Skip to main content

The French Paradox

Mechanisms of Action of Nonalcoholic Wine Components on Cardiovascular Disease

  • Chapter
Beverages in Nutrition and Health

Part of the book series: Nutrition and Health ((NH))

Abstract

Epidemiologic studies of populations in most developed countries show that dietary intakes of high amounts of cholesterol, saturated fat, total fat, and calories are associated positively with mortality from cardiovascular disease (CVD) (1). In France, a paradoxical epidemiological situation was identified because despite high intakes of saturated fat and high serum cholesterol concentrations, mortality from heart attacks was only one third of the average in other Western countries. This low incidence of CVD mortality, despite consumption of dietary fats and possession of blood lipid profiles that would predict otherwise, has become known popularly as the “French Paradox” (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. German JB, Walzem RL. The health benefits of wine. Ann Rev Nutr 2000;20:561–593.

    Article  CAS  Google Scholar 

  2. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992;339:1523–1526.

    Article  PubMed  CAS  Google Scholar 

  3. Frankel EN, Kanner J, German JB, Parks E, Kinsella JE. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 1993;341:454–457.

    Article  PubMed  CAS  Google Scholar 

  4. Frankel EN, Waterhouse AL, Kinsella JE. Inhibition of human LDL oxidation by resveratrol. Lancet 1993;341:1103–1104.

    Article  PubMed  CAS  Google Scholar 

  5. Kinsella JE, Frankel EN, German JB. Possible mechanisms for the protective role of antioxidant in wine and plant foods. Food Technol 1993;47:85–89.

    CAS  Google Scholar 

  6. Kozarevic D, Vojvodic N, Gordon T, Kaelber CT, McGee D, Zukel WJ. Drinking habits and death. The Yugoslavia cardiovascular disease study. Int J Epidemiol 1983;12:145–150.

    Article  PubMed  CAS  Google Scholar 

  7. Safer M. The French Paradox. CBS 60 Minutes, November 17, 1991.

    Google Scholar 

  8. Shapiro L. To your health? Newsweek, January 22, 1996.

    Google Scholar 

  9. Wine Institute. Key facts. Available at website: http//www.wineinstitute.org/communication.statistics/ keyfacts_worldpercapitaconsumption.htm. Accessed November 19, 2001.

    Google Scholar 

  10. Schramm DD, German JB. Potential effects of flavonoids on the etiology of vascular disease. J Nutr Biochem 1998;9:560–566.

    Article  CAS  Google Scholar 

  11. Waterhouse AL, Walzem RL. Nutrition of grape phenolics. In: Flavonoids in Health and Disease. vol. 7. Rice-Evans CA, Packer L (eds.). Marcel Dekker, Inc., New York, NY, 1998, pp. 359–385.

    Google Scholar 

  12. Soleas GJ, Diamandis EP, Goldberg DM. Wine as a biological fluid: history, production, and role in disease prevention. J Clin Lab Anal 1997;11:287–313.

    Article  PubMed  CAS  Google Scholar 

  13. Blanco VZ, Auw JM, Sims CA, O’Keefe SF. Effect of processing on phenolics of wines. In: Process Induced Changes in Food. Shahidi F (ed.). Plenum Press, New York, NY, 1998, pp. 327–340.

    Google Scholar 

  14. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 1993;342:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  15. Mar MH, Zeisel SH. Betaine in wine: answer to the French paradox? Med Hypotheses 1999;53:383–385.

    Article  PubMed  CAS  Google Scholar 

  16. Dupuy P. Analytical evidences of sugar added to wine. Ann Nutr Aliment 1978;32:1123–1132.

    PubMed  CAS  Google Scholar 

  17. St. LegerAS, Cochrane AL, Moore F. Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 1979;1:1017–1020.

    Article  Google Scholar 

  18. Gronbaek M, Sorensen TI. Alcohol consumption and risk of coronary heart disease. Studies suggest that wine has additional effect to that of ethanol. BMJ 1996;313:365.

    Article  PubMed  CAS  Google Scholar 

  19. Serafini M, Laranjinha JAN, Almeida LM, Maiani G. Inhibition of human LDL lipid peroxidation by phenol-rich beverages and their impact on plasma total antioxidant capacity in humans. J Nutr Biochem 2000;11:585–590.

    Article  PubMed  CAS  Google Scholar 

  20. Frankel EN, Waterhouse AL, Teissedre PL. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J Agriculture Food Chem 1995;43:890–894.

    Article  CAS  Google Scholar 

  21. Fuhrman B, Lavy A, Aviram M. Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. Am J Clin Nutr 1995;61:549–554.

    PubMed  CAS  Google Scholar 

  22. Lamuela-Raventos RM, de la Torre-Boronat MC. Beneficial effects of white wines. Drugs Exp Clin Res 1999;25:121–124.

    PubMed  CAS  Google Scholar 

  23. Fuhrman B, Volkova N, Suraski A, Aviram M. White wine with red wine-like properties: increased extraction of grape skin polyphenols improves the antioxidant capacity of the derived white wine. J Agriculture Food Chem 2001;49:3164–3168.

    Article  CAS  Google Scholar 

  24. Klatsky AL, Armstrong MA, Friedman GD. Red wine, white wine, liquor, beer, and risk for coronary artery disease hospitalization. Am J Cardiol 1997;80:416–420.

    Article  PubMed  CAS  Google Scholar 

  25. Bolton-Smith C, Woodward M, Smith WC, Tunstall-Pedoe H. Dietary and non-dietary predictors of serum total and HDL-cholesterol in men and women: results from the Scottish Heart Health Study. Int J Epidemiol 1991;20:95–104.

    Article  PubMed  CAS  Google Scholar 

  26. German JB, Frankel EN, Waterhouse AL, Hansen RJ, Walzem RL. Wine phenolics and targets of chronic disease. In: Wine Nutritional and Therapeutic Benefits. Watkins T (ed.). American Chemical Society, Washington, DC, 1997, pp. 196–214.

    Chapter  Google Scholar 

  27. Walzem RL, Watkins S, Frankel EN, Hansen RJ, German JB. Older plasma lipoproteins are more susceptible to oxidation: a linking mechanism for the lipid and oxidation theories of atherosclerotic cardiovascular disease. Proc Natl Acad Sci USA 1995;92:7460–7464.

    Article  PubMed  CAS  Google Scholar 

  28. Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 1995;15:551–561.

    Article  PubMed  CAS  Google Scholar 

  29. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–809.

    Article  PubMed  CAS  Google Scholar 

  30. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320:915–924.

    Article  PubMed  CAS  Google Scholar 

  31. Navab M, Berliner JA, Watson AD, et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 1996;16:831–842.

    Article  PubMed  CAS  Google Scholar 

  32. Libby P. Atherosclerosis: the new view. Sci Am 2002;286:46–55.

    Article  PubMed  Google Scholar 

  33. Sattar N, Petrie JR, Jaap AJ. The atherogenic lipoprotein phenotype and vascular endothelial dysfunction. Atherosclerosis 1998;138:229–235.

    Article  PubMed  CAS  Google Scholar 

  34. Bell JR, Donovan JL, Wong R, et al. (+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine. Am J Clin Nutr 2000;71:103–108.

    PubMed  CAS  Google Scholar 

  35. Donovan JL, Bell JR, Kasim-Karakas S, et al. Catechin is present as metabolites in human plasma after consumption of red wine. J Nutr 1999;129:1662–1668.

    PubMed  CAS  Google Scholar 

  36. de Whalley CV, Rankin SM, Hoult JR, Jessup W, Leake DS. Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem Pharmacol 1990;39:1743–1750.

    Article  PubMed  Google Scholar 

  37. Mangiapane H, Thomson J, Salter A, Brown S, Bell GD, White DA. The inhibition of the oxidation of low density lipoprotein by (+)-catechin, a naturally occurring flavonoid. Biochem Pharmacol 1992; 43:445–450.

    Article  PubMed  CAS  Google Scholar 

  38. Carbonneau MA, Leger CL, Monnier L, et al. Supplementation with wine phenolic compounds increases the antioxidant capacity of plasma and vitamin E of low-density lipoprotein without changing the lipoprotein Cu(2+)-oxidizability: possible explanation by phenolic location. Eur J Clin Nutr 1997; 51:682–690.

    Article  PubMed  CAS  Google Scholar 

  39. Lotito SB, Fraga CG. (+)-Catechin as antioxidant: mechanisms preventing human plasma oxidation and activity in red wines. Biofactors 1999;10:125–130.

    Article  PubMed  CAS  Google Scholar 

  40. Maxwell SRJ. Wine antioxidants and their impact on antioxidant function in vivo. Watkins T (ed.), American Chemical Society, Washington, DC, 1997, pp. 150–165.

    Google Scholar 

  41. de Vries JHM, Holloman PCH, van Amersfoort I, Olthof MR, Katan MB. Red wine is a poor source of bioavailable flavonols in men. J Nutr 2001;131:745–748.

    PubMed  Google Scholar 

  42. Gardner PT, McPhail DB, Crozier A, Duthie GG. Electron spin resonance spectroscopic assessment of the contribution of quercetin and other flavonols to the antioxidant capacity of red wines. J Sci Food Agriculture 1999;79:1004–1011.

    Google Scholar 

  43. Goldberg DM, Karumanchiri A, Tsang E, Soleas GJ. Catechin and epicatechin concentrations of red wines: regional and cultivar-related differences. American Journal of Enology Viticulture 1998;49: 317–322.

    Google Scholar 

  44. Goldberg D, Karumanchiri A, Yan J, et al. A global survey of trans-resveratrol concentration in commercial wines. American Journal of Enology Viticulture 1995;46:159–165.

    CAS  Google Scholar 

  45. McDonald MS, Hughes M, Burns J, Lean ME, Matthews D, Crozier A. Survey of the free and conjugated myricetin and quercetin content of red wines of different geographical origins. J Agriculture Food Chem 1998;46:368–375.

    Article  CAS  Google Scholar 

  46. Lamuela-Raventos R, Waterhouse AL. Occurrence of resveratrol in selected California wines by a new HPLC method. J Agriculture Food Chem 1993;41:521–523.

    Article  CAS  Google Scholar 

  47. Gorinstein S. Comments on “Potential Explanation for the French Paradox.” Nutr Res 1999;19: 1599–1602.

    Article  CAS  Google Scholar 

  48. Burns J, Gardner PT, O’Neil J, et al. Relationship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. J Agriculture Food Chem 2000;48:220–230.

    Article  CAS  Google Scholar 

  49. Sanchez-Moreno C, Satue-Gracia MT, Frankel EN. Antioxidant activity of selected Spanish wines in corn oil emulsions. J Agriculture Food Chem 2000;48:5581–5587.

    Article  CAS  Google Scholar 

  50. Fremont L. Biological effects of resveratrol. Life Sci 2000;66:663–673.

    Article  PubMed  CAS  Google Scholar 

  51. Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: a molecule whose time has come? And gone? Clin Biochem 1997;30:91–113.

    Article  PubMed  CAS  Google Scholar 

  52. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 1995;22:375–383.

    Article  PubMed  CAS  Google Scholar 

  53. Bertelli AA, Giovannini L, Bernini W, et al. Antiplatelet activity of cis-resveratrol. Drugs Exp Clin Res 1996;22:61–63.

    PubMed  CAS  Google Scholar 

  54. Schramm D, Pearson D, German JB. Endothelial cell basal PGI, 2 release is stimulated by wine in vitro: one mechanism that may mediate the vasoprotective effects of wine. J Nutr Biochem 1997;8:647–651.

    Article  CAS  Google Scholar 

  55. Gehm BD, McAndrews JM, Chien PY, Jameson JL. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA 1997;94:14,138–14,143.

    Article  Google Scholar 

  56. Chen CK, Pace-Asciak CR. Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen Pharmacol 1996;27:363–366.

    Article  PubMed  CAS  Google Scholar 

  57. Subbaramaiah K, Chung WJ, Michaluart P, et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 1998;273:21,875–21,882.

    Google Scholar 

  58. Laden BP, Porter TD. Resveratrol inhibits human squalene monooxygenase. Nutr Res 2001;21:747–753.

    Article  CAS  Google Scholar 

  59. Chan WK, Delucchi AB. Resveratrol, a red wine constituent, is a mechanism-based inactivator of cytochrome P450 3A4. Life Sci 2000;67:3103–3112.

    Article  PubMed  CAS  Google Scholar 

  60. Wilkinson GR. The effects of diet, aging and disease states on presystemic elimination and oral drug bioavailability in humans. Adv Drug Deliv Rev 1997;27:129–159.

    Article  PubMed  CAS  Google Scholar 

  61. Wilson T, Knight TJ, Beitz DC, Lewis DS, Engen RL. Resveratrol promotes atherosclerosis in hypercholesterolemic rabbits. Life Sci 1996;59:L15-L21.

    Article  Google Scholar 

  62. Singleton VL, Kratzer F. Plant phenolics. In: Committee on Food Protection, Food and Nutrition Board, National Research Council. Toxicants Occurring Naturally in Foods. National Academy of Sciences, Washington, DC, 1973, pp. 309–345.

    Google Scholar 

  63. Xu R, Yokoyama WH, Irving D, Rein D, Walzem RL, German JB. Effect of dietary catechin and vitamin E on aortic fatty streak accumulation in hypercholesterolemic hamsters. Atherosclerosis 1998;137:29–36.

    Article  PubMed  CAS  Google Scholar 

  64. Aviram M, Fuhrman B. Polyphenolic flavonoids inhibit macrophage-mediated oxidation of LDL and attenuate atherogenesis. Atherosclerosis 1998; 137(Suppl):45S-50S.

    Article  Google Scholar 

  65. Ruf JC, Berger JL, Renaud S. Platelet rebound effect of alcohol withdrawal and wine drinking in rats. Relation to tannins and lipid peroxidation. Arterioscler Thromb Vasc Biol 1995;15:140–144.

    Article  PubMed  CAS  Google Scholar 

  66. Mizutani K, Ikeda K, Kawai Y, Yamori Y. Extract of wine phenolics improves aortic biomechanical properties in stroke-prone spontaneously hypertensive rats (SHRSP). J Nutr Sci Vitaminol (Tokyo) 1999;45:95–106.

    Article  CAS  Google Scholar 

  67. Hayek T, Fuhrman B, Vaya J, et al. Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol 1997; 17:2744–2752.

    Article  PubMed  CAS  Google Scholar 

  68. Demrow HS, Slane PR, Folts JD. Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation 1995;91:1182–1188.

    Article  PubMed  CAS  Google Scholar 

  69. Andriambeloson E, Kleschyov AL, Muller B, Beretz A, Stoclet JC, Andriantsitohaina R. Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta. Br J Pharmacol 1997;120:1053–1058.

    Article  PubMed  CAS  Google Scholar 

  70. Cishek MB, Galloway MT, Karim M, German JB, Kappagoda CT. Effect of red wine on endotheliumdependent relaxation in rabbits. Clin Sci (Lond) 1997;93:507–511.

    CAS  Google Scholar 

  71. da Luz PL, Serrano Junior CV, Chacra AP, et al. The effect of red wine on experimental atherosclerosis: lipid-independent protection. Exp Mol Pathol 1999;65:150–159.

    Article  PubMed  Google Scholar 

  72. Wollny T, Aiello L, Di Tommaso D, Bellavia V, Rotilio D, Donati MB, et al. Modulation of haemostatic function and prevention of experimental thrombosis by red wine in rats: a role for increased nitric oxide production. Br J Pharmacol 1999;127:747–755.

    Article  PubMed  CAS  Google Scholar 

  73. Morton LW, Abu-Amsha Caccetta R, Puddey IB, Croft KD. Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clin Exp Pharmacol Physiol 2000; 27:152–159.

    Article  PubMed  CAS  Google Scholar 

  74. Serafini M, Maiani G, Ferro-Luzzi A. Alcohol-free red wine enhances plasma antioxidant capacity in humans. J Nutr 1998;128:1003–1007.

    PubMed  CAS  Google Scholar 

  75. van der Gaag MS, van den Berg R, van den Berg H, Schaafsma G, Hendriks HF. Moderate consumption of beer, red wine and spirits has counteracting effects on plasma antioxidants in middle-aged men. Eur J Clin Nutr 2000;54:586–591.

    Article  PubMed  CAS  Google Scholar 

  76. Duthie GG, Pedersen MW, Gardner PT, et al. The effect of whisky and wine consumption on total phenol content and antioxidant capacity of plasma from healthy volunteers. Eur J Clin Nutr 1998;52: 733–736.

    Article  PubMed  CAS  Google Scholar 

  77. Ivanov V, Carr AC, Frei B. Red wine antioxidants bind to human lipoproteins and protect them from metal ion-dependent and -independent oxidation. J Agriculture Food Chem 2001;49:4442–4449.

    Article  CAS  Google Scholar 

  78. de Rijke YB, Demacker PN, Assen NA, Sloots LM, Katan MB, Stalenhoef AF. Red wine consumption does not affect oxidizability of low-density lipoproteins in volunteers. Am J Clin Nutr 1996;63: 329–334.

    PubMed  Google Scholar 

  79. Nigdikar SV, Williams NR, Griffin BA, Howard AN. Consumption of red wine polyphenols reduces the susceptibility of low-density lipoproteins to oxidation in vivo. Am J Clin Nutr 1998;68:258–265.

    PubMed  CAS  Google Scholar 

  80. Schwarz K, Huang SW, German JB, Tiersch B, Hartmann J, Frankel EN. Activities of antioxidants are affected by colloidal properties of oil-in-water and water-in-oil emulsions and bulk oils. J Agriculture Food Chem 2000;48:4874–4882.

    Article  CAS  Google Scholar 

  81. Agewall S, Wright S, Doughty RN, Whalley GA, Duxbury M, Sharpe N. Does a glass of red wine improve endothelial function? Eur Heart J 2000;21:74–78.

    Article  PubMed  CAS  Google Scholar 

  82. Maxwell S, Thorpe G. Impact of red wine on antioxidant status in vivo. Eur Heart J 2000;21:1482–1483.

    Article  PubMed  CAS  Google Scholar 

  83. Combs GFJ. The Vitamins: Fundamental Aspects in Nutrition and Health. Academic Press, New York, NY, 1998.

    Google Scholar 

  84. Freedman JE, Parker C 3rd, Li L, et al. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 2001;103:2792–2798.

    Article  PubMed  CAS  Google Scholar 

  85. Osman HE, Maalej N, Shanmuganayagam D, Folts JD. Grape juice but not orange or grapefruit juice inhibits platelet activity in dogs and monkeys. J Nutr 1998;128:2307–2312.

    PubMed  CAS  Google Scholar 

  86. Russo P’ Tedesco I, Russo M, Russo GL, Venezia A, Cicala C. Effects of de-alcoholated red wine and its phenolic fractions on platelet aggregation. Nutr Metab Cardiovasc Dis 2001;11:25–29.

    Google Scholar 

  87. Pignatelli P, Pulcinelli FM, Celestini A, et al. The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am J Clin Nutr 2000;72:1150–1155.

    PubMed  CAS  Google Scholar 

  88. Johansen KM, Skorpe S, Olsen JO, Osterud B. The effect of red wine on the fibrinolytic system and the cellular activation reactions before and after exercise. Thromb Res 1999;96:355–363.

    Article  PubMed  CAS  Google Scholar 

  89. Ruf JC. Wine and polyphenols related to platelet aggregation and atherothrombosis. Drugs Exp Clin Res 1999;25:125–131.

    PubMed  CAS  Google Scholar 

  90. van de Wiel A, van Golde PM, Kraaijenhagen RJ, von dem Borne PA, Bouma BN, Hart HC. Acute inhibitory effect of alcohol on fibrinolysis. Eur J Clin Invest 2001;31:164–170.

    Article  PubMed  Google Scholar 

  91. Simopoulos AP. n-3 fatty acids and human health: defining strategies for public policy. Lipids 2001; 36(Suppl):835–895.

    Article  Google Scholar 

  92. Ceriello A, Bortolotti N, Motz E, et al. Red wine protects diabetic patients from meal-induced oxidative stress and thrombosis activation: a pleasant approach to the prevention of cardiovascular disease in diabetes. Eur J Clin Invest 2001;31:322–328.

    Article  PubMed  CAS  Google Scholar 

  93. Keevil JG, Osman HE, Reed JD, Folts JD. Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation. J Nutr 2000;130:53–56.

    PubMed  CAS  Google Scholar 

  94. Diebolt M, Bucher B, Andriantsitohaina R. Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression. Hypertension 2001;38:159–165.

    Article  PubMed  CAS  Google Scholar 

  95. Flesch M, Schwarz A, Bohm M. Effects of red and white wine on endothelium-dependent vasorelaxation of rat aorta and human coronary arteries. Am J Physiol 1998;275:H1183-H1190.

    Google Scholar 

  96. Hashimoto M, Kim S, Eto M, et al. Effect of acute intake of red wine on flow-mediated vasodilatation of the brachial artery. Am J Cardiol 2001;88:1457–1460.

    Article  PubMed  CAS  Google Scholar 

  97. Rendig SV, Symons JD, Longhurst JC, Amsterdam EA. Effects of red wine, alcohol, and quercetin on coronary resistance and conductance arteries. J Cardiovasc Pharmacol 2001;38:219–227.

    Article  PubMed  CAS  Google Scholar 

  98. Stanley LL, Mazier MJP. Potential explanations for the French paradox. Nutr Res 1999;19:3–15.

    Article  CAS  Google Scholar 

  99. Hsieh TC, Juan G, Darzynkiewicz Z, Wu JM. Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21 (WAF1/CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2. Cancer Res 1999;59: 2596–2601.

    PubMed  CAS  Google Scholar 

  100. Satue-Gracia MT, Andres-Lacueva C, Lamuela-Raventos RM, Frankel EN. Spanish sparkling wines (Cavas) as inhibitors of in vitro human low-density lipoprotein oxidation. J Agriculture Food Chem 1999;47:2198–2202.

    Article  CAS  Google Scholar 

  101. Watkins SM, Hammock BD, Newman JW, German JB. Individual metabolism should guide agriculture toward foods for improved health and nutrition. Am J Clin Nutr 2001;74:283–286.

    PubMed  CAS  Google Scholar 

  102. Caccetta RA, Croft KD, Beilin LJ, Puddey IB. Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability. Am J Clin Nutr 2000;71:67–74.

    PubMed  CAS  Google Scholar 

  103. Miyagi Y, Miwa K, Inoue H. Inhibition of human low-density lipoprotein oxidation by flavonoids in red wine and grape juice. Am J Cardiol 1997;80:1627–1631.

    Article  PubMed  CAS  Google Scholar 

  104. Donovan JL, Crespy V, Manach C, et al. Catechin is metabolized by both the small intestine and liver of rats. J Nutr 2001;131:1753–1757.

    PubMed  CAS  Google Scholar 

  105. Andlauer W, Kolb J, Siebert K, Furst P. Assessment of resveratrol bioavailability in the perfused small intestine of the rat. Drugs Exp Clin Res 2000;26:47–55.

    PubMed  CAS  Google Scholar 

  106. Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA 1988;85:9748–9752.

    Article  PubMed  CAS  Google Scholar 

  107. Anker SD, Leyva F, Poole-Wilson PA, Kox WJ, Stevenson JC, Coats AJ. Relation between serum uric acid and lower limb blood flow in patients with chronic heart failure. Heart 1997;78:39–43.

    PubMed  CAS  Google Scholar 

  108. Saucier CT, Waterhouse AL. Synergetic activity of catechin and other antioxidants. J Agriculture Food Chem 1999;47:4491–4494.

    Article  CAS  Google Scholar 

  109. Brouillard R, George F, Fougerousse A. Polyphenols produced during red wine aging. Biofactors 1997; 6:403–410.

    Article  PubMed  CAS  Google Scholar 

  110. Igartuburu JM, Pando E, Rodriguez-Luis F, Gil-Serrano A. Structure of a hemicellulose B fraction in dietary fiber from the seed of grape variety Palomino (Vitis vinifera cv. palomino). J Nat Prod 1998;61: 881–886.

    Article  PubMed  CAS  Google Scholar 

  111. Bolton RP, Heaton KW, Burroughs LF. The role of dietary fiber in satiety, glucose, and insulin: studies with fruit and fruit juice. Am J Clin Nutr 1981;34:211–217.

    PubMed  CAS  Google Scholar 

  112. Meyer AS, Yi O-S, Pearson DA, Waterhouse AL, Frankel EN. Inhibition of human low-density lipoprotein oxidation in relation to composition of phenolic antioxidants in grapes (Vitis vinifera). J Agriculture Food Chem 1997;45:1638–1643.

    Article  CAS  Google Scholar 

  113. Frankel EN, Bosanek CA, Meyer AS, Silliman K, Kirk LL. Commercial grape juices inhibit the in vitro oxidation of human low-density lipoproteins. J Agriculture Food Chem 1998;46:834–838.

    Article  CAS  Google Scholar 

  114. Waterhouse AL, German JB, Walzem RL, Hansen RJ, Kasim-Karakas SE. Is it time for a wine trial? Am J Clin Nutr 1998;68:220–221.

    PubMed  CAS  Google Scholar 

  115. Woodford FP, Whitehead TP. Is measuring serum antioxidant capacity clinically useful? Ann Clin Biochem 1998;35:48–56.

    PubMed  Google Scholar 

  116. Roberts M, Geiger W, German JB. The revolution in microanalytic chemistry: a macro-opportunity for clinical nutrition. Am J Clin Nutr 2000;71:434–437.

    PubMed  CAS  Google Scholar 

  117. Watkins SM, German JB. Metabolomics and biochemical profiling in drug discovery and development. Curr Opin Mol Ther 2002;4:224–228.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walzem, R.L., German, J.B. (2004). The French Paradox. In: Wilson, T., Temple, N.J. (eds) Beverages in Nutrition and Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-415-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-415-3_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-402-9

  • Online ISBN: 978-1-59259-415-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics