Skip to main content

Neurocognitive Issues in Off-Pump CABG

  • Chapter
  • 173 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Since its introduction in 1968, coronary artery bypass grafting (CABG) has resulted in superior survival and a better quality of life for specific subgroups of patients with coronary artery disease when compared to medical therapy (1). For most patients, CABG and the combined use of cardiopulmonary bypass (CPB) have resulted in clinically undetectable deficits, but in a significant minority the results have been more serious (2). Of all the adverse consequences associated with bypass grafting, neurological outcomes represent an important proportion (3). Given that more than 650,000 people in the United States and 800,000 worldwide undergo CABG (4), improvements in surgical techniques and patient management stand to have an impact on significant numbers of patients with respect to both medical costs and quality of life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Veterans Administration Coronary Artery Bypass Surgery Cooperative Study Group. Eleven-year survival in the Veterans Administration randomized trial of coronary bypass surgery for stable angina. N Engl J Med 1984; 311: 1333–1339.

    Article  Google Scholar 

  2. Murkin JM, Boyd WD, Ganapathy S, et al. Beating heart surgery: why expect less central system morbidity? Ann Thorac Surg 1999; 68: 1498–1501.

    Article  PubMed  CAS  Google Scholar 

  3. Brillman J. Central nervous system complications in coronary artery bypass graft surgery. Neurol Clin 1993; 11: 475–495.

    PubMed  CAS  Google Scholar 

  4. Roach GW, Kanchuger M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery. N Engl J Med 1996; 335; 1857–1863.

    Article  PubMed  CAS  Google Scholar 

  5. Gardner TJ, Horneffer PJ, Manolio TA, et al. Major stroke after coronary artery bypass graft surgery: changing magnitude of the problem. J Vasc Surg 1986; 3: 684–694.

    PubMed  CAS  Google Scholar 

  6. Loop FD, Cosgrove CM, Lytle BW, et al. An 11-year evolution of coronary arterial surgery (1968–1978). Ann Surg 1979; 190: 444–455.

    Article  PubMed  CAS  Google Scholar 

  7. Reed GL, Singer DE, Picard EH, et al. Stroke following coronary artery bypass surgery. N Eng J Med 1988; 319: 1246–1250.

    Article  Google Scholar 

  8. Bull DA, Neumayer LA, Hunter GC, et al. Risk factors for stroke in patients undergoing coronary artery bypass grafting. Cardiovasc Surg 1993; 1: 182–185.

    PubMed  CAS  Google Scholar 

  9. Breuer AC, Furlan AJ, Hanson MR, et al. Central nervous system complications of coronary artery bypass graft surgery: prospective analysis of 421 patients. Stroke 1983; 14 (5): 682.

    Article  PubMed  CAS  Google Scholar 

  10. Murkin JM, Martzke JS, Buchan AM, et al. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. II. Neurologic and cognitive outcomes. J Thorac Cardiovasc Surg 1995; 110: 349–362.

    Article  PubMed  CAS  Google Scholar 

  11. Tuman KJ, McCarthy RJ, Najafi H, et al. Differential effects of advanced age on neurologic and cardiac risks of coronary operations. J Thorac Cardiovasc Surg 1992; 104: 1510–1517.

    PubMed  CAS  Google Scholar 

  12. Stamou SC, Hill PC, Dangas G. Stroke after coronary artery bypass: incidence, predictors, and clinical outcome. Stroke 2001; 32: 1508–1513.

    Article  PubMed  CAS  Google Scholar 

  13. Shaw PJ, Bates D, Cartlidge NEF, et al. Neurologic and neuropsychological morbidity following major surgery-comparison of coronary artery bypass and peripheral vascular surgery. Stroke 1987; 18: 700–707.

    Article  PubMed  CAS  Google Scholar 

  14. Wijdicks EFM, Jack CR. Coronary artery bypass grafting-associated ischemic stroke. J Neuroimag 1996; 6: 20–22.

    CAS  Google Scholar 

  15. Trehan N, Mishra M, Kasliwal RR, et al. Reduced neurological injury during CABG in patients with mobile aortic atheromas: a five-year follow-up study. Ann Thorac Surg 2000; 70: 1558–1564.

    Article  PubMed  CAS  Google Scholar 

  16. Sotaniemi KA. Long-term neurologic outcome after cardiac operation. Ann Thorac Surg 1995; 59: 1336–1339.

    Article  PubMed  CAS  Google Scholar 

  17. Mackey WC, Khabbaz K, Bojar R, et al. Simultaneous carotid endarterectomy and coronary bypass: perioperative risk and long term survival. J Vasc Surg 1996; 24: 58–64.

    Article  PubMed  CAS  Google Scholar 

  18. Jahangiri M, Rees M, Edmondson SJ, et al. A surgical approach to coexistent coronary and carotid artery disease. Heart 1997: 77; 164–167.

    PubMed  CAS  Google Scholar 

  19. Yoon B-Y, Bae H-J, Kang D-W, et al. Intracranial cerebral artery disease as a risk factor for central nervous system complications of coronary artery bypass graft surgery. Stroke 2001; 32: 94–99.

    Article  PubMed  CAS  Google Scholar 

  20. Lezak M. Neuropsychological Assessment. 3rd ed. New York: Oxford, 1995.

    Google Scholar 

  21. Lazar RM, Marshall RS, Pile-Spellman J, Young WL, Sloan RP, Mohr JP. Continuous time estimation as a behavioral index of human cerebral ischemia during temporary occlusion of the internal carotid artery. J Neurol Neurosurg Psychiatr 1996; 60: 559–563.

    Article  PubMed  CAS  Google Scholar 

  22. Lazar RM, Connaire C, Marshall RS, Pile-Spelman J, Hacein-Bey L, Solomon RA, Sisti MB, Young WL, Mohr JP. Developmental learning disorders in adult patients with cerebral arteriovenous malformations. Arch Neurology 1999; 56: 103–106.

    Article  CAS  Google Scholar 

  23. Mohr JP. Acute clinical trials: an expression of concern Cerebrovasc Dis 1999(suppl);3:45–50.

    Google Scholar 

  24. McKhann GM, Borowicz LM, Goldborough MA, et al. Depression and cognitive decline after coronary artery bypass grafting. Lancet 1997; 349: 1282–1284.

    Article  PubMed  CAS  Google Scholar 

  25. de Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 2000(Feb); 47: 145–151.

    Google Scholar 

  26. Seines OA, Goldsborough MA, Borowicz LM, McKann GM. Neurobehavioural sequelae of cardiopulmonary bypass. Lancet 1999; 353: 1601–1606.

    Article  Google Scholar 

  27. McKann GM, Goldsborough MA, Borowicz LM, et al. Cognitive outcome after coronary artery bypass: A one-year prospective study. Ann Thorac Surg 1997; 63: 510–515.

    Article  Google Scholar 

  28. Mahanna EP, Blumenthal JA, White WD, et al. Defining neuropsychological dysfunction after coronary artery bypass grafting. Ann Thorac Surg 1996; 61: 1342–1347

    Article  PubMed  CAS  Google Scholar 

  29. Murkin JM, Newman SP, Stump DA, et al. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg 1995; 59: 1289–1295.

    Article  PubMed  CAS  Google Scholar 

  30. Murkin JM, Stump DA, Blumenthal JA, et al. Defining dysfunction: group means versus incidence analysis-a statement of consensus. Ann Thorac Surg 1997; 64: 904–905.

    Article  PubMed  CAS  Google Scholar 

  31. Seines OA, Goldborough MA, Borowicz LM, et al. Determinants of cognitive change after coronary artery bypass surgery: a multifactorial problem. Ann Thor Surg 1999; 67: 1669–1676.

    Article  Google Scholar 

  32. Newman MF, Kirchner JL, Jerry L, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med 2001; 344: 395–402.

    Article  PubMed  CAS  Google Scholar 

  33. Stump DA, Rogers AT, Hammon JW, et al. Cerebral emboli and cognitive outcome after cardiac surgery. J Cardio Vasc Anesth 1996; 10: 113–119.

    Article  CAS  Google Scholar 

  34. Moody DM, Brown WR, Challa VR, et al. Brain microemboli associated with cardiopulmonary bypass: a histologic and magnetic resonance imaging study. Ann Thorac Surg 1995; 59; 1304–1307.

    Article  PubMed  CAS  Google Scholar 

  35. Jacobs A, Neveling M, Horst M, et al. Alterations of neuropsychological function and cerebral glucose metabolism after cardiac surgery are not related only to intraoperative microembolic events. Stroke 1998; 29: 660–667.

    Article  PubMed  CAS  Google Scholar 

  36. Degirmenci B, Durak H, Hazan E, et al. The effect of coronary artery bypass surgery on brain perfusion. J Nucl Med 1998; 39: 587–591.

    PubMed  CAS  Google Scholar 

  37. DeLaPaz RL, Mohr JP. Magnetic resonance imaging. In Barnett HJM, Mohr JP, Stein BM, Yatsu FM, eds. Stroke: Pathophysiology, Diagnosis, and Management. 3rd ed. New York: Churchill-Livingstone, 1998; 227–256.

    Google Scholar 

  38. Sylivris S, Levi C, Matalanis G, et al. Pattern and significance of cerebral microemboli during coronary artery bypass grafting. Ann Thorac Surg 1998; 66: 1674–1678.

    Article  PubMed  CAS  Google Scholar 

  39. Warach S, Chen D, Li W, Ronthal M, Edelman RR. Fast magnetic resonance imaging of acute human stroke. Neurology 1992; 42: 1717–1723.

    Article  PubMed  CAS  Google Scholar 

  40. van Everdingen KJ, van der Grond J, Kappelle LJ, et al. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke 1998; 29: 1783–1790.

    Article  PubMed  Google Scholar 

  41. Wityk RJ, Goldsborough MA, Hillis A. Diffusion and perfusion-weighted magnetic resonance imaging in patients with neurological complications after cardiac surgery. Arch Neurol 2001; 58: 571–576.

    Article  PubMed  CAS  Google Scholar 

  42. Symes ES, Maruff P, Ajani A, et al. Issues associated with the identification of cognitive change following coronary artery bypass grafting. Austral N Z J Psychiatr 2000; 34: 770–784.

    Article  CAS  Google Scholar 

  43. Lazar RM, Heitjan DH, Kurlansky P, et al. Randomized trial of on-vs off-pump CABG reveals baseline memory dysfunction. Circulation 2001; 104: II - 815.

    Google Scholar 

  44. Fleiss J. The Design and Analysis of Clinical Experiments. New York: Wiley, 1986.

    Google Scholar 

  45. Makatura TJ, Lam CS, Leahy BJ, Castillo MT, Kalpakjian CZ. Standardized memory tests and the appraisal of everyday memory. Brain Injury 1999; 13: 355–367.

    Article  PubMed  CAS  Google Scholar 

  46. Burgess PW. Alderman N. Evans J. Emslie H. Wilson BA. The ecological validity of tests of executive function. J Int Neuropsychol Soc 1998; 4: 547–558.

    Article  PubMed  CAS  Google Scholar 

  47. Johnsson P, Lundqvist C, Lindgren A, et al. Cerebral complications after cardiac surgery assessed by S100 and NSE levels in blood. J Cardiothorac Vasc Anesth 1995; 9: 694–699.

    Article  PubMed  CAS  Google Scholar 

  48. Kumar P, Dhital K. Hossein-Nia M, et al. S-100 protein release in a range of cardiothoracic surgical procedures. J Thorac Cardiovasc Surg 1997; 113: 953–954.

    Article  PubMed  CAS  Google Scholar 

  49. Kilminster S, Treasure T, McMillan T, et al. Neuropsychological change and S-100 protein release in 130 unselected patients undergoing cardiac surgery. Stroke 1999; 30: 1869–1874.

    Article  PubMed  CAS  Google Scholar 

  50. Hernandez F, Clough RA, Klemperer JD, et al. Off-pump coronary artery bypass grafting: initial experience at one community hospital. Ann Thorac Surg 2000; 70: 1070–1072.

    Article  PubMed  CAS  Google Scholar 

  51. Malheiros SMF, Brucki SMD, Gabbai AA, et al. Neurological outcome in coronary artery surgery with and without cardiopulmonary bypass. Acta Neurol Scand 1995; 92: 256–260.

    Article  PubMed  CAS  Google Scholar 

  52. Andrew MJ, Baker RA, Kneebone AC, et al. Neuropsychological dysfunction after minimally invasive direct coronary artery bypass grafting. Ann Thorac Surg 1998; 66: 1611–1617.

    Article  PubMed  CAS  Google Scholar 

  53. Murkin JM, Boyd WD, Ganapathy S, et al. Beating heart surgery: why expect less central nervous system morbidity? Ann Thorac Surg 1999; 68: 1498–1501.

    Article  PubMed  CAS  Google Scholar 

  54. Diegeler A, Hirsh R., Schneider F, et al. Neuromonitoring and neurocognitive outcome in off-pump versus conventional coronary bypass operation. Ann Thorac Surg 2000; 69: 1162–1166.

    Article  PubMed  CAS  Google Scholar 

  55. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state.” J Psychiat Res 1975; 12: 189–198.

    Article  PubMed  CAS  Google Scholar 

  56. Wechsler D. WMS-III Manual. San Antonio, TX: The Psychological Corporation, 1997.

    Google Scholar 

  57. Schmidt M. Rey auditory verbal learning test. Los Angeles: Western Psychological Services, 1996.

    Google Scholar 

  58. Delis DC, Kramer JH, Kaplan E, et al. California Verbal Learning Test—second edition. San Antonio, TX: The Psychological Corporation, 2000.

    Google Scholar 

  59. Meyers JE, Meyers KR. Rey Complex Figure Test and Recognition Trial. Odessa, FL, 1995.

    Google Scholar 

  60. Goodglass H, Kaplan E, Barresi B. The Assessment of Aphasia and Related Disorders. 3rd ed. Hagerstown, MD: Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  61. Kaplan E, Goodglass H, Weintraub S. The Boston Naming Test. 2nd ed. Hagerstown, MD: Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  62. Wechsler D. WAIS-III Manual. San Antonio, TX: The Psychological Corporation, 1997.

    Google Scholar 

  63. Reitan RM, Wolfson D. The Halstead-Reitan Neuropsychological Test Battery: theory and clinical interpretation. Tucson, AZ: Neuropsychology Press, 1985.

    Google Scholar 

  64. Sachs TL, Clark CR, Pols RG, et al. Comparability and stability of performance on six alternate forms of the Dodrill-Stroop color-word test. Clin Neuropsychol 1991; 5: 220–225.

    Article  Google Scholar 

  65. Lafayette Instrument Company. Lafayette, IN.

    Google Scholar 

  66. Lafayette Instrument Company. Lafayett, IN.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lazar, R.M., Heitjan, D.F. (2004). Neurocognitive Issues in Off-Pump CABG. In: Goldstein, D.J., Oz, M.C. (eds) Minimally Invasive Cardiac Surgery. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-416-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-416-0_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-400-5

  • Online ISBN: 978-1-59259-416-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics