Skip to main content

Proteomics and the Molecular Biologist

  • Chapter
Handbook of Proteomic Methods

Abstract

This review is intended to provide the basics of proteomics for all scientists, regardless of their backgrounds, who are interested in using this approach in their research. We believe that proteomics when combined with pre-existing technologies like molecular biology can be a powerful tool in solving a wide variety of biological questions. However, for most who are not in the proteomics field, it is difficult to determine which proteomics approaches are feasible and which are not realistic. In this review, we highlight practical approaches that can be used by researchers without expertise in proteomics or mass spectrometry (MS) to gain insight into their system of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730.

    PubMed  CAS  Google Scholar 

  2. Anderson, L. and Seilhamer, J. (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18, 533–537.

    Article  PubMed  CAS  Google Scholar 

  3. Fountoulakis, M., Berndt, P., Langen, H., and Suter, L. (2002) The rat liver mitochondria] proteins. Electrophoresis 23, 311–328.

    Article  PubMed  CAS  Google Scholar 

  4. Graves, P. R. and Haystead, T. A. (2002) Molecular biologist’s guide to proteomics. Microbiol. Mol. Biol. Rev. 66, 39–63.

    Article  PubMed  CAS  Google Scholar 

  5. Kettman, J. R., Coleclough, C., Frey, J. R., and Lefkovits, I. (2002) Clonal proteomics: one gene-family of proteins. Proteomics 2, 624–631.

    Article  PubMed  CAS  Google Scholar 

  6. Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y., and Aebersold, R. (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. USA 97, 9390–9395.

    Article  PubMed  CAS  Google Scholar 

  7. Anderson, N. G. and Anderson, N. L. (1996) Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 17, 443–453.

    Article  PubMed  CAS  Google Scholar 

  8. MacDonald, J. A., Borman, M. A., Muranyi, A., Somlyo, A. V., Hartshorne, D. J., and Haystead, T. A. (2001) Identification of the endogenous smooth muscle myosin phosphatase-associated kinase. Proc. Natl. Acad. Sci. USA 98, 2419–2424.

    Article  PubMed  CAS  Google Scholar 

  9. Graves, P. R., Kwiek, J. J., Fadden, P., et al. (2002) Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol. Pharmacol. 62, 1364–1372.

    Article  PubMed  CAS  Google Scholar 

  10. Cordwell, S. J., Nouwens, A. S., Verrills, N. M., Basseal, D. J., and Walsh, B. J. (2000) Subproteomics based upon protein cellular location and relative solubilities in conjunction with composite two-dimensional electrophoresis gels. Electrophoresis 21, 1094–1103.

    Article  PubMed  CAS  Google Scholar 

  11. Simpson, R. J., Connolly, L. M., Eddes, J. S., Pereira, J. J., Moritz, R. L., and Reid, G. E. (2000) Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database. Electrophoresis 21, 1707–1732.

    Article  PubMed  CAS  Google Scholar 

  12. Goodlett, D. R. and Yi, E. C. (2002) Proteomics without polyacrylamide: qualitative and quantitative uses of tandem mass spectrometry in proteome analysis. Funct. Integr. Genomics 2, 138–153.

    Article  PubMed  CAS  Google Scholar 

  13. Washburn, M. P., Wolters, D., and Yates, J. R. 3rd. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.

    Article  PubMed  CAS  Google Scholar 

  14. MacCoss, M. J., McDonald, W. H., Saraf, A., et al. (2002) Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl. Acad. Sci. USA 99, 7900–7905.

    Article  PubMed  CAS  Google Scholar 

  15. Pandey, A. and Mann, M. (2000) Proteomics to study genes and genomes. Nature 405, 837–846.

    Article  PubMed  CAS  Google Scholar 

  16. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.

    Article  PubMed  CAS  Google Scholar 

  17. Davis, M. T. and Lee, T. D. (1998) Rapid protein identification using a microscale electrospray LC/MS system on an ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 9, 194–201.

    Article  PubMed  CAS  Google Scholar 

  18. Karas, M. and Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301.

    Google Scholar 

  19. Eng, J. K., McCormack, A. L., and Yates, J. R. (1994) An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989.

    Article  CAS  Google Scholar 

  20. Wattenberg, A., Organ, A. J., Schneider, K., Tyldesley, R., Bordoli, R., and Bateman, R. H. (2002) Sequence dependent fragmentation of peptides generated by MALDI quadrupole time-of-flight (MALDI Q-TOF) mass spectrometry and its implications for protein identification. J. Am. Soc. Mass Spectrom. 13, 772–783.

    Article  PubMed  CAS  Google Scholar 

  21. McDonald, W. H. and Yates, J. R. 3rd. (2000) Proteomic tools for cell biology. Traffic 1, 747–754.

    Article  PubMed  CAS  Google Scholar 

  22. Mackey, A. J., Haystead, T. A. J., and Pearson, W. R. (2002) Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. Mol. Cell. Proteomics 1, 139–147.

    Article  PubMed  CAS  Google Scholar 

  23. Zhou, G., Li, H., DeCamp, D., et al. (2002) 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol. Cell. Proteomics 1, 117–124.

    Google Scholar 

  24. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.

    Article  PubMed  CAS  Google Scholar 

  25. Conrads, T. P., Issaq, H. J., and Veenstra, T. D. (2002) New tools for quantitative phosphoproteome analysis. Biochem. Biophys. Res. Commun. 290, 885–890.

    Article  PubMed  CAS  Google Scholar 

  26. Patton, W., Schulenberg, B., and Steinberg, T. (2002) Two-dimensional gel electrophoresis; better than a poke in the ICAT? Curr. Opin. Biotechnol. 13, 321.

    Article  PubMed  CAS  Google Scholar 

  27. Ong, S. E., Blagoev, B., Kratchmarova, I., et al. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386.

    Article  PubMed  CAS  Google Scholar 

  28. Krishna, R. G. and Wold, F. (1993) Post-translational modification of proteins. Adv. Enzymol. Relat. Areas Mol. Biol. 67, 265–298.

    PubMed  CAS  Google Scholar 

  29. Mann, M., Ong, S. E., Gronborg, M., Steen, H., Jensen, O. N., and Pandey, A. (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 20, 261–268.

    Article  PubMed  CAS  Google Scholar 

  30. Maguire, P. B., Wynne, K. J., Harney, D. F., O’Donoghue, N. M., Stephens, G., and Fitzgerald, D. J. (2002) Identification of the phosphotyrosine proteome from thrombin activated platelets. Proteomics 2, 642–648.

    Article  PubMed  CAS  Google Scholar 

  31. Oda, Y., Nagasu, T., and Chait, B. T. (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382.

    Article  PubMed  CAS  Google Scholar 

  32. Zhou, H., Watts, J. D., and Aebersold, R. (2001) A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378.

    Article  PubMed  CAS  Google Scholar 

  33. Porath, J. (1992) Immobilized metal ion affinity chromatography. Protein Expr. Purif. 3, 263–281.

    Article  PubMed  CAS  Google Scholar 

  34. Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., et al. (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305.

    Article  CAS  Google Scholar 

  35. MacDonald, J. A., Mackey, A. J., Pearson, W. R., and Haystead, T. A. (2002) A strategy for the rapid identification of phosphorylation sites in the phosphoproteome. Mol. Cell. Proteomics 1, 314–322.

    Article  PubMed  CAS  Google Scholar 

  36. Bennett, K. L., Stensballe, A., Podtelejnikov, A. V., Moniatte, M., and Jensen, O. N. (2002) Phosphopeptide detection and sequencing by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry. J. Mass Spectrom. 37, 179–190.

    Article  PubMed  CAS  Google Scholar 

  37. Steen, H., Kuster, B., Fernandez, M., Pandey, A., and Mann, M. (2001) Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal. Chem. 73, 1440–1448.

    Article  PubMed  CAS  Google Scholar 

  38. Ho, Y., Gruhler, A., Heilbut, A., et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Graves, P.R., Haystead, T.A.J. (2003). Proteomics and the Molecular Biologist. In: Conn, P.M. (eds) Handbook of Proteomic Methods. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-414-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-414-6_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-504-0

  • Online ISBN: 978-1-59259-414-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics