Skip to main content

Introduction to Experimental Bone and Cartilage Histology

  • Chapter
Book cover Handbook of Histology Methods for Bone and Cartilage

Abstract

Experimental and diagnostic histotechnology and histomorphometry are two consecutive steps that are essential for clinical work and research in bone or cartilage. Unlike routine histological or pathological laboratories, a laboratory for bone-tissue processing has unique characteristics, such as more demanding fixation, the challenging process of decalcification, media infiltration and embedding, the need for heavy-duty microtomes, diamond circular or wire saws for tissue sectioning, and grinders or grinding machines for section thinning and grinding. The existence of metal or other implants adds further complexity to the process. In addition to the routine microscopic evaluation of cellular and structural features, histomorphometry is a unique facet of bone and cartilage histology. A laboratory engaged in experimental bone and cartilage histology should have both basic and specialized equipment for its unique needs. Histotechnology and histomorphometry are both techniques and arts. They require patience and skilled hands as well as basic biological and anatomical knowledge at the level of organs, tissues, cells, and even molecules. Pre-employment and continuing education are necessary for maintaining adequate knowledge of biological tissues, basic and specific histological techniques, good laboratory practice, and laboratory safety issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An YH, Friedman RJ, Jiang M, et al: Bone ingrowth to implant surfaces in an inflammatory arthritis model. J Orthop Res 16: 576–584, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Anonymous: Good Laboratory Practice (GLP) for Nonclinical Laboratory Studies. Department of Health and Human Services, Washington, DC, 1992.

    Google Scholar 

  3. Augat P, Merk J, Genant HK, et al: Quantitative assessment of experimental fracture repair by peripheral computed tomography. Calcif Tissue Int 60: 194–199, 1997.

    Article  PubMed  CAS  Google Scholar 

  4. Baron R, Vignery A, Neff L, et al: Processing of undecalcified bone specimens for bone histomorphometry. In: Recker RR, ed: Bone Histomorphometry: Techniques and Interpretation. CRC Press, Boca Raton, FL, 1983, 13.

    Google Scholar 

  5. Bjursten LM, Emanuelsson L, Ericson LE, et al: Method for ultrastructural studies of the intact tissue-metal interface. Biomaterials 11: 596–601, 1990.

    Article  PubMed  CAS  Google Scholar 

  6. Bland YS, Ashhurst DE: Development and ageing of the articular cartilage of the rabbit knee joint: distribution of the fibrillar collagens. Anat Embryol (Berl) 194: 607–619, 1996.

    Article  CAS  Google Scholar 

  7. Bogoch E, Gschwend N, Bogoch B, et al: Juxtaarticular bone loss in experimental inflammatory arthritis. J Orthop Res 6: 648–656, 1988.

    Article  PubMed  CAS  Google Scholar 

  8. Bonse U, Busch F, Gunnewig O, et al: D computed X-ray tomography of human cancellous bone at 8 microns spatial and 10(-4) energy resolution. Bone Miner 25: 25–38, 1994.

    Article  PubMed  CAS  Google Scholar 

  9. Brain EB: The Preparation of Decalcified Sections. Charles C. Thomas, Springfield, IL, 1966.

    Google Scholar 

  10. Breinan HA, Minas T, Hsu HP, et al: Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg [Am] 79: 1439–1451, 1997.

    CAS  Google Scholar 

  11. Brueton RN, Brookes M, Heatley FW: The vascular repair of an experimental osteotomy held in an external fixator. Clin Orthop 257: 286–304, 1990.

    PubMed  Google Scholar 

  12. Burr DB, Milgrom C, Boyd RD, et al: Experimental stress fractures of the tibia. Biological and mechanical aetiology in rabbits. J Bone Joint Surg [Br] 72: 370–375, 1990.

    CAS  Google Scholar 

  13. Chehroudi B, Ratkay J, Brunette DM: The role of implant surface geometry on mineralization in vivo and in vitro: A transmission and scanning electron microscopic study. Cells Mater 2: 89–104, 1992.

    Google Scholar 

  14. Claassen H, Kirsch T: Temporal and spatial localization of type I and II collagens in human thyroid cartilage. Anat Embryol (Berl) 189: 237–242, 1994.

    Article  CAS  Google Scholar 

  15. Clark JM, Norman A, Notzli H: Postnatal development of the collagen matrix in rabbit tibial plateau articular cartilage. J Anat 191: 215–221, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Clokie CM, Warshawsky H: Morphologic and radioautographic studies of bone formation in relation to titanium implants using the rat tibia as a model. Int J Oral Maxillofac Implants 10: 155–165, 1995.

    PubMed  CAS  Google Scholar 

  17. Cole EC: Studies of hematoxyin stains. Stain Technol 18: 125–152, 1943.

    Google Scholar 

  18. Comer JS, Kincaid SA, Baird AN, et al: Immunolocalization of stromelysin, tumor necrosis factor (TNF) alpha, and TNF receptors in atrophied canine articular cartilage treated with hyaluronic acid and transforming growth factor beta. Am J Vet Res 57: 1488–1496, 1996.

    PubMed  CAS  Google Scholar 

  19. DeVries WJ, Runyon CL, Martinez SA, et al: Effect of volume variations on osteogenic capabilities of autogenous cancellous bone graft in dogs. Am J Vet Res 57: 1501–1505, 1996.

    PubMed  CAS  Google Scholar 

  20. Donath K, Breuner G: A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique. J Oral Pathol 11: 318–326, 1982.

    Article  PubMed  CAS  Google Scholar 

  21. Eurell JA, Sterchi DL: Microwaveable toluidine blue stain for surface staining of undecalcified bone sections. J Histotechnol 17: 357–359, 1994.

    Article  Google Scholar 

  22. Feldkamp LA, Goldstein SA, Parfitt AM, et al: The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4: 3–11, 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Fini M, Nicoli Aldini N, Gandolfi MG, et al: Biomaterials for orthopedic surgery in osteoporotic bone: a comparative study in osteopenic rats. Int JArtif Organs 20: 291–297, 1997.

    CAS  Google Scholar 

  24. Freed LE, Grande DA, Lingbin Z, et al: Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res 28: 891–899, 1994.

    Article  PubMed  CAS  Google Scholar 

  25. Friedman RJ, An YH, Jiang M, et al: Influence of biomaterial surface texture on bone ingrowth in the rabbit femur. J Orthop Res 14: 455–464, 1996.

    Article  PubMed  CAS  Google Scholar 

  26. Fromm B, Schafer B, Parsch D, et al: Reconstruction of the anterior cruciate ligament with a cyropreserved ACL allograft. A microangiographic and immunohistochemical study in rabbits. Int Orthop 20: 378–382, 1996.

    Article  PubMed  CAS  Google Scholar 

  27. Gao J, Messner K, Ralphs JR, et al: An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol (Berl) 194: 399–406, 1996.

    Article  CAS  Google Scholar 

  28. Gasser JA: Assessing bone quantity by pQCT. Bone 17: 145S - 1454S, 1995.

    PubMed  CAS  Google Scholar 

  29. Gluer CC, Wu CY, Jergas M, et al: Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 55: 46–52, 1994.

    Article  PubMed  CAS  Google Scholar 

  30. Gonzalez del Pino J, Knapp K, Gomez Castresana F, et al: Revascularization of femoral head ischemic necrosis with vascularized bone graft: a CT scan experimental study. Skeletal Radiol 19: 197–202, 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Gruber HE: Adaptations of Goldner’s Masson trichrome stain for the study of undecalcified plastic embedded bone. Biotech Histochem 67: 30–34, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Gruber HE, Marshall GJ, Nolasco LM, et al: Alkaline and acid phosphatase demonstration in human bone and cartilage: effects of fixation interval and methacrylate embedments. Stain Technol 63: 299–306, 1988.

    PubMed  CAS  Google Scholar 

  33. Gruber HE, Mekikian P: Application of Stains-All for demarcation of cement lines in methacrylate embedded bone. Biotech Histochem 66: 181–184, 1991.

    Article  PubMed  CAS  Google Scholar 

  34. Gruber HE, Stasky AA: Histological study in orthopaedic animal research. In: An YH, Friedman RJ, eds. Animal Models in Orthopaedic Research. CRC Press, Boca Raton, FL, 1999, 115–138.

    Google Scholar 

  35. Hacker SA, Healey RM, Yoshioka M, et al: A methodology for the quantitative assessment of articular cartilage histomorphometry. Osteoarthritis Cartilage 5: 343–355, 1997.

    Article  PubMed  CAS  Google Scholar 

  36. He SZ, Xiu ZH, Hansen ES, et al: Microvascular morphology of bone in arthrosis. Scanning electron microscopy in rabbits. Acta Orthop Scand 61: 195–200, 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Hemmerle J, Voegel JC: Ultrastructural aspects of the intact titanium implant-bone interface from undecalcified ultrathin sections. Biomaterials 17:1913–1920, 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Hillmann G, Hillman B, Donath K: Enzyme, lectin and immunohistochemistry of plastic embedded undecalcified bone and other hard tissues for light microscopic investigations. Biotech Histochem 66: 185–193, 1991.

    Article  PubMed  CAS  Google Scholar 

  39. Holgers KM, Thomsen P, Tjellstrom A, et al: Electron microscopic observations on the soft tissue around clinical long-term percutaneous titanium implants. Biomaterials 16: 83–90, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Holm IE, Bunger C, Melsen F: A histomorphometric analysis of subchondral bone in juvenile arthropathy of the dog knee. Acta Pathol Microbiol Immunol Scand [A] 93: 299–304, 1985.

    CAS  Google Scholar 

  41. Ishaug-Riley SL, Crane GM, Gurlek A, et al: Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res 36: 1–8, 1997.

    Article  PubMed  CAS  Google Scholar 

  42. Jansen JA, Dhert WJ, van der Waerden JP, et al: Semi-quantitative and qualitative histologic analysis method for the evaluation of implant biocompatibility. J Invest Surg 7: 123–134, 1994.

    Article  PubMed  CAS  Google Scholar 

  43. Jayasinghe JA, Jones SJ, Boyde A: Scanning electron microscopy of human lumbar vertebral trabecular bone surfaces. Virchows Arch A Pathol Anat Histopathol 422: 25–34, 1993.

    Article  PubMed  CAS  Google Scholar 

  44. Kalebo P, Jacobsson M: Recurrent bone regeneration in titanium implants. Experimental model for determining the healing capacity of bone using quantitative microradiography. Biomaterials 9: 295–301, 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Kang Q, An YH, Butehorn HF, et al: Morphological and mechanical study of the effects of experimentally induced inflammatory knee arthritis on rabbit long bones. J Mater Sci Mater Med 9: 463–473, 1998.

    Article  PubMed  CAS  Google Scholar 

  46. Karim MA, Miller DD, Farrar MA, et al: Histomorphometric and biochemical correlates of arterial procollagen gene expression during vascular repair after experimental angioplasty. Circulation 91: 2049–2057, 1995.

    Article  PubMed  CAS  Google Scholar 

  47. Kayser MV, Downes S, Ali SY: An electron microscopy study of intact interfaces between bone and biomaterials used in orthopaedics. Cells Mater 4: 353–358, 1991.

    Google Scholar 

  48. Kinney JH, Lane NE, Haupt DL: In vivo, three-dimensional microscopy of trabecular bone. J Bone Miner Res 10: 264–270, 1995.

    Article  PubMed  CAS  Google Scholar 

  49. Kiviranta I, Tammi M, Jurvelin J, et al: Demonstration of chondroitin sulphate and glycoproteins in articular cartilage matrix using periodic acid-Schiff (PAS) method. Histochemistry 83: 303–306, 1985.

    Article  PubMed  CAS  Google Scholar 

  50. Klein CP, Sauren YM, Modderman WE, et al: A new saw technique improves preparation of bone sections for light and electorn microscopy. J Appl Biomater 5: 369–373, 1994.

    Article  PubMed  CAS  Google Scholar 

  51. Kobayashi S, Yonekubo S, Kurogouchi Y: Cryoscanning electron microscopy of loaded articular cartilage with special reference to the surface amorphous layer. J Anat 188: 311–322, 1996.

    PubMed  Google Scholar 

  52. Kraus BL, Kirker-Head CA, Kraus KH, et al: Vascular supply of the tendon of the equine deep digital flexor muscle within the digital sheath. Vet Surg 24: 102–111, 1995.

    Article  PubMed  CAS  Google Scholar 

  53. Landis WJ, Hodgens KJ, Arena J, et al: Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33: 192, 1996.

    Article  PubMed  CAS  Google Scholar 

  54. Lane TM, Sandhu HS: Current approaches to experimental bone grafting. Orthop Clin North Am 18: 213–225, 1987.

    PubMed  CAS  Google Scholar 

  55. Linder L: Ultrastructure of the bone-cement and the bone-metal interface. Clin Orthop 276: 147–156, 1992.

    PubMed  Google Scholar 

  56. Liu SH, Panossian V, al-Shaikh R, et al: Morphology and matrix composition during early tendon to bone healing. Clin Orthop 339: 253–260, 1997.

    Article  PubMed  Google Scholar 

  57. Lucena SB, Duarte MEL, Fonseca EC: Plastic embedded undecalcified bone biopsies: an immunohistochemical method for routine study of bone marrow extracellular matrix. J Histotechnol 20: 253, 1997.

    Google Scholar 

  58. Lukoschek M, Schaffler MB, Burr DB, et al: Synovial membrane and cartilage changes in experimental osteoarthrosis. J Orthop Res 6: 475–492, 1988.

    Article  PubMed  CAS  Google Scholar 

  59. Lust G, Burton-Wurster N, Leipold H: Fibronectin as a marker for osteoarthritis. J Rheumatol 14 Spec No: 28–29, 1987.

    Google Scholar 

  60. McNamara A, Williams DF: Scanning electron microscopy of the metal-tissue interface. II. Observations with lead, copper, nickel, aluminium, and cobalt. Biomaterials 3: 165–176, 1982.

    Article  PubMed  CAS  Google Scholar 

  61. Mohr H, Kragstrup J: Morphostereometry of heterotopic ossicles in the rat. Acta Orthop Scand 62: 257–260, 1991.

    Article  PubMed  CAS  Google Scholar 

  62. Moroni A, Caja VL, Egger EL, et al: Histomorphometry of hydroxyapatite coated and uncoated porous titanium bone implants. Biomaterials 15: 926–930, 1994.

    Article  PubMed  CAS  Google Scholar 

  63. Morrison EH, Ferguson MW, Bayliss MT, et al: The development of articular cartilage: I. The spatial and temporal patterns of collagen types. J Anat 189: 9–22, 1996.

    PubMed  CAS  Google Scholar 

  64. Muller R, Hildebrand T, Hauselmann HJ, et al: In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res 11: 1745–1750, 1996.

    Article  PubMed  CAS  Google Scholar 

  65. Nakashima Y, Hayashi K, Inadome T, et al: Hydroxyapatite-coating on titanium arc sprayed titanium implants. J Biomed Mater Res 35: 287–298, 1997.

    Article  PubMed  CAS  Google Scholar 

  66. Nerlich AG, Wiest I, von der Mark K: Immunohistochemical analysis of interstitial collagens in cartilage of different stages of osteoarthrosis. Virchows Arch B Cell Pathol Incl Mol Pathol 63: 249–255, 1993.

    Article  PubMed  CAS  Google Scholar 

  67. Niyibizi C, Sagarrigo Visconti C, Gibson G, et al: Identification and immunolocalization of type X collagen at the ligament-bone interface. Biochem Biophys Res Commun 222: 584–589, 1996.

    Article  PubMed  CAS  Google Scholar 

  68. Niyibizi C, Visconti CS, Kavalkovich K, et al: Collagens in an adult bovine medial collateral ligament: immunofluorescence localization by confocal microscopy reveals that type XIV collagen predominates at the ligament-bone junction. Matrix Biol 14: 743–751, 1995.

    Article  PubMed  CAS  Google Scholar 

  69. O’Driscoll SW, Keeley FW, Salter RB: Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg [Am] 70: 595–606, 1988.

    Google Scholar 

  70. Odgaard A: Three-dimensional methods for quantification of cancellous bone architecture. Bone 20: 315–328, 1997.

    Article  PubMed  CAS  Google Scholar 

  71. Ohlendorf C, Tomford WW, Mankin HJ: Chondrocyte survival in cryopreserved osteochondral articular cartilage. J Orthop Res 14: 413–416, 1996.

    Article  PubMed  CAS  Google Scholar 

  72. Okimura A, Okada Y, Makihira S, et al: Enhancement of cartilage matrix protein synthesis in arthritic cartilage. Arthritis Rheum 40: 1029–1036, 1997.

    Article  PubMed  CAS  Google Scholar 

  73. Orr RD, de Bruijn JD, Davies JE: Scanning electron microscopy of the bone interface with titanium, titanium alloy and hydroxyapatite. Cells Mater 2: 241–251, 1992.

    Google Scholar 

  74. Overgaard S, Soballe K, Josephsen K, et al: Role of different loading conditions on resorption of hydroxyapatite coating evaluated by histomorphometric and stereological methods. J Orthop Res 14: 888–894, 1996.

    Article  PubMed  CAS  Google Scholar 

  75. Pannarale L, Gaudio E, Marinozzi G: Microcorrosion casts in the microcirculation of skeletal muscle. Scanning Electron Microsc (Pt 3 ): 1103–1108, 1986.

    Google Scholar 

  76. Pannarale L, Morini S, D’Ubaldo E, et al: SEM corrosion-casts study of the microcirculation of the flat bones in the rat. Anat Rec 247: 462–471, 1997.

    Article  PubMed  CAS  Google Scholar 

  77. Paquay YC, De Ruijter AE, van der Waerden JP, et al: A one stage versus two stage surgical technique. Tissue reaction to a percutaneous device provided with titanium fiber mesh applicable for peritoneal dialysis. Asaio J 42: 961–967, 1996.

    Article  PubMed  CAS  Google Scholar 

  78. Parfitt AM, Drezner MK, Glorieux FH, et al: Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2: 595–610, 1987.

    Article  PubMed  CAS  Google Scholar 

  79. Parr JA, Young T, Dunn-Jena P, et al: Histomorphometrical analysis of the bone-implant interface: comparison of microradiography and brightfield microscopy. Biomaterials 17: 1921–1926, 1996.

    Article  PubMed  CAS  Google Scholar 

  80. Pazzaglia UE, Bernini F, Zatti G, et al: Histology of the metal-bone interface: interpretation of plastic embedded slides. Biomaterials 15: 273–277, 1994.

    Article  PubMed  CAS  Google Scholar 

  81. Piattelli A, Scarano A, Piattelli M: Detection of alkaline and acid phosphatases around titanium implants: a light microscopical and histochemical study in rabbits. Biomaterials 16: 1333–1338, 1995.

    Article  PubMed  CAS  Google Scholar 

  82. Piattelli A, Trisi P, Passi P, et al: Histochemical and confocal laser scanning microscopy study of the bone-titanium interface: an experimental study in rabbits. Biomaterials 15: 194–200, 1994.

    Article  PubMed  CAS  Google Scholar 

  83. Pineda S, Pollack A, Stevenson S, et al: A semiquantitative scale for histologic grading of articular cartilage repair. Acta Anat 143: 335–340, 1992.

    Article  PubMed  CAS  Google Scholar 

  84. Ratcliffe A, Fryer PR, Hardingham TE: The distribution of aggregating proteoglycans in articular cartilage: comparison of quantitative immunoelectron microscopy with radioimmunoassay and biochemical analysis. J Histochem Cytochem 32: 193–201, 1984.

    Article  PubMed  CAS  Google Scholar 

  85. Read ND, Jeffree CE: Low-temperature scanning electron microscopy in biology. J Microsc 161: 59–72, 1991.

    Article  PubMed  CAS  Google Scholar 

  86. Recker RR: Bone Histomorphometry: Techniques and Interpretation. CRC Press, Boca Raton, FL, 1983.

    Google Scholar 

  87. Rohrer MD, Schubert CC: The cutting-grinding technique for histologic preparation of undecalcified bone and bone-anchored implants. Improvements in instrumentation and procedures. Oral Surg Oral Med Oral Pathol 74: 73–78, 1992.

    Article  PubMed  CAS  Google Scholar 

  88. Ruegsegger P, Koller B, Muller R: A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58: 24–29, 1996.

    Article  PubMed  CAS  Google Scholar 

  89. Sanderson C: Entering the realm of mineralized bone processing: a review of the literature and techniques. J Histotechnol 20: 259, 1997.

    Article  Google Scholar 

  90. Schliephake H, Neukam FW, Hutmacher D, et al: Experimental transplantation of hydroxylapatite-bone composite grafts. J Oral Maxillofac Surg 53: 46–51, 1995.

    Article  PubMed  CAS  Google Scholar 

  91. Schumacher B, Albrechtsen J, Keller J, et al: Periosteal insulin-like growth factor I and bone formation. Changes during tibial lengthening in rabbits. Acta Orthop Scand 67: 237–241, 1996.

    Article  PubMed  CAS  Google Scholar 

  92. Seitz H, Hausner T, Schlenz I, et al: Vascular anatomy of the ovine anterior cruciate ligament. A macroscopic, histological and radiographic study. Arch Orthop Trauma Surg 116: 19–21, 1997.

    Article  PubMed  CAS  Google Scholar 

  93. Sheehan DC, Hrapchak BB, eds: Theory and Practice of Histotechnology. Battelle Press, Columbus, OH and Richland, WA, 1980: 89–117.

    Google Scholar 

  94. Shrive N, Chimich D, Marchuk L, et al: Soft-tissue “flaws” are associated with the material properties of the healing rabbit medial collateral ligament. J Orthop Res 13: 923–929, 1995.

    Article  PubMed  CAS  Google Scholar 

  95. Skinner RA: The value of methyl salicylate as a clearing agent. J Histotechnology 9: 27–28, 1986.

    CAS  Google Scholar 

  96. Skinner RA, Hickmon SG, Lumpkin CK, et al: Decalcified bone: twenty years of successful specimen management. J Histotechnol 20: 267–277, 1997.

    Google Scholar 

  97. Spurr AR: A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43, 1969.

    Article  PubMed  CAS  Google Scholar 

  98. Takeshita F, Ayukawa Y, lyama S, et al: Long-term evaluation of bone-titanium interface in rat tibiae using light microscopy, transmission electron microscopy, and image processing. J Biomed Mater Res 37: 235–242, 1997.

    Article  PubMed  CAS  Google Scholar 

  99. Takeshita F, Iyama S, Ayukawa Y, et al: Study of bone formation around dense hydroxyapatite implants using light microscopy, image processing and confocal laser scanning microscopy. Biomaterials 18: 317–322, 1997.

    Article  PubMed  CAS  Google Scholar 

  100. Takeshita F, Murai K, Ayukawa Y, et al: Effects of aging on titanium implants inserted into the tibiae of female rats using light microscopy, SEM, and image processing. J Biomed Mater Res 34: 1–8, 1997.

    Article  PubMed  CAS  Google Scholar 

  101. Tanzer M, Harvey E, Kay A, et al: Effect of noninvasive low intensity ultrasound on bone growth into porous-coated implants. J Orthop Res 14: 901–906, 1996.

    Article  PubMed  CAS  Google Scholar 

  102. Therm M, Christel P, Meunier A: Analysis of the general features of the soft tissue response to some metals and ceramics using quantitative histomorphometry. J Biomed Mater Res 28: 1267–1276, 1994.

    Article  Google Scholar 

  103. Thompson Jr., RC, Oegema Jr., TR, Lewis JL, et al: Osteoarthrotic changes after acute transarticular load. An animal model. J Bone Joint Surg [Am] 73: 990–1001, 1991.

    Google Scholar 

  104. van der Lubbe HB, Klein CP, de Groot K: A simple method for preparing thin (10 µm) histological sections of undecalcified plastic embedded bone with implants. Stain Technol 63: 171–176, 1988.

    PubMed  Google Scholar 

  105. Vigorita VJ, Minkowitz B, Dichiara JF, et al: A histomorphometric and histologic analysis of the implant interface in five successful, autopsy-retrieved, noncemented porous-coated knee arthroplasties. Clin Orthop 293: 211–218, 1993.

    PubMed  Google Scholar 

  106. Visco DM, Johnstone B, Hill MA, et al: Immunohistochemical analysis of 3-B-(-) and 7-D-4 epitope expression in canine osteoarthritis. Arthritis Rheum 36: 1718–1725, 1993.

    Article  PubMed  CAS  Google Scholar 

  107. von Recum AF, Opitz H, Wu E: Collagen types I and III at the implant/tissue interface. J Biomed Mater Res 27: 757–761, 1993.

    Article  Google Scholar 

  108. Wallace CD, Amiel D: Vascular assessment of the periarticular ligaments of the rabbit knee. J Orthop Res 9: 787–791, 1991.

    Article  PubMed  CAS  Google Scholar 

  109. Wang A, Essner A, Stark C, et al: Comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions. Biomaterials 17: 865–871, 1996.

    Article  PubMed  CAS  Google Scholar 

  110. Weaker FJ, Richardson L: A modified processing and sectioning technique for hard tissues. Am J Med Technol 44: 1030–1032, 1978.

    PubMed  CAS  Google Scholar 

  111. West PG, Rowland GR, Budsberg SC, et al: Histomorphometric and angiographic analysis of bone healing in the humerus of pigeons. Am J Vet Res 57: 1010–1015, 1996.

    PubMed  CAS  Google Scholar 

  112. West PG, Rowland GR, Budsberg SC, et al: Histomorphometric and angiographic analysis of the humerus in pigeons. Am J Vet Res 57: 982–986, 1996.

    PubMed  CAS  Google Scholar 

  113. Whitehouse WJ, Dyson ED, Jackson CK: The scanning electron microscope in studies of trabecular bone from a human vertebral body. J Anat 108: 481–496, 1971.

    PubMed  CAS  Google Scholar 

  114. Wolff D, Goldberg VM, Stevenson S: Histomorphometric analysis of the repair of a segmental diaphyseal defect with ceramic and titanium fibermetal implants: effects of bone marrow. J Orthop Res 12: 439–446, 1994.

    Article  PubMed  CAS  Google Scholar 

  115. Wotton SF, Jeacocke RE, Maciewicz RA, et al: The application of scanning confocal microscopy in cartilage research. Histochem J 23: 328–335, 1991.

    Article  PubMed  CAS  Google Scholar 

  116. Wright CD, Vedi S, Garrahan NJ, et al: Combined inter-observer and inter-method variation in bone histomorphometry. Bone 13: 205–208, 1992.

    Article  PubMed  CAS  Google Scholar 

  117. Yan WQ, Nakamura T, Kobayashi M, et al: Bonding of chemically treated titanium implants to bone. J Biomed Mater Res 37: 267–275, 1997.

    Article  PubMed  CAS  Google Scholar 

  118. Young FA, Spector M, Kresch CH: Porous titanium endosseous dental implants in Rhesus monkeys: microradiography and histological evaluation. J Biomed Mater Res 13: 843–856, 1979.

    Article  PubMed  CAS  Google Scholar 

  119. Young RD, Lawrence PA, Duance VC, et al: Immunolocalization of type III collagen in human articular cartilage prepared by high-pressure cryofixation, freeze-substitution, and low-temperature embedding. J Histochem Cytochem 43: 421–427, 1995.

    Article  PubMed  CAS  Google Scholar 

  120. Zhou H, Cherncky R, Davies JE: Scanning electron microscopy of the osteoclast-bone interface in vivo. Cells Mater 3: 141–150, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

An, Y.H., Gruber, H.E. (2003). Introduction to Experimental Bone and Cartilage Histology. In: An, Y.H., Martin, K.L. (eds) Handbook of Histology Methods for Bone and Cartilage. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-417-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-417-7_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-277-3

  • Online ISBN: 978-1-59259-417-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics