Skip to main content

A Strategy for Characterizing Antibody/Antigen Interactions Using ProteinChip® Arrays

  • Chapter
Handbook of Proteomic Methods

Abstract

If antibody-based therapeutics are to be rationally designed to give optimal interactions with their target antigens, it is essential to understand these antibody/antigen interactions as fully as possible. This has been greatly advanced by the recent developments in mass spectrometry (MS), structural identification, and bioinformatics, which allow the relatively simple and rapid characterization of protein—protein interactions in a high-throughput manner. Previous methods of mapping an antibody-binding site (epitope) on an antigen have relied on peptide libraries (1). Such methods are suitable for the identification of continuous amino acid sequences (2) but not for those that are conformationally dependent. This latter group forms a major category of antibody/antigen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjamin, D. C., Berzofsky, J. A., East, I. J., et al. (1984) The antigenic structure of proteins: a reappraisal. Annu. Rev. Immunol. 2, 67–101.

    Article  PubMed  CAS  Google Scholar 

  2. Berzofsky, J. A. (1985) Intrinsic and extrinsic factors in protein antigenic structure. Science 229, 932–940.

    Article  PubMed  CAS  Google Scholar 

  3. Jemmerson, R. and Paterson, Y. (1986) Mapping epitopes on a protein antigen by the proteolysis of antigen-antibody complexes. Science 232, 1001–1004.

    Article  PubMed  CAS  Google Scholar 

  4. Eisenberg, R. J., Long, D., Pereira, L., Hampar, B., Zweig, M., and Cohen, G. H. (1982) Effect of monoclonal antibodies on limited proteolysis of native glycoprotein gD of herpes simplex virus type 1. J. Virol. 41, 478–488.

    PubMed  CAS  Google Scholar 

  5. Moelling, K., Scott, A., Dittmar, K. E., and Owada, M. (1980) Effect of p15-associated protease from an avian RNA tumor virus on avian virus-specific polyprotein precursors. J. Virol. 33, 680–688.

    PubMed  CAS  Google Scholar 

  6. Schwyzer, M., Weil, R., Frank, G., and Zuber, H. (1980) Amino acid sequence analysis of fragments generated by partial proteolysis from large simian virus 40 tumor antigen. J. Biol. Chem. 255, 5627–5634.

    PubMed  CAS  Google Scholar 

  7. Sheshberadaran, H. and Payne, L. G. (1988) Protein antigen-monoclonal antibody contact sites investigated by limited proteolysis of monoclonal antibody-bound antigen: protein “footprinting.” Proc. Natl. Acad. Sci. USA 85, 1–5.

    Article  PubMed  CAS  Google Scholar 

  8. Suckau, D., Kohl, J., Karwath, G., et al. (1990) Molecular epitope identification by limited proteolysis of an immobilized antigen-antibody complex and mass spectrometric peptide mapping. Proc. Natl. Acad. Sci. USA 87, 9848–9852.

    Article  PubMed  CAS  Google Scholar 

  9. Van de, W. J., Deininger, S. O., Macht, M., Przybylski, M., and Gershwin, M. E. (1997) Detection of molecular determinants and epitope mapping using MALDI-TOF mass spectrometry. Clin. Immunol. Immunopathol. 85, 229–235.

    Article  Google Scholar 

  10. Yi, J. and Skalka, A. M. (2000) Mapping epitopes of monoclonal antibodies against HIV-1 integrase with limited proteolysis and matrix-assisted laser desorption ionization time-offlight mass spectrometry. Biopolymers 55, 308–318.

    Article  PubMed  CAS  Google Scholar 

  11. Spencer, D. I., Robson, L., Purdy, D., et al. (2002) A strategy for mapping and neutralizing conformational immunogenic sites on protein therapeutics. Proteomies 2, 271–279.

    Google Scholar 

  12. Reid, G., Gan, B. S., She, Y. M., Ens, W., Weinberger, S., and Howard, J. C. (2002) Rapid identification of probiotic Lactobacillus biosurfactant proteins by ProteinChip tandem mass spectrometry tryptic peptide sequencing. Appl. Environ. Microbiol. 68, 977–980.

    Article  PubMed  CAS  Google Scholar 

  13. Huhalov, A. Spencer, D. I. R., Hawkins, R. E., Perkins, S. J., Begent, R. H. J., and Chester, K. A. (2002) Capture and analysis of interacting tagged-proteins: an application to map the carcinoembryonic antigen binding-site of single chain Fv molecule MFE-23. J. Mol. Biol.,in press.

    Google Scholar 

  14. Chester, K. A., Begent, R. H., Robson, L., et al. (1994) Phage libraries for generation of clinically useful antibodies. Lancet 343, 455–456.

    Article  PubMed  CAS  Google Scholar 

  15. Begent, R. H., Verhaar, M. J., Chester, K. A., et al. (1996) Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat. Med. 2, 979–984.

    Article  PubMed  CAS  Google Scholar 

  16. Mayer, A., Tsiompanou, E., O’Malley, D., et al. (2000) Radioimmunoguided surgery in colorectal cancer using a genetically engineered anti-CEA single-chain Fv antibody. Clin. Cancer Res. 6, 1711–1719.

    PubMed  CAS  Google Scholar 

  17. Oikawa, S., Imajo, S., Noguchi, T., Kosaki, G., and Nakazato, H. (1987) The carcinoembryonic antigen (CEA) contains multiple immunoglobulin-like domains. Biochem. Biophvs. Res. Commun. 144, 634–642.

    Article  CAS  Google Scholar 

  18. Paxton, R. J., Mooser, G., Pande, H., Lee, T. D., and Shively, J. E. (1987) Sequence analysis of carcinoembryonic antigen: identification of glycosylation sites and homology with the immunoglobulin supergene family. Proc. Natl. Acad. Sci. USA 84, 920–924.

    Article  PubMed  CAS  Google Scholar 

  19. Boehm, M. K., Mayans, M. O., Thornton, J. D., Begent, R. H., Keep, P. A., and Perkins, S. J. (1996) Extended glycoprotein structure of the seven domains in human carcinoembryonic antigen by X-ray and neutron solution scattering and an automated curve fitting procedure: implications for cellular adhesion. J. Mol. Biol. 259, 718–736.

    Article  PubMed  CAS  Google Scholar 

  20. Boehm, M. K., Corper, A. L., Wan, T., et al. (2000) Crystal structure of the anti(carcinoembryonic antigen) single-chain Fv antibody MFE-23 and a model for antigen binding based on intermolecular contacts. Biochem. J. 346, 519–528.

    Article  PubMed  CAS  Google Scholar 

  21. Boehm, M. K. and Perkins, S. J. (2000) Structural models for carcinoembryonic antigen and its complex with the single-chain Fv antibody molecule MFE23. FEES Lett. 475, 11–16.

    Article  CAS  Google Scholar 

  22. Michael, N. P., Chester, K. A., Melton, R. G., et al. (1996) In vitro and in vivo characterisation of a recombinant carboxypeptidase G2::anti-CEA scFv fusion protein. Immunotechnology 2, 47–57.

    Google Scholar 

  23. Bagshawe, K. D. (1987) Antibody directed enzymes revive anti-cancer prodrugs concept. Br. J. Cancer 56, 531–532.

    Article  PubMed  CAS  Google Scholar 

  24. Rowsell, S., Pauptit, R. A., Tucker, A. D., Melton, R. G., Blow, D. M., and Brick, P. (1997) Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy. Structure 5, 337–347.

    Article  PubMed  CAS  Google Scholar 

  25. Hoogenboom, H. R. and Chames, P. (2000) Natural and designer binding sites made by phage display technology. Immunol. Today 21, 371–378.

    Article  PubMed  CAS  Google Scholar 

  26. Verma, R., Boleti, E., and George, A. J. T. (2000) Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J. Immunol. Methods 216, 165–181.

    Article  Google Scholar 

  27. Clauser, K. R., Baker, P., and Burlingame, A. L. (1999) Role of accurate mass measurement (+/– 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71, 2871–2882.

    Article  PubMed  CAS  Google Scholar 

  28. Sayle, R. A. and Milner-White, E. J. (1995) RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20, 374.

    Article  PubMed  CAS  Google Scholar 

  29. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  30. Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huhalov, A., Spencer, D.I.R., Chester, K.A. (2003). A Strategy for Characterizing Antibody/Antigen Interactions Using ProteinChip® Arrays. In: Conn, P.M. (eds) Handbook of Proteomic Methods. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-414-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-414-6_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-504-0

  • Online ISBN: 978-1-59259-414-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics