz J, Dahiya R, Macdonald JM. Citrate alterations in primary and metastatic human prostatic adenocarcinomas: 1H magnetic resonance spectroscopy and biochemical study. Magn Reson Med 1993;29:149–157.PubMedGoogle Scholar
  97. 97.
    Schiebler ML, Miyamoto KK, White M, Maygarden SJ, Mohler JL. In vitro high resolution 1H spectroscopy of the human prostate: benign prostatic hyperplasia, normal peripheral zone and adenocarcinoma. Magn Reson Med 1993;29:285–291.PubMedGoogle Scholar
  98. 98.
    Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7cm3) spatial resolution. Radiology 1996;198:795–805.PubMedGoogle Scholar
  99. 99.
    Van der Graaf M, van den Boogert HJ, Jager GJ, Barentsz JO, Heerschap A. Human prostate: multisection proton MR spectroscopic imaging with a single spin-echo sequencepreliminary experience. Radiology 1999;213:919–925.PubMedGoogle Scholar
  100. 100.
    Schick F, Bongers H, Kutz S, Jung W.-I., Pfeffer M, Lutz O. Localized proton MR spectroscopy of citrate in vitro and of the human prostate in vivo at 1.5 T. Magn Reson Med 1993;29:38–43.PubMedGoogle Scholar
  101. 101.
    Lowry M, Liney GP, Turnbull LW, Manton DJ, Blackband SJ, Horsman A. Quantification of citrate concentration in the prostate by proton magnetic resonance spectroscopy: zonal and age related differences. Magn Reson Med 1996;36:352–358.PubMedGoogle Scholar
  102. 102.
    Liney GP, Lowry M, Turnbull LW, et al. (1996) Proton MR T2 maps correlate with the citrate concentration in the prostate. NMR Biomed 9:59–64.PubMedGoogle Scholar
  103. 103.
    Liney GP, Turnbull LW, Lowry M, Turnbull LS, Knowles AJ, Horsman A. In vivo quantitation of citrate concentration and water T2 relaxation time of the pathologic prostate gland using 1H MRS and MRI. Magn Reson Imaging 1997;15:1177–1186.PubMedGoogle Scholar
  104. 104.
    Liney GP, Knowles AJ, Manton DJ, Turnbull LW, Blackband SJ, Horsman A. Comparison of conventional single echo and multi-echo sequences with a fast spin-echo sequence for quantitative T2-mapping: application to the prostate. J. Magn Reson Imaging 1996;6:603–607.PubMedGoogle Scholar
  105. 105.
    Chenevert TL, McKeever PE, Ross BD Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 1997;3:1457–1466PubMedGoogle Scholar
  106. 106.
    Galons JP, Altbach MI, Paine-Murrieta GD, Taylor CW, Gillies RJ. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by noninvasive diffusion magnetic resonance imaging. Neoplasia 1999;1:113–117PubMedGoogle Scholar
  107. 107.
    Ellis RJ, Kim EY, Conant R, et al. Radioimmunoguided imaging of prostate cancer foci with histopathological correlation. Int J Radiat Oncol Phys 2001;49:1281–1286.Google Scholar

Copyright information

© Humana Press Inc. Totowa, NJ 2003

Authors and Affiliations

There are no affiliations available

Personalised recommendations