Skip to main content

Abstract

Cartilage is an aneural, avascular, alymphatic connective tissue. Like other tissues, chondrocytes arise from mesenchymal stem cells.93 During skeletal development, cartilage grows rapidly and mineralizes to form bone. During the early process of bone fracture repair, cartilage is formed before mineralizing to bone. In the human adult, cartilage may be classified as hyaline, elastic, or fibrous.74 Hyaline cartilage is glassy and forms the costal cartilages, articular cartilages of joints, and cartilages of the nose, larynx, trachea, and bronchi.74 Elastic cartilage may be found in the epiglottic cartilage, the cartilage of the external ear and the auditory tube, and some of the smaller laryngeal cartilages. Histologically, elastic cartilage resembles hyaline cartilage, with a dense network of finely branched elastic fibers.74 Fibrous cartilage, unlike other types of cartilage, contains mainly type I collagen. It may be found in the intra-articular lips, disks, menisci, and intervertebral discs, and it serves as a transitional tissue between dense connective tissue (tendon) and hyaline cartilage.93 This chapter will focus on articular cartilage, which is a specialized form of hyaline cartilage. Articular cartilage covers the articulating ends of bones and serves as a lubricated, wear-resistant, friction-reducing surface that is slightly compressible to evenly distribute forces onto the bone. After injury, articular cartilage is unable to naturally restore itself back to a functional tissue, and, because of this, current efforts have been directed toward tissue engineering. Since articular cartilage contains zones that are specific in their functions, the replication of these zones may be important in obtaining a functional tissue-engineered construct, and histology will serve as the first tool in discerning these zonal variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal CM, Athanasiou KA: Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Monied Mater Res 38: 105–114, 1997.

    Article  CAS  Google Scholar 

  2. Agrawal CM, Athanasiou KA, Heckman JD: Biodegradable PLA-PGA polymers for tissue engineering in orthopaedics. Mater Sci Forum 250: 115–128, 1997.

    Article  CAS  Google Scholar 

  3. Angele P, Kujat R, Nerlich M, Yoo J, et al: Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng 5: 545–554, 1999.

    Article  PubMed  CAS  Google Scholar 

  4. Annefeld M: The chondrocyte-the living element of articular cartilage. In: Articular Cartilage and Osteoarthrosis. Hans Huber Publishers, Bern, Switzerland, 1983: 30–41.

    Google Scholar 

  5. Archer CW, McDowell J, Bayliss MT, et al: Phenotypic modulation in sub-populations of human articular chondrocytes in vitro. J Cell Sci 97: 361–371, 1990.

    PubMed  Google Scholar 

  6. Arkkila PE, Kantola IM, Viikari JS: Limited joint mobility in type 1 diabetic patients: correlation to other diabetic complications. J Intern Med 236: 215–223, 1994.

    Article  PubMed  CAS  Google Scholar 

  7. Ateshian GA, Warden WH, Kim JJ, et al: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech 30: 1157–1164, 1997.

    Article  PubMed  CAS  Google Scholar 

  8. Athanasiou KA, Agarwal A, Dzida FJ: Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage. J Orthop Res 12: 340–349, 1994.

    Article  PubMed  CAS  Google Scholar 

  9. Athanasiou KA, Agarwal A, Muffoletto A, et al: Biomechanical properties of hip cartilage in experimental animal models [published erratum appears in Clin Orthop 320:283,1995]. Clin Orthop 316: 254–266, 1995.

    PubMed  Google Scholar 

  10. Athanasiou KA, Agrawal CM, Barber FA, et al: Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14: 726–737, 1998.

    Article  PubMed  CAS  Google Scholar 

  11. Athanasiou KA, Fleischli JG, Bosma J, et al: Effects of diabetes mellitus on the biomechanical properties of human ankle cartilage. Clin Orthop 368: 182–189, 1999.

    PubMed  Google Scholar 

  12. Athanasiou KA, Korvick D, Schenck RC: Biodegradable implants for the treatment of osteochondral defects in a goat model. Tissue Eng 3: 363–373, 1997.

    Article  Google Scholar 

  13. Athanasiou KA, Liu GT, Lavery LA, et al: Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint. Clin Orthop 348: 269–281, 1998.

    PubMed  Google Scholar 

  14. Athanasiou KA, Niederauer GG, Agrawal CM: Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17: 93–102, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Athanasiou KA, Niederauer GG, Schenck Jr., RC: Biomechanical topography of human ankle cartilage. Ann Biomed Eng 23: 697–704, 1995.

    Article  PubMed  CAS  Google Scholar 

  16. Athanasiou KA, Rosenwasser MP, Buckwalter JA, et al: Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res 9: 330–340, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Athanasiou KA, Singhal AR, Agrawal CM, et al: In vitro degradation and release characteristics of biodegradable implants containing trypsin inhibitor. Clin Orthop 315: 272–281, 1995.

    PubMed  Google Scholar 

  18. Athanasiou KA, Thoma BS, Lanctot DR, et al: Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell. Biomaterials 20: 2405–2415, 1999.

    Article  PubMed  CAS  Google Scholar 

  19. Ayad S, Evans H, Weiss JB, et al: Type VI collagen but not type V collagen is present in cartilage [letter]. Coll Relat Res 4: 165–168, 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Aydelotte MB, Greenhill RR, Kuettner KE: Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res 18: 223–234, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Aydelotte MB, Kuettner KE: Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect Tissue Res 18: 205–222, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Bachrach NM, Valhmu WB, Stazzone E, et al: Changes in proteoglycan synthesis of chondrocytes in articular cartilage are associated with the time-dependent changes in their mechanical environment. J Biomech 28: 1561–1569, 1995.

    Article  PubMed  CAS  Google Scholar 

  23. Bakay A, Csonge L, Papp G, et al: Osteochondral resurfacing of the knee joint with allograft. Clinical analysis of 33 cases. Int Orthop 22: 277–281, 1998.

    Article  PubMed  CAS  Google Scholar 

  24. Balmain N, Leguellec D, Elkak A, et al: Zonal variations of types II, IX and XI collagen mRNAs in rat epiphyseal cartilage chondrocytes: quantitative evaluation of in situ hybridization by image analysis of radioautography. Cell Mol Biol (Noisy-le-grand) 41: 197–212, 1995.

    CAS  Google Scholar 

  25. Benninghoff A: Form und Bau der Gelenkknorpel in ihren beziechungen zur funktion. I. Die modellierenden und formerhalterden Faktoren des Knorpelreliefs. Z ges Anant 76: 43–63, 1925.

    Article  Google Scholar 

  26. Benya PD, Shaffer JD: Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215–224, 1982.

    Article  PubMed  CAS  Google Scholar 

  27. Bianco P, Fisher LW, Young MF, et al: Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J Histochem Cytochem 38: 1549–1563, 1990.

    Article  PubMed  CAS  Google Scholar 

  28. Broom ND: New experimental approaches to the understanding of structure-function relationships in articular cartilage. In: Maroudas A, Kuettner K, eds: Methods in Cartilage Research. Academic Press, San Diego, CA, 1990: 70–73.

    Google Scholar 

  29. Broom ND, Poole CA: A functional-morphological study of the tidemark region of articular cartilage maintained in a non-viable physiological condition. JAnat 135: 65–82, 1982.

    CAS  Google Scholar 

  30. Brown DC, Vogel KG: Characteristics of the in vitro interaction of a small proteoglycan (PG II) of bovine tendon with type I collagen. Matrix 9: 468–478, 1989.

    Article  PubMed  CAS  Google Scholar 

  31. Buckwalter JA: Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 28: 192–202, 1998.

    Article  PubMed  CAS  Google Scholar 

  32. Buckwalter JA, Hunziker EB, Rosenberg LC, et al: Articular cartilage: composition and structure. In: Woo SL, Buckwalter JA, eds: Injury and Repair of the Musculoskeletal Soft Tissues, 2nd ed. American Academy of Orthopaedic Surgeons, Park Ridge, IL, 1991: 405–425.

    Google Scholar 

  33. Buschmann MD, Gluzband YA, Grodzinsky AJ, et al: Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108: 1497–1508, 1995.

    PubMed  CAS  Google Scholar 

  34. Cao Y, Rodriguez A, Vacanti M, et al: Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 9: 475–487, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Caplan AI, Elyaderani M, Mochizuki Y, et al: Principles of cartilage repair and regeneration. Clin Orthop 342: 254–269, 1997.

    Article  PubMed  Google Scholar 

  36. Carver SE, Heath CA: Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol Bioeng 62: 166–174, 1999.

    Article  PubMed  CAS  Google Scholar 

  37. Carver SE, Heath CA: Influence of intermittent pressure, fluid flow, and mixing on the regenerative properties of articular chondrocytes. Biotechnol Bioeng 65: 274–281, 1999.

    Article  PubMed  CAS  Google Scholar 

  38. Carver SE, Heath CA: Semi-continuous perfusion system for delivering intermittent physiological pressure to regenerating cartilage. Tissue Eng 5: 1–11, 1999.

    Article  PubMed  CAS  Google Scholar 

  39. Chen FS, Frenkel SR, Di Cesare PE: Chondrocyte transplantation and experimental treatment options for articular cartilage defects. Am J Orthop 26: 396–406, 1997.

    PubMed  CAS  Google Scholar 

  40. Chu CR, Coutts RD, Yoshioka M, et al: Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29: 1147–1154, 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Chu CR, Monosov AZ, Amiel D: In situ assessment of cell viability within biodegradable polylactic acid polymer matrices. Biomaterials 16: 1381–1384, 1995.

    Article  PubMed  CAS  Google Scholar 

  42. Coutts RD, Sah RL, Amiel D: Effects of growth factors on cartilage repair. Instr Course Lect 46: 487–494, 1997.

    PubMed  CAS  Google Scholar 

  43. Doherty PJ, Zhang H, Tremblay L, et al: Resurfacing of articular cartilage explants with genetically-modified human chondrocytes in vitro. Osteoarthritis Cartilage 6: 153–159, 1998.

    Article  PubMed  CAS  Google Scholar 

  44. Durrant LA, Archer CW, Benjamin M, et al: Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture. JAnat 194: 343–353, 1999.

    Google Scholar 

  45. Eyre DR: Collagen: molecular diversity in the body’s protein scaffold. Science 207: 1315–1322, 1980.

    Article  PubMed  CAS  Google Scholar 

  46. Flannery CR, Hughes CE, Schumacher BL, et al: Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism. Biochem Biophys Res Commun 254: 535–541, 1999.

    Article  PubMed  CAS  Google Scholar 

  47. Fleischli JG, Laughlin TJ, Lavery LA, et al: The effects of diabetes mellitus on the material properties of human metatarsal bones. J Foot Ankle Surg 37: 195–198, 1998.

    Article  PubMed  CAS  Google Scholar 

  48. Fosang Ai, Hardingham TE: Matrix proteoglycans. In: Comper WD, ed: Extracellular Matrix. Harwood Academic Publishers, Amsterdam, The Netherlands, 1996: 200–229.

    Google Scholar 

  49. Freed LE, Grande DA, Lingbin Z, et al: Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res 28: 891–899, 1994.

    Article  PubMed  CAS  Google Scholar 

  50. Freed LE, Marquis JC, Nohria A, et al: Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 27: 11–23, 1993.

    Article  PubMed  CAS  Google Scholar 

  51. Furukawa T, Eyre DR, Koide S, et al: Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg [Am] 62: 679–689, 1980.

    Google Scholar 

  52. Ghadially FN: Fine Structure of Synovial Joints: A Text and Atlas of the Ultrastructure of Normal and Pathological Articular Tissues. Butterworths, London, 1983: 55.

    Google Scholar 

  53. Guilak F: Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech 28: 1529–1541, 1995.

    Article  PubMed  CAS  Google Scholar 

  54. Guilak F, Jones WR, Ting-Beall HP, et al: The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Osteoarthritis Cartilage 7: 59–70, 1999.

    Article  PubMed  CAS  Google Scholar 

  55. Guilak F, Ratcliffe A, Lane N, et al: Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res 12: 474–484, 1994.

    Article  PubMed  CAS  Google Scholar 

  56. Hall AC, Urban JP, Gehl KA: The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res 9: 1–10, 1991.

    Article  PubMed  CAS  Google Scholar 

  57. Hauselmann Hi, Fernandes RJ, Mok SS, et al: Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107: 17–27, 1994.

    PubMed  Google Scholar 

  58. Hedbom E, Antonsson P, Hjerpe A, et al: Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem 267: 6132–6136, 1992.

    PubMed  CAS  Google Scholar 

  59. Hedlund H, Mengarelli-Widholm S, Heinegard D, et al: Fibromodulin distribution and association with collagen. Matrix Biol 14: 227–232, 1994.

    Article  PubMed  CAS  Google Scholar 

  60. Hendrickson DA, Nixon AJ, Grande DA, et al: Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res 12: 485–497, 1994.

    Article  PubMed  CAS  Google Scholar 

  61. Hildebrand A, Romans M, Rasmussen LM, et al: Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 302: 527–534, 1994.

    PubMed  CAS  Google Scholar 

  62. Hodge WA, Carlson KL, Fijan RS, et al: Contact pressures from an instrumented hip endoprosthesis. J Bone Joint Surg [Am] 71:1378–1386, 1989.

    CAS  Google Scholar 

  63. Honner R, Thompson RC: The nutritional pathways of articular cartilage. An autoradiographic study in rabbits using 35S injected intravenously. J Bone Joint Surg [Am] 53: 742–748, 1971.

    CAS  Google Scholar 

  64. Hou JS, Mow VC, Lai WM, et al: An analysis of the squeeze-film lubrication mechanism for articular cartilage. J Biomech 25: 247–259, 1992.

    Article  PubMed  CAS  Google Scholar 

  65. Hough FS: Alterations of bone and mineral metabolism in diabetes mellitus. Part I. An overview. S Afr Med J 72: 116–119, 1987.

    PubMed  CAS  Google Scholar 

  66. Hunziker EB: Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartilage 7: 15–28, 1999.

    Article  PubMed  CAS  Google Scholar 

  67. Kandel RA, Boyle J, Gibson G: In vitro formation of mineralized cartilagenous tissue by articular chondrocytes. In Vitro Cell Dev Biol Anim 33: 174–181, 1997.

    Article  PubMed  CAS  Google Scholar 

  68. Kempson GE, Tuke MA, Dingle JT, et al: The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage. Biochim Biophys Acta 428: 741–760, 1976.

    Article  PubMed  CAS  Google Scholar 

  69. Kim YJ, Sah RL, Grodzinsky AJ, et al: Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch Biochem Biophys 311: 1–12, 1994.

    Article  PubMed  CAS  Google Scholar 

  70. Knight MM, Lee DA, Bader DL: The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochim Biophvs Acta 1405: 67–77, 1998.

    Article  CAS  Google Scholar 

  71. Knudson CB: Hyaluronan receptor-directed assembly of chondrocyte pericellular matrix. J Cell Biol 120: 825–834, 1993.

    Article  PubMed  CAS  Google Scholar 

  72. Knudson W. Knudson CB: Assembly of a chondrocyte-like pericellular matrix on non-chondrogenic cells. Role of the cell surface hyaluronan receptors in the assembly of a pericellular matrix. J Cell Sci 99: 227–235, 1991.

    PubMed  Google Scholar 

  73. Kovach IS, Athanasiou KA: Small-angle HeNe laser light scatter and the compressive modulus of articular cartilage. J Orthop Res 15: 437–441, 1997.

    Article  PubMed  CAS  Google Scholar 

  74. Krause WJ, Cutts JH: Special connective tissue: cartilage, bone, and joints. In: Schnittman ER, Mastrodomenico A, eds: Essentials of Histology: Text/Atlas/Review, 1st ed. Little, Brown and Company, Boston, MA, 1994: 105–140.

    Google Scholar 

  75. Lai WM, Mow VC, Zhu W: Constitutive modeling of articular cartilage and biomacromolecular solutions. J Biomech Eng 115: 474–480, 1993.

    Article  PubMed  CAS  Google Scholar 

  76. Lee DA, Bader DL: Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res 15: 181–188, 1997.

    Article  PubMed  Google Scholar 

  77. Lee DA, Noguchi T, Knight MM, et al: Response of chondrocyte subpopulations cultured within unloaded and loaded agarose. J Orthop Res 16: 726–733, 1998.

    Article  PubMed  CAS  Google Scholar 

  78. Lippiello L, Kaye C, Neumata T, et al: In vitro metabolic response of articular cartilage segments to low levels of hydrostatic pressure. Connect Tissue Res 13: 99–107, 1985.

    Article  PubMed  CAS  Google Scholar 

  79. Longfield MD, Dowson D, Walker PS, et al: “Boosted lubrication” of human joints by fluid enrichment and entrapment. Biomed Eng 4: 517–522, 1969.

    PubMed  CAS  Google Scholar 

  80. Mansour JM, Mow VC: The permeability of articular cartilage under compressive strain and at high pressures. J Bone Joint Surg [Am] 58: 509–516, 1976.

    CAS  Google Scholar 

  81. Maroudas A: Physicochemical properties of articular cartilage. In: Freeman MAR, ed: Adult Articular Cartilage, 2nd ed. Pitman Medical, Kent, UK, 1979: 215–290.

    Google Scholar 

  82. Maroudas A, Grushko G: Measurement of swelling pressure of cartilage. In: Maroudas A, Kuettner K, eds: Methods in Cartilage Research. Academic Press, New York, NY, 1990: 298–301.

    Google Scholar 

  83. Maroudas AI: Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260: 808–809, 1976.

    Article  PubMed  CAS  Google Scholar 

  84. Mattioli-Belmonte M, Gigante A, Muzzarelli RA, et al: N,N-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Med Biol Eng Comput 37: 130–134, 1999.

    Article  PubMed  CAS  Google Scholar 

  85. Mauck RL, Soltz MA, Wang CC, et al: Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122: 252–260, 2000.

    Article  PubMed  CAS  Google Scholar 

  86. McCutchen CW: Joint lubrication. Bull Hosp Joint Dis Orthop Inst 43: 118–129, 1983.

    CAS  Google Scholar 

  87. Menche DS, Frenkel SR, Blair B, et al: A comparison of abrasion burr arthroplasty and subchondral drilling in the treatment of full-thickness cartilage lesions in the rabbit. Arthroscopy 12: 280–286, 1996.

    Article  PubMed  CAS  Google Scholar 

  88. Meyers MH, Akeson W, Convery FR: Resurfacing of the knee with fresh osteochondral allo-graft. J Bone Joint Surg [Am] 71: 704–713, 1989.

    CAS  Google Scholar 

  89. Minas T, Peterson L: Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med 18: 13–44, 1999.

    Article  PubMed  CAS  Google Scholar 

  90. Moeckel B, Huo MH, Salvati EA, et al: Total hip arthroplasty in patients with diabetes mellitus. JArthroplasty 8: 279–284, 1993.

    Article  CAS  Google Scholar 

  91. Mow VC, Holmes MH, Lai WM: Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17: 377–394, 1984.

    Article  PubMed  CAS  Google Scholar 

  92. Mow VC, Kuei SC, Lai WM, et al: Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102: 73–84, 1980.

    Article  PubMed  CAS  Google Scholar 

  93. Mow VC, Ratcliffe A, Poole AR: Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13: 67–97, 1992.

    Article  PubMed  CAS  Google Scholar 

  94. Muir IHM: Biochemistry. In: Freeman MAR, ed: Adult Articular Cartilage, 2nd ed. Pitman Medical, Kent, UK, 1979: 145–214.

    Google Scholar 

  95. Murray RC, DeBowes RM, Gaughan EM, et al: The effects of intra-articular methylprednisolone and exercise on the mechanical properties of articular cartilage in the horse. Osteoarthritis Cartilage 6: 106–114, 1998.

    Article  PubMed  CAS  Google Scholar 

  96. Narmoneva DA, Wang JY, Setton LA: Nonuniform swelling-induced residual strains in articular cartilage. J Biomech 32: 401–408, 1999.

    Article  PubMed  CAS  Google Scholar 

  97. Nehrer S, Breinan HA, Ramappa A, et al: Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 19: 2313–2328, 1998.

    Article  PubMed  CAS  Google Scholar 

  98. Nehrer S, Breinan HA, Ramappa A, et al: Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro [published erratum appears in J Biomed Mater Res 38:288, 1997]. J Biomed Mater Res 38: 95–104, 1997.

    Article  PubMed  CAS  Google Scholar 

  99. O’Driscoll SW: Articular cartilage regeneration using periosteum. Clin Orthop 367:S 186–5203, 1999.

    Article  Google Scholar 

  100. O’Driscoll SW, Salter RB: The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop 208: 131–140, 1986.

    PubMed  Google Scholar 

  101. Parkkinen JJ, Ikonen J, Lammi MJ, et al: Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300: 458–465, 1993.

    Article  PubMed  CAS  Google Scholar 

  102. Parkkinen JJ, Lammi MJ, Inkinen R, et al: Influence of short-term hydrostatic pressure on organization of stress fibers in cultured chondrocytes. J Orthop Res 13: 495–502, 1995.

    Article  PubMed  CAS  Google Scholar 

  103. Parkkinen JJ, Lammi MJ, Pelttari A, et al: Altered Golgi apparatus in hydrostatically loaded articular cartilage chondrocytes. Ann Rheum Dis 52: 192–198, 1993.

    Article  PubMed  CAS  Google Scholar 

  104. Peterson L, Minas T, Brittberg M, et al: Two-to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop 374: 212–234, 2000.

    Article  PubMed  Google Scholar 

  105. Pitman MI, Menche D, Song EK, et al: The use of adhesives in chondrocyte transplantation surgery: in-vivo studies. Bull Hosp Joint Dis Orthop Inst 49: 213–220, 1989.

    CAS  Google Scholar 

  106. Poole CA: Articular cartilage chondrons: from, function and failure. JAnat 191: 1–13, 1997.

    Google Scholar 

  107. Radice M, Brun P, Cortivo R, et al: Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors. J Biomed Mater Res 50: 101–109, 2000.

    Article  PubMed  CAS  Google Scholar 

  108. Ralphs JR, Tyers RN, Benjamin M: Development of functionally distinct fibrocartilages at two sites in the quadriceps tendon of the rat: the suprapatella and the attachment to the patella. Anat Embryol 185: 181–187, 1992.

    Article  PubMed  CAS  Google Scholar 

  109. Redini F, Lafuma C, Pujol JP, et al: Effect of cytokines and growth factors on the expression of elastase activity by human synoviocytes, dermal fibroblasts and rabbit articular chondrocytes. Biochem Biophys Res Commun 155: 786–793, 1988.

    Article  PubMed  CAS  Google Scholar 

  110. Rosen DM, Stempien SA, Thompson AY, et al: Differentiation of rat mesenchymal cells by cartilage-inducing factor. Enhanced phenotypic expression by dihydrocytochalasin B. Exp Cell Res 165: 127–138, 1986.

    Article  PubMed  CAS  Google Scholar 

  111. Rosen DM, Stempien SA, Thompson AY, et al: Transforming growth factor-beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. J Cell Physiol 134: 337–346, 1988.

    Article  PubMed  CAS  Google Scholar 

  112. Sah RL, Kim YJ, Doong JY, et al: Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7: 619–636, 1989.

    Article  PubMed  CAS  Google Scholar 

  113. Sailor LZ, Hewick RM, Morris EA: Recombinant human bone morphogenetic protein-2 maintains the articular chondrocyte phenotype in long-term culture. J Orthop Res 14: 937–945, 1996.

    Article  PubMed  CAS  Google Scholar 

  114. Schinagl RM, Gurskis D, Chen AC, et al: Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res 15: 499–506, 1997.

    Article  PubMed  CAS  Google Scholar 

  115. Schmidt G, Hausser H, Kresse H: Interaction of the small proteoglycan decorin with fibronection. Involvement of the sequence NKISK of the core protein. Biochem J 280: 411–414, 1991.

    PubMed  CAS  Google Scholar 

  116. Schumacher BL, Block JA, Schmid TM, et al: A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 311: 144–152, 1994.

    Article  PubMed  CAS  Google Scholar 

  117. Schuman L, Buma P, Versleyen D, et al: Chondrocyte behaviour within different types of collagen gel in vitro. Biomaterials 16: 809–814, 1995.

    Article  PubMed  CAS  Google Scholar 

  118. Sellers RS, Peluso D, Morris EA: The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg [Am] 79: 1452–1463, 1997.

    CAS  Google Scholar 

  119. Shin D, Athanasiou K: Cytoindentation for obtaining cell biomechanical properties. J Orthop Res 17: 880–890, 1999.

    Article  PubMed  CAS  Google Scholar 

  120. Shin D, Lin JH, Agrawal CM, et al: Zonal variations in microindentation properties of articular cartilage. 44th Annual Meeting of the Orthopaedic Reasearch Society, New Orleans, LA, March 16–19, 1998: 903.

    Google Scholar 

  121. Siczkowski M, Watt FM: Subpopulations of chondrocytes from different zones of pig articular cartilage. Isolation, growth and proteoglycan synthesis in culture. J Cell Sci 97: 349–360, 1990.

    PubMed  CAS  Google Scholar 

  122. Silverman RP, Passaretti D, Huang W: Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103: 1809–1818, 1999.

    Article  PubMed  CAS  Google Scholar 

  123. Simon WH, Freidenberg S, Richardson S: A correlation of joint congruence and thickness of articular cartilage in dogs. J Bone Joint Surg [Am] 55: 1614–1620, 1973.

    CAS  Google Scholar 

  124. Sittinger M, Reitzel D, Dauner M, et al: Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J Biomed Mater Res 33: 57–63, 1996.

    Article  PubMed  CAS  Google Scholar 

  125. Smith GN Jr, Brandt KD: Hypothesis: can type IX collagen “glue” together intersecting type II fibers in articular cartilage matrix? A proposed mechanism. J Rheumatol 19: 14–17, 1992.

    PubMed  CAS  Google Scholar 

  126. Smith RL, Donlon BS, Gupta MK, et al: Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 13: 824–831, 1995.

    Article  PubMed  CAS  Google Scholar 

  127. Smith RL, Lin J, Trindade MC, et al: Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression. J Rehabil Res Dey 37: 153–161, 2000.

    CAS  Google Scholar 

  128. Solchaga LA, Dennis JE, Goldberg VM, et al: Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 17: 205–213, 1999.

    Article  PubMed  CAS  Google Scholar 

  129. Soltz MA, Ateshian GA: Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J Biomech 31: 927–934, 1998.

    Article  PubMed  CAS  Google Scholar 

  130. Spain TL, Agrawal CM, Athanasiou KA: New technique to extend the useful life of a biodegradable cartilage implant. Tissue Eng 4: 343–352, 1998.

    Article  PubMed  CAS  Google Scholar 

  131. Stockwell RA: The cell density of human articular and costal cartilage. J Anat 101: 753–763, 1967.

    PubMed  CAS  Google Scholar 

  132. Suggs LJ, Kao EY, Palombo LL, et al: Preparation and characterization of poly(propylene fumarate-co-ethylene glycol) hydrogels. J Biomater Sci Polym Ed 9: 653–666, 1998.

    Article  PubMed  CAS  Google Scholar 

  133. Suggs LJ, Krishnan RS, Garcia CA, et al: In vitro and in vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. J Biomed Mater Res 42: 312–320, 1998.

    Article  PubMed  CAS  Google Scholar 

  134. Suggs LT, Shive MS, Garcia CA, et al: In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. J Biomed Mater Res 46: 22–32, 1999.

    Article  PubMed  CAS  Google Scholar 

  135. Swann DA, Slayter HS, Silver FH: The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J Biol Chem 256: 5921–5925, 1981.

    PubMed  CAS  Google Scholar 

  136. Takahashi K, Kubo T, Arai Y, et al: Hydrostatic pressure induces expression of interleukin 6 and tumour necrosis factor alpha mRNAs in a chondrocyte-like cell line. Ann Rheum Dis 57: 231–236, 1998.

    Article  PubMed  CAS  Google Scholar 

  137. Thompson D, Agrawal C, Athanasiou K: The effects of dynamic compressive loading on biodegradable implants of 50–50% polylactic acid-polyglycolic acid. Tissue Eng 2: 61–74, 1996.

    Article  PubMed  CAS  Google Scholar 

  138. Ting V, Sims CD, Brecht LE, et al: In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes. Ann Plast Surg 40:413–420; discussion 420–421, 1998.

    Google Scholar 

  139. Tipton DA, Dabbous MK: Autocrine transforming growth factor beta stimulation of extracellular matrix production by fibroblasts from fibrotic human gingiva. J Periodontol 69: 609–619, 1998.

    Article  PubMed  CAS  Google Scholar 

  140. Torzilli PA: Effects of temperature, concentration and articular surface removal on transient solute diffusion in articular cartilage. Med Biol Eng Comput 31: S93 - S98, 1993.

    Article  PubMed  Google Scholar 

  141. Trippel SB, Ehrlich MG, Lippiello L, et al: Characterization of chondrocytes from bovine articular cartilage: I. Metabolic and morphological experimental studies. J Bone Joint Surg [Am] 62: 816–820, 1980.

    CAS  Google Scholar 

  142. Turner AS, Athanasiou KA, Zhu CF, et al: Biochemical effects of estrogen on articular cartilage in ovariectomized sheep. Osteoarthritis Cartilage 5: 63–69, 1997.

    Article  PubMed  CAS  Google Scholar 

  143. Vachon A, Bramlage LR, Gabel AA, et al: Evaluation of the repair process of cartilage defects of the equine third carpal bone with and without subchondral bone perforation. Am J Vet Res 47: 2637–2645, 1986.

    PubMed  CAS  Google Scholar 

  144. van Susante JL, Buma P, Schuman L, et al: Resurfacing potential of heterologous chondroycytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials 20: 1167–1175, 1999.

    Article  PubMed  Google Scholar 

  145. Vaughan L, Mendler M, Huber S, et al: D-periodic distribution of collagen type IX along cartilage fibrils. J Cell Biol 106: 991–997, 1988.

    Article  PubMed  CAS  Google Scholar 

  146. Vogel K, Troter J: The effect of proteoglycans on the morphology of collagen fibrils in vitro. Collagen Rel Res 7: 105–114, 1987.

    Article  CAS  Google Scholar 

  147. Vunjak-Novakovic G, Martin I, Obradovic B, et al: Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17: 130–138, 1999.

    Article  PubMed  CAS  Google Scholar 

  148. Wakitani S, Goto T, Pineda SJ, et al: Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg [Am] 76: 579–592, 1994.

    CAS  Google Scholar 

  149. Wakitani S, Goto T, Young RG, et al: Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng 4: 429–444, 1998.

    Article  PubMed  CAS  Google Scholar 

  150. Weiser L, Bhargava M, Attia E, et al: Effect of serum and platelet-derived growth factor on chondrocytes grown in collagen gels. Tissue Eng 5: 533–544, 1999.

    Article  PubMed  CAS  Google Scholar 

  151. Woessner JFJ, Howell DS. Joint Cartilage Degradation. Marcel Dekker, New York, NY, 1993.

    Google Scholar 

  152. Wu JZ, Herzog W, Epstein M: Modelling of location-and time-dependent deformation of chondrocytes during cartilage loading. J Biomech 32: 563–572, 1999.

    Article  PubMed  CAS  Google Scholar 

  153. Yu H, Grynpas M, Kandel RA: Composition of cartilagenous tissue with mineralized and non-mineralized zones formed in vitro. Biomaterials 18: 1425–1431, 1997.

    Article  PubMed  CAS  Google Scholar 

  154. Zanetti M, Ratcliffe A, Watt FM: Two subpopulations of differentiated chondrocytes identified with a monoclonal antibody to keratan sulfate. J Cell Biol 101: 53–59, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hu, J.C.Y., Athanasiou, K.A. (2003). Structure and Function of Articular Cartilage. In: An, Y.H., Martin, K.L. (eds) Handbook of Histology Methods for Bone and Cartilage. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-417-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-417-7_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-277-3

  • Online ISBN: 978-1-59259-417-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics