Skip to main content

Are Soy-Milk Products Viable Alternatives to Cow’s Milk?

  • Chapter
Book cover Beverages in Nutrition and Health

Part of the book series: Nutrition and Health ((NH))

Abstract

There has been a recent growth in the popularity of cow’s milk alternatives. These include milk substitutes manufactured from soy, rice, and almond sources. Little research has been carried out on the health benefits of either rice milk or almond milk, so this chapter concentrates on the health implications of soy beverages, with respect to conditions such as lactose intolerance, osteoporosis, cancer, and heart disease and discusses whether these products are nutritionally equivalent to milk. Soy milk has attracted interest because it is a good source of protein and lower in fat than cow’s milk (see Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland B, Welch AA, Unwin ID, Buss, DH, Paul AA, Southgate DAT. McCance and Widdowson’s The Composition of Foods. Royal Society of Chemistry, Cambridge, UK, 1991.

    Google Scholar 

  2. Bingham SA, Atkinson C, Liggins J, Bluck L, Coward A. Phyto-oestrogens: where are we now? Br J Nutr 1998;79:393–406.

    Article  PubMed  CAS  Google Scholar 

  3. Coward L, Barnes NC, Setchell KDR, Barnes S. Genistein and daidzein, and their glycoside conjugates: anti-tumor isoflavones in soybean foods from American and Asian diets. J Agric Food Chem 1993;41: 1961–1967.

    Article  CAS  Google Scholar 

  4. Francis CM, Millington AJ, Bailey ET. The distribution of oestrogenic isoflavones in the genus Trifo-lium. Austr Vet J 1967;18:47–54.

    CAS  Google Scholar 

  5. Food and Nutrition Information Center. Accessed April 25, 2002, from http://www.nal.usda.gov/fnic

  6. Lu LJ, Anderson KE. Sex and long-term soy diets affect the metabolism and excretion of soy isoflavones in humans. Am J Clin Nutr 1998;68:1500S-1504S.

    PubMed  CAS  Google Scholar 

  7. Garrow JS, James WPT. Human Nutrition and Dietetics. Churchill Livingstone, Philadelphia, PA, 1996.

    Google Scholar 

  8. Turner GK. Lactose intolerance and irritable bowel syndrome. Nutrition 2000;16:665–666.

    Article  Google Scholar 

  9. Businco L, Bruno G, Giampietro PG. Soy protein for the prevention and treatment of children with cow-milk allergy. Am J Clin Nutr 1998;68:1447S-1452S.

    PubMed  CAS  Google Scholar 

  10. American Cancer Society. Cancer Facts and Figures. American Cancer Society, Atlanta, GA, 1994.

    Google Scholar 

  11. Schuerch C, III, Rosen PP, Hirota T, et al. A pathologic study of benign breast diseases in Tokyo and New York. Cancer 1982;50:1899–1903.

    Article  PubMed  Google Scholar 

  12. Sasano N, Tamahashi N, Namiki T, Stemmermann GN. Consecutive radiography of breast slices for estimation of glandular volume and detection of small subclinical lesions. A comparison between Japan and Hawaii Japanese. Tohoku J Exp Med 1975;117:217–224.

    Article  PubMed  CAS  Google Scholar 

  13. Verdeal K, Ryan DS. Naturally-occurring estrogens in plant foodstuffs—a review. J Food Protection 1979;42:577–583.

    CAS  Google Scholar 

  14. Tang BY, Adams NR. Effect of equol on oestrogen receptors and on synthesis of DNA and protein in the immature rat uterus. J Endocrinol 1980;85:291–297.

    Article  PubMed  CAS  Google Scholar 

  15. Messina MJ. Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 1999;70:439S-450S.

    PubMed  CAS  Google Scholar 

  16. Scholar EM, Toews ML. Inhibition of invasion of murine mammary carcinoma cells by the tyrosine kinase inhibitor genistein. Cancer Lett 1994;87:159–162.

    Article  PubMed  CAS  Google Scholar 

  17. Wei H, Wei L, Frenkel K, Bowen R, Barnes S. Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr Cancer 1993;20:1–12.

    Article  PubMed  CAS  Google Scholar 

  18. Akiyama T, Ishida J, Nakagawa S, et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987;262:5592–5595.

    PubMed  CAS  Google Scholar 

  19. Thorburn J, Thorburn A. The tyrosine kinase inhibitor, genistein, prevents alpha-adrenergic-induced cardiac muscle cell hypertrophy by inhibiting activation of the Ras-MAP kinase signaling pathway. Biochem Biophys Res Commun 1994;202:1586–1591.

    Article  PubMed  CAS  Google Scholar 

  20. Linassier C, Pierre M, Le Pecq JB, Pierre J. Mechanisms of action in NIH-3T3 cells of genistein, an inhibitor of EGF receptor tyrosine kinase activity. Biochem Pharmacol 1990;39:187–193.

    Article  PubMed  CAS  Google Scholar 

  21. Constantinou A, Kiguchi K, Huberman E. Induction of differentiation and DNA strand breakage in human HL-60 and K-562 leukemia cells by genistein. Cancer Res 1990;50:2618–2624.

    PubMed  CAS  Google Scholar 

  22. Fotsis T, Pepper M, Adlercreutz H, Hase T, Montesano R, Schweigerer L. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J Nutr 1995;125:790S-797S.

    PubMed  CAS  Google Scholar 

  23. Kim H, Peterson TG, Barnes S. Mechanisms of action of the soy isoflavone genistein: emerging role for its effects via transforming growth factor beta signaling pathways. Am J Clin Nutr 1998;68: 1418S-1425S.

    PubMed  CAS  Google Scholar 

  24. Barnes S. Effect of genistein on in vitro and in vivo models of cancer. J Nutr 1995;125:777S-783S.

    PubMed  CAS  Google Scholar 

  25. Adlercreutz H. Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest 1990;201:S3-S23.

    Article  Google Scholar 

  26. Ingram D, Sander K, Kolybaba M, Lopez D. Case-control study of phyto-oestrogens and breast cancer. Lancet 1998;350:990–994.

    Article  Google Scholar 

  27. Wu AH, Ziegler RG, Nomura AM, et al. Soy intake and risk of breast cancer in Asians and Asian Americans. Am J Clin Nutr 1998;68:1437S-1443S.

    PubMed  CAS  Google Scholar 

  28. Buell P. Changing incidence of breast cancer in Japanese American women. J Natl Cancer Inst 1973; 51:1479–1483.

    PubMed  CAS  Google Scholar 

  29. Lee HP, Day NE, Shanmugaratnam K. Trends in cancer incidence in Singapore 1968–1982. IARC Scientific Publications 1988;91:1–161.

    PubMed  Google Scholar 

  30. Lee HP, Gourley L, Duffy SW, Esteve J, Lee J, Day NE. Dietary effects on breast-cancer risk in Singapore. Lancet 1991;337:1197–1200.

    Article  PubMed  CAS  Google Scholar 

  31. Lee HP, Gourley L, Duffy SW, Esteve J, Lee J, Day NE. Risk factors for breast cancer by age and menopausal status: a case-control study in Singapore. Cancer Causes Control 1992;3:313–322.

    Article  PubMed  CAS  Google Scholar 

  32. Yuan JM, Wang QS, Ross RK, Henderson BE, Yu MC. Diet and breast cancer in Shanghai and Tianjin, China. Br J Cancer 1995;71:1353–1358.

    Article  PubMed  CAS  Google Scholar 

  33. Hirose K, Tajima K, Hamajima N, et al. A large-scale, hospital-based case-control study of risk factors of breast cancer according to menopausal status. Jpn J Cancer Res 1995;86:146–154.

    Article  PubMed  CAS  Google Scholar 

  34. Wu AH, Ziegler RG, Horn-Ross PL, et al. Tofu and risk of breast cancer in Asian-Americans. Cancer Epidemiol Biomarkers Prev 1996;5:901–906.

    PubMed  CAS  Google Scholar 

  35. Messina M, Barnes S, Setchell KD. Phyto-oestrogens and breast cancer. Lancet 1997;350:971–972.

    Article  PubMed  CAS  Google Scholar 

  36. Murkies A, Dalais FS, Briganti EM, et al. Phytoestrogens and breast cancer in postmenopausal women: a case control study. Menopause 2000;7:289–296.

    Article  PubMed  CAS  Google Scholar 

  37. Cassidy A, Bingham S, Setchell KD. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr 1994;60:333–340.

    PubMed  CAS  Google Scholar 

  38. Cassidy A, Bingham S, Setchell K. Biological effects of isoflavones in young women: importance of the chemical composition of soybean products. Br J Nutr 1995;74:587–601.

    Article  PubMed  CAS  Google Scholar 

  39. Lu LJ, Cree M, Josyula S, Nagamani M, Grady JJ, Anderson KE. Increased urinary excretion of 2-hydroxyestrone but not 16-alpha-hydroxyestrone in premenopausal women during a soya diet containing isoflavones. Cancer Res 2000;60:1299–1305.

    PubMed  CAS  Google Scholar 

  40. Petrakis NL, Barnes S, King EB, et al. Stimulatory influence of soy protein isolate on breast secretion in pre- and postmenopausal women. Cancer Epidemiol Biomarkers Prev 1996;5:785–794.

    PubMed  CAS  Google Scholar 

  41. McMichael-Phillips DF, Harding C, Morton M, et al. Effects of soy-protein supplementation on epithelial proliferation in the histologically normal human breast. Am J Clin Nutr 1998;68:1431S-1435S.

    PubMed  CAS  Google Scholar 

  42. Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997;138:863–870.

    Article  PubMed  CAS  Google Scholar 

  43. Lamartiniere CA, Moore J, Holland M, Barnes S. Neonatal genistein chemoprevents mammary cancer. Proc Soc Exp Biol Med 1995;208:120–123.

    PubMed  CAS  Google Scholar 

  44. Colditz GA, Frazier AL. Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus. Cancer Epidemiol Biomark Prev 1995;4:567–571.

    CAS  Google Scholar 

  45. Ettinger M, Genant HK, Cann CE. Long-term estrogen replacement therapy prevents bone loss and fractures. Ann Intern Med 1985;102:319–324.

    Article  PubMed  CAS  Google Scholar 

  46. Cooper C, Campion G, Melton LJ. Hip fractures in the elderly—a world-wide projection. Osteoporosis Int 1992;2:285–289.

    Article  CAS  Google Scholar 

  47. Glazier MG, Bowman MA. A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch Intern Med 2001; 161:1161–1172.

    Article  PubMed  CAS  Google Scholar 

  48. Arjmandi BH, Alekel L, Hollis BW, et al. Dietary soy bean protein prevents bone loss in an ovariectomised rat model of osteoporosis. J Nutr 1996;126:161–167.

    PubMed  CAS  Google Scholar 

  49. Gambacciani M, Spinetti A, Piagesi L, et al. Ipriflavone prevents the bone mass reduction in premenopausal women treated with gonadotrophin-releasing hormone agonists. Bone Miner 1994;26:19–26.

    Article  PubMed  CAS  Google Scholar 

  50. Adami S, Bufalino L, Cervetti R, et al. Ipriflavone prevents radial bone loss in postmenopausal women with low bone mass over 2 years. Osteoporosis Int 1997;7:119–125.

    Article  CAS  Google Scholar 

  51. Gennari C, Adami S, Agnusdei D, et al. Effect of chronic treatment with ipriflavone in postmenopausal women with low bone mass. Calcif Tissue Int 1997;61:S19-S22.

    Article  PubMed  CAS  Google Scholar 

  52. Kovacs AB. Efficacy of ipriflavone in the prevention and treatment of postmenopausal osteoporosis. Agents Actions 1994;41:86–87.

    Article  PubMed  CAS  Google Scholar 

  53. Passeri M, Biondi M, Costi D, et al. Effect of ipriflavone on bone mass in elderly osteoporotic women. Bone Miner 1992;19:S57-S62.

    Article  PubMed  Google Scholar 

  54. Potter S, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JR. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 1998;68: S1375-S1378.

    Google Scholar 

  55. Wangen KE, Duncan AM, Merz-Demlow BE, et al. Effects of soy isoflavones on markers of bone turnover in premenopausal and postmenopausal women. J Clin Endocrinol Metab 2000;85:3043–3048.

    Article  PubMed  CAS  Google Scholar 

  56. Scheiber MD, Liu JH, Subbiah MTR, Rebar RW, Setchell KDR. Dietary inclusion of whole soy foods results in significant reductions in clinical risk factors for osteoporosis and cardiovascular disease in normal postmenopausal women. Menopause 2001;8:384–392.

    Article  PubMed  CAS  Google Scholar 

  57. Tham D, Gardner CD, Haskell W. Potential health benefits of dietary phytoestrogens: a review of the clinical epidemiological and mechanistic evidence. J Clin Endocrinol Metab 1998;83:2223–2235.

    Article  PubMed  CAS  Google Scholar 

  58. Goodman-Gruen D, Kritz-Silverstein D. Usual dietary isoflavone intake is associated with cardiovascular disease risk factors in postmenopausal women. J Nutr 2001;131:1202–1206.

    PubMed  CAS  Google Scholar 

  59. Lissin LW, Cooke JP. Phytoestrogens and cardiovascular health. J Am Coll Cardiol 2000;35:1403–1410.

    Article  PubMed  CAS  Google Scholar 

  60. Kapiotis S, Hermann M, Held I, Seelos C, Ehringer H, Gmeiner BMK. Genistein, the dietary derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage from atherogenic LDL. Arterioscler Thromb Vase Biol 1997;17:2868–2874.

    Article  CAS  Google Scholar 

  61. Tikkanen MJ, Wahala K, Ojala S, Vihma V, Adlercreutz H. Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Natl Acad Sci USA 1998;95:3106–3110.

    Article  PubMed  CAS  Google Scholar 

  62. Hodgson JM, Puddey IB, Croft KD, Mori TA, Rivera J, Beilin LJ. Isoflavonoids do not inhibit in vivo lipid peroxidation in subjects with high-normal blood pressure. Atherosclerosis 1999;145:167–172.

    Article  PubMed  CAS  Google Scholar 

  63. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 1995;332:276–282.

    Article  Google Scholar 

  64. Lichtenstein AH. Got soy? Am J Clin Nutr 2001;73:667–668.

    CAS  Google Scholar 

  65. Merz-Demlow BE, Duncan AM, Wangen KE, et al. Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women. Am J Clin Nutr 2000;71:1462–1469.

    PubMed  CAS  Google Scholar 

  66. Crouse JR, Morgan T, Terry TG, Ellis J, Vitolins M, Burke GL. A randomised trial comparing the effect of casein with that of soy protein containing various amounts of isoflavones on plasma concentrations of lipids and lipoproteins. Arch Intern Med 1999;159:2070–2076.

    Article  PubMed  CAS  Google Scholar 

  67. Potter SM. Soy protein and serum lipids. Curr Opin Lipidol 1996;7:260–264.

    Article  PubMed  CAS  Google Scholar 

  68. Potter SM. Overview of the proposed mechanisms for the hypocholesterolaemic effects of soy. J Nutr 1995;125:606S-611S.

    PubMed  CAS  Google Scholar 

  69. Forsythe WA. Soy protein, thyroid regulation and cholesterol metabolism. J Nutr 1995;125:619S-623S.

    PubMed  CAS  Google Scholar 

  70. Lichtenstein AH. Soy protein, isoflavones and cardiovascular disease risk. J Nutr 1998;128:1589–1592.

    PubMed  CAS  Google Scholar 

  71. Sirtori CR, Lovati MR, Manzoni C, et al. Soy and cholesterol reduction: clinical experience. J Nutr 1995;125:598S-605S.

    PubMed  CAS  Google Scholar 

  72. Kirk EA, Sutherland P, Wang SA, Chait A, LeBoeuf RC. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice. J Nutr 1998;128:954–959.

    PubMed  CAS  Google Scholar 

  73. Pan W, Ikeda K, Takebe M, Yamori Y. Genistein, daidzein and glycitein inhibit growth and DNA synthesis or aortic smooth muscle cells from stroke prone spontaneously hypertensive rats. J Nutr 2001; 131:1154–1158.

    PubMed  CAS  Google Scholar 

  74. Honore EK, Williams JK, Anthiny MS, Clarkson TB. Soy isoflavones enhance coronary vascular reactivity in atherosclerotic female macaques. Fertil Steril 1997;67:148–154.

    Article  PubMed  CAS  Google Scholar 

  75. Nestel PJ, Yamashita T, Sasahara T, et al. Soy isoflavones improve systemic arterial compliance but not plasma lipids in menopausal and perimenopausal women. Arterioscler Thromb Vase Biol 1997; 17:3392–3398.

    Article  CAS  Google Scholar 

  76. Rajkumar C, Kingwell BA, Cameron JD, et al. Hormonal therapy increases arterial compliance in postmenopausal women. J Am Coll Cardiol 1997;30:350–356.

    Article  PubMed  CAS  Google Scholar 

  77. Takahashi M, Ikeda U, Masuyama JI, et al. Monocyte-endothelial cell interaction induces expression of adhesion molecules on human umbilical cord endothelial cells. Cardiovasc Res 1996;32:422–429.

    Article  PubMed  CAS  Google Scholar 

  78. Ni W, Tsuda Y, Sakono M, Imaizumi K. Dietary soy protein isolate, compared with casein, reduces atherosclerotic lesion area in apolipoprotein E-deficient mice. J Nutr 1998;128:1884–1889.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Woodside, J.V., Morton, M.S. (2004). Are Soy-Milk Products Viable Alternatives to Cow’s Milk?. In: Wilson, T., Temple, N.J. (eds) Beverages in Nutrition and Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-415-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-415-3_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-402-9

  • Online ISBN: 978-1-59259-415-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics