Skip to main content

Sports Beverages for Optimizing Physical Performance

  • Chapter
Beverages in Nutrition and Health

Part of the book series: Nutrition and Health ((NH))

  • 561 Accesses

Abstract

Many different factors combine to produce a successful performance in sporting contests, with genetic endowment playing a large role. Other factors also intervene, but many of these also have a genetic basis, including the ability to adapt to a training program and the psychological factors that encompass motivation, competitiveness, and tactical awareness. Consistent intensive training is a major factor in the success of most elite performers, but there is a limit to the training load that can be sustained without illness or injury. Of those factors that can be altered by conscious effort, nutrition, which is perhaps only a small part of the overall picture, is important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pilegaard H, Keller C, Steensberg A, Helge JW, Pedersen BK, Saltin B, Neufer PD. Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes. J Physiol 2002;541:261–271.

    Article  PubMed  CAS  Google Scholar 

  2. Maughan RJ, Leiper JB, Shirreffs SM. Fluids and electrolytes during exercise. In: Textbook of Sports Medicine. Garrett WE (ed.). Williams and Wilkins, Baltimore, MD, 2000, pp. 413–424.

    Google Scholar 

  3. Nicholas CW, Williams C, Lakomy HKA, Phillips G, Nowitz A. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent high-intensity shuttle running. J Sports Sci 1995;13:283–290.

    Article  PubMed  CAS  Google Scholar 

  4. Welsh RS, Davis JM, Burke JR, Williams HG. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med Sci Sports Exercise 2002;34:723–731.

    Article  Google Scholar 

  5. American College of Sports Medicine. Position stand on prevention of thermal injuries during distance running. Med Sci Sports Exercise 1984;16:ix–xiv.

    Google Scholar 

  6. Costill DL, Bennett A, Branam G, Eddy D. Glucose ingestion at rest and during prolonged exercise. J Appl Physiol 1973;34:764–769.

    PubMed  CAS  Google Scholar 

  7. Pirnay F, Crielaard JM, Pallikarakis N, et al. Fate of exogenous glucose during exercise of different intensities in humans. J Appl Physiol 1982;52:1620–1624.

    Google Scholar 

  8. Erickson MA, Schwartzkopf RJ, McKenzie RD. Effects of caffeine, fructose, and glucose ingestion on muscle glycogen utilisation during exercise. Med Sci Sports Exercise 1987;19:579–583.

    CAS  Google Scholar 

  9. Coggan AR, Coyle EF. Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance. Exercise Sport Sci Rev 1991;19:1–40.

    Article  CAS  Google Scholar 

  10. Tsintzsas OK, Liu R, Williams C, Campbell I, Gaitanos G. The effect of carbohydrate ingestion on performance during a 30-km race. Int J Sport Nutr 1993;3:127–139.

    Google Scholar 

  11. Hargreaves M, Costill DL, Coggan A, Fink WJ, Nishibata I. Effect of carbohydrate feedings on muscle glycogen utilisation and exercise performance. Med Sci Sports Exercise 1984;16:219–222.

    CAS  Google Scholar 

  12. Bosch AN, Dennis SC, Noakes TD. Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol 1994;76:2364–2372

    PubMed  CAS  Google Scholar 

  13. McConnell G, Fabris S, Proietto J, Hargreaves M. Effect of carbohydrate ingestion on glucose kinetics during exercise. J Appl Physiol 1994;77:1537–1541.

    Google Scholar 

  14. Coyle EF. Fuels for sport performance. In: Perspectives in Exercise Science and Sports Medicine. Vol. 10: Optimising Sport Performance. Lamb DR, Murray R (eds.). Benchmark Press, Carmel, IN, 1997, pp. 95–138.

    Google Scholar 

  15. Wagenmakers AJM, Brouns F, Saris WH, Halliday D. Oxidation rates of orally ingested carbohydrates during prolonged exercise in men. J Appl Physiol 1993;75:2774–2780.

    PubMed  CAS  Google Scholar 

  16. Below P, Mora-Rodriguez R, Gonzalez-Alonso J, Coyle EF. Fluid and carbohydrate ingestion independently improve performance during 1 h of intense cycling. Med Sci Sports Exercise 1995;27:200–210.

    CAS  Google Scholar 

  17. Lamb DR, Brodowicz GR. Optimal use of fluids of varying formulations to minimize exercise-induced disturbances in homeostasis. Sports Med 1986;3:247–274.

    Article  PubMed  CAS  Google Scholar 

  18. Murray R. The effects of consuming carbohydrate-electrolyte beverages on gastric emptying and fluid absorption during and following exercise. Sports Med 1987;4:322–351.

    Article  PubMed  CAS  Google Scholar 

  19. Coyle EF, Hamilton M. Fluid replacement during exercise: effects on physiological homeostasis and performance. In: Perspectives in Exercise Science and Sports Medicine, Vol 3. Gisolfi, CV, Lamb DR (eds.). Benchmark Press, Carmel, IN, 1990, pp. 281–308.

    Google Scholar 

  20. Maughan RJ, Shirreffs SM. Fluid and electrolyte loss and replacement in exercise. In: Oxford Textbook of Sports Medicine (2nd ed.). Harries M, Williams C, Stanish WD, Micheli LL (eds.). Oxford University Press, New York, NY, 1998, pp. 97–113.

    Google Scholar 

  21. Shi X, Summers RW, Schedl HP. Effect of carbohydrate type and concentration and solution osmolality on water absorption. J Appl Physiol 1995;27:1607–1615.

    CAS  Google Scholar 

  22. Merson SJ, Shirreffs SM, Leiper JB, Maughan RJ. Changes in blood, plasma and red cell volume after ingestion of hypotonic and hypertonic solutions. Proc Nutr Soc, in press.

    Google Scholar 

  23. Davis JM, Burgess WA, Slentz CA, Bartoli WP, Pate RR. Effects of ingesting 6% and 12% glucose/ electrolyte beverages during prolonged intermittent cycling in the heat. Eur J Appl Physiol 1988;57: 563–569.

    Article  CAS  Google Scholar 

  24. Maughan RJ, Bethell L, Leiper JB. Effects of ingested fluids on homeostasis and exercise performance in man. Exp Physiol 1996;81:847–859.

    PubMed  CAS  Google Scholar 

  25. Rehrer NJ. Limits to Fluid Availability during Exercise. De Vriesebosch, Haarlem, Holland, 1990.

    Google Scholar 

  26. Brener W, Hendrix TR, McHugh PR. Regulation of the gastric emptying of glucose. Gastroenterology 1983;85:76–82.

    PubMed  CAS  Google Scholar 

  27. Vist GE, Maughan RJ. The effect of increasing glucose concentration on the rate of gastric emptying in man. Med Sci Sports Exercise 1994;26:1269–1273.

    CAS  Google Scholar 

  28. Vist GE, Maughan RJ. The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. J Physiol 1995;486:523–531.

    PubMed  CAS  Google Scholar 

  29. Wapnir RA, Lifshitz F. Osmolality and solute concentration—their relationship with oral rehydration solution effectiveness: an experimental assessment. Pediatr Res 1985;19:894–898.

    Article  PubMed  CAS  Google Scholar 

  30. Gisolfi CV, Summers RW, Schedl HP. Intestinal absorption of fluids during rest and exercise. In: Perspectives in Exercise Science and Sports Medicine. Vol. 3: Fluid Homeostasis during Exercise. Gisolfi CV, Lamb DR (eds.). Benchmark Press, Carmel, IN, 1990, pp. 129–180.

    Google Scholar 

  31. Fordtran JS. Stimulation of active and passive sodium absorption by sugars in the human jejunum. J Clin Invest 1975;55:728–737.

    Article  PubMed  CAS  Google Scholar 

  32. Noakes TD, Goodwin N, Rayner BL, Branken T, Taylor RKN. Water intoxication: a possible complication during endurance exercise. Med Sci Sports Exercise 1985;17:370–375.

    CAS  Google Scholar 

  33. Noakes TD, Norman RJ, Buck RH, Godlonton J, Stevenson K, Pittaway D. The incidence of hyponatremia during prolonged ultraendurance exercise. Med Sci Sports Exercise 1990;22:165–170.

    CAS  Google Scholar 

  34. Hiller WDB. Dehydration and hyponatraemia during triathlons. Med Sci Sports Exercise 1989;21: S219-S221.

    CAS  Google Scholar 

  35. Frizell RT, Lang GH, Lowance DC, Lathan SR. Hyponatraemia and ultramarathon running. JAMA 1986;255:772–774.

    Article  Google Scholar 

  36. Hubbard RW, Sandick BL, Matthew WT, et al. Influence of thirst and fluid palatability on fluid ingestion during exercise. In: Perspectives in Exercise Science and Sports Medicine. Vol. 3. Gisolfi CV, Lamb DR (eds.). Benchmark Press, Carmel, IN, 1990, pp. 39–95.

    Google Scholar 

  37. Noakes TD. Fluid replacement during exercise. Exercise Sports Sci Rev 1993;21:297–330.

    CAS  Google Scholar 

  38. Hubbard RW, Sandick BL, Matthew WT. Voluntary dehydration and alliesthesia for water. J Appl Physiol 1984;57:868–875.

    PubMed  CAS  Google Scholar 

  39. Szlyk PC, Sils IV, Francesconi RP, Hubbard RW, Armstrong LE. Effects of water temperature and flavoring on voluntary dehydration in men. Physiol Behav 1989;45:639–647.

    Article  PubMed  CAS  Google Scholar 

  40. Bar-Or O, Wilk B. Water and electrolyte replenishment in the exercising child. Int J Sports Nutr 1996; 6:93–99.

    CAS  Google Scholar 

  41. Shirreffs SM, Taylor AJ, Leiper JB, Maughan RJ. Post-exercise rehydration in man: effects of volume consumed and sodium content of ingested fluids. Med Sci Sports Exercise 1996;28:1260–1271.

    Article  CAS  Google Scholar 

  42. Williams MH. Nutritional Aspects of Human Physical and Athletic Performance. Charles C. Thomas, Springfield, IL, 1985.

    Google Scholar 

  43. Spriet LL. Ergogenic aids: recent advances and retreats. In: Perspectives in Exercise Science and Sports Medicine. Vol. 10: Optimising Sport Performance. Lamb DR, Murray R (eds.). Benchmark Press, Carmel, IN, 1997, pp. 185–238.

    Google Scholar 

  44. Newsholme EA, Castell LM. Can amino acids influence exercise performance in athletes? In: The Physiology and Pathophysiology of Exercise Tolerance. Steinacker JM, Ward SA (eds.). Plenum, New York, NY, 1996, pp. 269–274.

    Chapter  Google Scholar 

  45. Maughan RJ, Owen JH, Shirreffs SM, Leiper JB. Post-exercise rehydration in man: effects of electrolyte addition to ingested fluids. Eur J Appl Physiol 1994;69:209–215.

    Article  CAS  Google Scholar 

  46. Maughan RJ, Leiper JB. Effects of sodium content of ingested fluids on post-exercise rehydration in man. Eur J Appl Physiol 1995;71:311–319.

    Article  CAS  Google Scholar 

  47. Nose H, Mack GW, Shi X, Nadel ER. Role of osmolality and plasma volume during rehydration in humans. J Appl Physiol 1988;65:325–331.

    PubMed  CAS  Google Scholar 

  48. Maughan RJ, Leiper JB, Shirreffs SM. Restoration of fluid balance after exercise-induced dehydration: effects of food and fluid intake. Eur J Appl Physiol 1996;73:317–325.

    Article  CAS  Google Scholar 

  49. Shirreffs SM, Maughan RJ. Volume repletion following exercise-induced volume depletion in man: replacement of water and sodium losses. Am J Physiol 1998;43:F868-F875.

    Google Scholar 

  50. Coyle EF. Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery. J Sports Sci 1991;9:29–52.

    Article  PubMed  Google Scholar 

  51. Ivy JL, Katz AL, Cutler CL, Coyle EF. Muscle glycogen synthesis after exercise: effects of time of carbohydrate ingestion. J Appl Physiol 1988;64:1480–1485.

    PubMed  CAS  Google Scholar 

  52. Zawadzki KM, Yaspelkis BB, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol 1992;72:1854–1859.

    PubMed  CAS  Google Scholar 

  53. Green HJ, Jones S, Ball-Burnett ME, Smith D, Livesey J, Farrance BW. Early muscular and metabolic adaptations to prolonged exercise training in man. J Appl Physiol 1991;70:2032–2038.

    PubMed  CAS  Google Scholar 

  54. Clarkson PM. Eccentric exercise and muscle damage. Int J Sports Med 1997;18: S314-S317.

    Article  PubMed  Google Scholar 

  55. Waldegger S, Lang F. Cell volume and gene expression. J Membr Biol 1997;162:95–100.

    Google Scholar 

  56. Lang F, Busch GL, Volkl K. The diversity of volume regulatory mechanisms. Cell Physiol Biochem 1998;8:1–45.

    Article  PubMed  CAS  Google Scholar 

  57. Low S Y, Rennie MJ, Taylor PM. Modulation of glycogen synthesis in rate skeletal muscle by changes in cell volume. J Physiol 1996;495:299–303.

    PubMed  CAS  Google Scholar 

  58. Low SY, Rennie MJ, Taylor PM. Signalling elements involved in amino acid transport responses to altered muscle cell volume. FASEB J 1997;11:1111–1117.

    PubMed  CAS  Google Scholar 

  59. Rennie MJ, Low SY, Taylor PM, Khogali SE, Yao PC, Ahmed A. Amino acid transport during muscle contraction and its relevance to exercise. Adv Exp Med Biol 1998;441:299–305.

    PubMed  CAS  Google Scholar 

  60. Nieman DC. Prolonged aerobic exercise, immune response, and risk of infection. In: Exercise and Immune Function. Hoffman-Goetz L (ed.). CRC Press, Boca Raton, FL, 1996, pp. 143–162.

    Google Scholar 

  61. Budgett R. Fatigue and underperformance in athletes: the overtraining syndrome. In: Benefits and Hazards of Exercise. MacAuley D (ed.) BMJ Books, London, UK, 1999, 172–183.

    Google Scholar 

  62. Walsh NP, Blannin AK, Robson PJ, Gleeson M. Glutamine, exercise and immune function. Sports Med 1998;26:177–191.

    Article  PubMed  CAS  Google Scholar 

  63. Pedersen BK, Bruunsgaard H, Jensen M, Toft AD, Hansen H, Ostrowski K. Exercise and the immune system—influence of nutrition and ageing. J Sci Med Sport 1999;2:234–252.

    Article  PubMed  CAS  Google Scholar 

  64. Nieman DC, Pedersen BK. Exercise and immune function. Sports Med 1999;27:73–80.

    Article  PubMed  CAS  Google Scholar 

  65. Packer L. Oxidants, antioxidant nutrients and the athlete. J Sports Sci 1997;15:353–363.

    Article  PubMed  CAS  Google Scholar 

  66. Levine SA, Gordon B, Derick CL. Some changes in the chemical constituents of the blood following a marathon race. JAMA 1924;82:1778–1779.

    Article  CAS  Google Scholar 

  67. Newsholme EA, Castell LM. Amino acids, fatigue and immunodepression in exercise. In: Nutrition in Sport. Maughan RJ (ed.). Blackwell, Oxford, UK, 2000, pp. 153–170.

    Google Scholar 

  68. Davis JM. Nutritional influences on central mechanisms of fatigue involving serotonin. In: Biochemistry of Exercise IX. Maughan RJ, Shirreffs SM (eds.). Human Kinetics, Champaign, IL, 1996, pp. 445–455.

    Google Scholar 

  69. Wilson WM, Maughan RJ. A role for serotonin in the genesis of fatigue in man: administration of a 5-hydroxytryptamine reuptake inhibitor (Paroxetine) reduces the capacity to perform prolonged exercise. Exp Physiol 1992;77:921–924.

    PubMed  CAS  Google Scholar 

  70. Blomstrand E, Hassmen P, Ekblom B, Newsholme EA. Administration of branched-chain amino acids during endurance exercise—effects on performance and on plasma concentration of some amino acids. Eur J Appl Physiol 1991;63:83–88.

    Article  CAS  Google Scholar 

  71. van Hall G, Raaymakers JSH, Saris WHM, Wagenmakers AJM. Ingestion of branched-chain amino acids and tryptophan during sustained exercise—failure to affect performance. J Physiol 1995;486: 789–794.

    PubMed  Google Scholar 

  72. Varnier M, Sarto P, Martines D, et al. Effect of infusing branched-chain amino acids during incremental exercise with reduced muscle glycogen content. Eur J Appl Physiol 1994;69:26–31.

    Article  CAS  Google Scholar 

  73. Verger PH, Aymard P, Cynobert L, Anton G, Luigi R. Effects of administration of branched-chain amino acids vs. glucose during acute exercise in the rat. Physiol Behav 1994;55:523–526.

    Article  PubMed  CAS  Google Scholar 

  74. Mittleman KD, Ricci MR, Bailey SP. Branched-chain amino acids prolong exercise during heat stress in men and women. Med Sci Sports Exercise 1998;30:83–91.

    CAS  Google Scholar 

  75. Riedesel ML, Allen DL, Peake GT, Al-Qattan K. Hyperhydration with glycerol solutions. J Appl Physiol 1987;63:2262–2268.

    PubMed  CAS  Google Scholar 

  76. Freund BJ, Montain SJ, Young AJ, et al. Glycerol hyperhydration: hormonal, renal and vascular fluid responses. J Appl Physiol 1995;79:2069–2077.

    PubMed  CAS  Google Scholar 

  77. Montner P, Stark DM, Riedesel ML, et al. Pre-exercise glycerol hydration improves cycling endurance time. Int J Sports Med 1996;17:27–33.

    Article  PubMed  CAS  Google Scholar 

  78. Lyons T, Riedesel ML, Meuli LE, Chick RW. Effects of glycerol-induced hyperhydration prior to exercise in the heat on sweating and core temperature. Med Sci Sports Exercise 1990;22:477–483.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maughan, R.J. (2004). Sports Beverages for Optimizing Physical Performance. In: Wilson, T., Temple, N.J. (eds) Beverages in Nutrition and Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-415-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-415-3_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-402-9

  • Online ISBN: 978-1-59259-415-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics