Skip to main content

Immunophenotypic Differential Diagnosis and Cell Cycle Analysis

  • Chapter
Chronic Lymphocytic Leukemia

Part of the book series: Contemporary Hematology ((CH))

  • 203 Accesses

Abstract

Chronic lymphocytic leukemia (CLL), including its tissue expression designated as small lymphocytic lymphoma (SLL), is a disease that, although first clinically described over 175 years ago, continues to evolve as an entity. As a result, the list of differential diagnoses for CLL also continues to evolve. Before the advent of immunophenotyping, the diagnosis of CLL included an assortment of diseases from circulating follicular lymphoma to large granular lymphocytic leukemia. The emergence of immunophenotyping as a diagnostic tool heralded a vast improvement in the definition and reproducibility of the diagnosis of CLL. Immunophenotypic characterization of this disease first began in the early 1970s, and by the late 1970s a fairly well-defined immunophenotypic profile for CLL was established that, although refined, probably still included many non-CLL entities. The expansion of cytogenetic and molecular information provided further tools in refining CLL as a distinct entity. For example, in 1989, the entity of mantle cell lymphoma (MCL) was separated from CLL/SLL as a distinct disease (1). Thus, more than 30 years after its first phenotypic description, the definition of CLL is still a matter of debate. Although CLL has been significantly narrowed as a disease category, it is likely that CLL as it is currently defined still represents more than one disease. Consequently, the diagnosis of CLL and the differentiation from related entities can still present a diagnostic dilemma, and numerous points of controversy are raised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Oliveira MS, Jaffe ES, Catovsky D. Leukaemic phase of mantle zone (intermediate) lymphoma: its characterisation in 11 cases. J Clin Pathol 1989; 42; 962–972.

    Article  PubMed  Google Scholar 

  2. Bartlett NL, Longo DL. T-small lymphocyte disorders. Semin Hematol 1999; 36: 164–170.

    PubMed  CAS  Google Scholar 

  3. Jaffe ES, Ralfkiaer E. Mature T-cell and NK-cell neoplasms. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours (WHO): Pathology and Genetics; Tumours of Haematopoietic and Lymphoid Tissues. IARC Press, Lyon, 2001, p. 190.

    Google Scholar 

  4. D’Arena G, Musto P, Cascavilla N, et al. Quantitative flow cytometry for the differential diagnosis of leukemic B-cell chronic lymphoproliferative disorders. Am J Hematol 2000; 64: 275–281.

    Article  PubMed  Google Scholar 

  5. DiGiuseppe JA, Borowitz MJ. Clinical utility of flow cytometry in the chronic lymphoid leukemias. Semin Oncol 1998; 25: 6–10.

    PubMed  CAS  Google Scholar 

  6. Rothe G, Schmitz G. Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Working Group on Flow Cytometry and Image Analysis. Leukemia 1996;10,:877–895.

    Google Scholar 

  7. Matutes E, Polliack A. Morphological and immunophenotypic features of chronic lymphocytic leukemia. Rev Clin Exp Hematol 2000; 4: 22–47.

    Article  PubMed  CAS  Google Scholar 

  8. Cabezudo E, Carrara P, Morilla R, Matutes E. Quantitative analysis of CD79b, CD5 and CD 19 in mature B-cell lymphoproliferative disorders. Haematologica 1999; 84: 413–418.

    PubMed  CAS  Google Scholar 

  9. Zomas AP, Matutes E, Morilla R, et al. Expression of the immunoglobulin-associated protein B29 in B cell disorders with the monoclonal antibody SN8 (CD79b) Leukemia 1996; 10: 1966–1970.

    CAS  Google Scholar 

  10. Alfarano A, Indraccolo S, Circosta P, et al. An alternatively spliced form of CD79b gene may account for altered B- cell receptor expression in B-chronic lymphocytic leukemia. Blood 1999; 93: 2327–2335.

    PubMed  CAS  Google Scholar 

  11. Catovsky D, Cherchi M, Brookss D, Bradely J, Zola H. Heterogeneity of B-cell leukemias demonstrated by the monoclonal antibody FMC7. Blood 1981; 58: 406–408.

    PubMed  CAS  Google Scholar 

  12. Huh YO, Pugh WC, Kantarjian HM, et al. Detection of subgroups of chronic B-cell leukemias by FMC7 monoclonal antibody. Am J Clin Pathol 1994; 101: 283–289.

    PubMed  CAS  Google Scholar 

  13. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of chronic (mature) B and T lymphoid leukaemias. French-American-British (FAB) Cooperative Group. J Clin Pathol 1989; 42: 567–584.

    Article  PubMed  CAS  Google Scholar 

  14. Criel A, Verhoef G, Vlietinck R, et al. Further characterization of morphologically defined typical and atypical CLL: a clinical, immunophenotypic, cytogenetic and prognostic study on 390 cases. Br J Haematol 1997; 97: 383–391.

    Article  PubMed  CAS  Google Scholar 

  15. Finn WG, Thangavelu M, Yelavarthi KK, et al. Karyotype correlates with peripheral blood morphology and immunophenotype in chronic lymphocytic leukemia. Am J Clin Pathol 1996; 105: 458–467.

    PubMed  CAS  Google Scholar 

  16. Criel A, Michaux L, Wolf-Peeters C. The concept of typical and atypical chronic lymphocytic leukaemia. Leuk Lymph 1999; 33: 33–45.

    CAS  Google Scholar 

  17. Cartron G, Linassier C, Bremond JL, et al. CD5 negative B-cell chronic lymphocytic leukemia: clinical and biological features of 42 cases. Leuk Lymph 1998; 31: 209–216.

    Article  CAS  Google Scholar 

  18. Shapiro JL, Miller ML, Pohlman B, Mascha E, Fishleder AJ. CD5- B-cell lymphoproliferative disorders presenting in blood and bone marrow. A clinicopathologic study of 40 patients. Am J Clin Pathol 1999; 111: 477–487.

    PubMed  CAS  Google Scholar 

  19. Frater JL, McCarron KF, Hammel JP, et al. Typical and atypical chronic lymphocytic leukemia differ clinically and immunophenotypically. Am J Clin Pathol 2001; 116: 655–664.

    Article  PubMed  CAS  Google Scholar 

  20. D’Arena G, Dell’Olio M, Musto P, et al. Morphologically typical and atypical B-cell chronic lymphocytic leukemias display a different pattern of surface antigenic density. Leuk Lymph 2001; 42: 649–654.

    Article  Google Scholar 

  21. Matutes E, Oscier D, Garcia-Marco J, et al. Trisomy 12 defines a group of CLL with atypical morphology: correlation between cytogenetic, clinical and laboratory features in 544 patients. Br J Haematol 1996; 92: 382–388.

    Article  PubMed  CAS  Google Scholar 

  22. Oscier DG, Matutes E, Copplestone A, et al. Atypical lymphocyte morphology: an adverse prognostic factor for disease progression in stage A CLL independent of trisomy 12. Br J Haematol 1997; 98: 934–939.

    Article  PubMed  CAS  Google Scholar 

  23. Matutes E, Carrara P, Coignet L, et al. FISH analysis for BCL-1 rearrangements and trisomy 12 helps the diagnosis of atypical B cell leukaemias. Leukemia 1999; 13: 1721–1726.

    Article  PubMed  CAS  Google Scholar 

  24. Cuneo A, Bigoni R, Negrini M, et al. Cytogenetic and interphase cytogenetic characterization of atypical chronic lymphocytic leukemia carrying BCL1 translocation. Cancer Res 1997; 57: 1144–1150.

    PubMed  CAS  Google Scholar 

  25. Huang JC, Finn WG, Goolsby CL, Variakojis D, Peterson LC. CD5- small B-cell leukemias are rarely classifiable as chronic lymphocytic leukemia. Am J Clin Pathol 1999; 111: 123–130.

    PubMed  CAS  Google Scholar 

  26. Carey JL. Immunophenotyping in diagnosis and prognosis of mature lymphoid leukemias and lymphomas. In: Keren D, McCoy JP, Carey JL, eds. Flow Cytometry in Clinical Diagnosis. ASCP Press, Chicago, 2001, pp. 227–378.

    Google Scholar 

  27. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of chronic (mature) B and T lymphoid leukaemias. French-American-British (FAB) Cooperative Group. J Clin Pathol 1989; 42: 567–584.

    Article  PubMed  CAS  Google Scholar 

  28. Kilo MN, Dorfman DM. The utility of flow cytometric immunophenotypic analysis in the distinction of small lymphocytic lymphoma/chronic lymphocytic leukemia from mantle cell lymphoma. Am J Clin Pathol 1996; 105: 451–457.

    PubMed  CAS  Google Scholar 

  29. Wormsley SB, Baird SM, Gadol N, Rai KR, Sobol RE. Characteristics of CD11c+CD5+chronic B-cell leukemias and the identification of novel peripheral blood B-cell subsets with chronic lymphoid leukemia immunophenotypes. Blood 1990; 76: 123–130.

    PubMed  CAS  Google Scholar 

  30. Matutes E, Owusu-Ankomah K, Morilla R, et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 1994; 8: 1640–1645.

    PubMed  CAS  Google Scholar 

  31. Fermand JP, Brouet JC. Heavy-chain diseases. Hematol Oncol Clin N Am 1999; 13: 1281–1294.

    Article  CAS  Google Scholar 

  32. Matutes E, Morilla R, Owusu-Ankomah K, Houlihan A, Catovsky D. The immunophenotype of splenic lymphoma with villous lymphocytes and its relevance to the differential diagnosis with other B-cell disorders. Blood 1994; 83: 1558–1562.

    PubMed  CAS  Google Scholar 

  33. Ferry JA, Yang WI, Zukerberg LR, et al. CD5+ extranodal marginal zone B-cell (MALT) lymphoma. A low grade neoplasm with a propensity for bone marrow involvement and relapse. Am J Clin Pathol 1996; 105: 31–37.

    PubMed  CAS  Google Scholar 

  34. Yamaguchi M, Seto M, Okamoto M, et al. De novo CD5+ diffuse large B-cell lymphoma: a clinicopathologic study of 109 patients. Blood 2002; 99: 815–821.

    Article  PubMed  CAS  Google Scholar 

  35. Harada S, Suzuki R, Uehira K, et al. Molecular and immunological dissection of diffuse large B cell lymphoma: CD5+, and CD5- with CD10+ groups may constitute clinically relevant subtypes. Leukemia 1999; 13: 1441–1447.

    Article  PubMed  CAS  Google Scholar 

  36. Lin CW, O’Brien S, Faber J, et al. De novo CD5+ Burkitt lymphoma/leukemia. Am J Clin Pathol 1999; 112: 828–835.

    PubMed  CAS  Google Scholar 

  37. Kroft SH, Dawson DB, Mckenna RW. Large cell lymphoma transformation of chronic lymphocytic leukemia/ small lymphocytic lymphoma. A flow cytometric analysis of seven cases. Am J Clin Pathol 2001; 115: 385–395.

    Article  PubMed  CAS  Google Scholar 

  38. Cornfield DB, Mitchell Nelson DM, Rimsza LM, Moller-Patti D, Braylan RC. The diagnosis of hairy cell leukemia can be established by flow cytometric analysis of peripheral blood, even in patients with low levels of circulating malignant cells. Am J Hematol 2001; 67: 223–226.

    Article  PubMed  CAS  Google Scholar 

  39. Tiesinga JJ, Wu CD, Inghirami G. CD5+ follicle center lymphoma. Immunophenotyping detects a unique subset of “floral” follicular lymphoma. Am J Clin Pathol 2000; 114: 912–921.

    Article  PubMed  Google Scholar 

  40. Raza A, Alvi S, Broady-Robinson L, et al. Cell cycle kinetic studies in 68 patients with myelodysplastic syndromes following intravenous. Exp Hematol 1997; 25: 530–535.

    PubMed  CAS  Google Scholar 

  41. Kelman Z. PCNA: structure, functions and interactions. Oncogene 1997; 14: 629–640.

    Article  PubMed  CAS  Google Scholar 

  42. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 1984; 133: 1710–1715.

    PubMed  CAS  Google Scholar 

  43. van Dierendonck JH, Wijsman JH, Keijzer R, van de Velde CJ, Cornelisse CJ. Cell-cycle-related staining patterns of anti-proliferating cell nuclear antigen monoclonal antibodies. Comparison with BrdUrd labeling and Ki- 67 staining. Am J Pathol 1991; 138: 1165–1172.

    PubMed  Google Scholar 

  44. Trere D. Quantitative analysis of AgNOR proteins: a reliable marker of the rapidity of cell duplication and a significant prognostic parameter in tumour pathology. Adv Clin Path 1998; 2: 261–270.

    PubMed  Google Scholar 

  45. Kallander CF, Simonsson B, Gronowitz JS, Nilsson K. Serum deoxythymidine kinase correlates with peripheral lymphocyte thymidine uptake in chronic lymphocytic leukemia. Eur J Haematol 1987; 38: 331–337.

    Article  PubMed  CAS  Google Scholar 

  46. Holm M, Thomsen M, Hoyer M, Hokland P. Optimization of a flow cytometric method for the simultaneous measurement of cell surface antigen, DNA content, and in vitro BrdUrd incorporation into normal and malignant hematopoietic cells. Cytometry 1998; 32: 28–36.

    Article  PubMed  CAS  Google Scholar 

  47. Glasova M, Konikova E, Kusenda J, Babusikova O. Evaluation of different fixation-permeabilization methods for simultaneous detection of surface, cytoplasmic markers and DNA analysis by flow cytometry in some human hematopoietic cell lines. Neoplasma 1995; 42: 337–346.

    PubMed  CAS  Google Scholar 

  48. Bierman HR. The leukemias-proliferative or accumulative? Blood 1967; 30: 238–250.

    PubMed  CAS  Google Scholar 

  49. Dameshek W. Chronic lymphocytic leukemia-an accumulative disease of immunolgically incompetent lymphocytes. Blood 1967; 29 (suppl): 566–584.

    PubMed  Google Scholar 

  50. Themi H, Trepel F, Schick P, Kaboth W, Begemann H. Kinetics of lymphocytes in chronic lymphocytic leukemia: studies using continuous 3H-thymidine infusion in two patients. Blood 1973; 42: 623–636.

    PubMed  CAS  Google Scholar 

  51. Stryckmans PA, Debusscher L, Collard E. Cell kinetics in chronic lymphocytic leukaemia (CLL). Clin Haematol 1977; 6: 159–167.

    PubMed  CAS  Google Scholar 

  52. Theml H, Love R, Begemann H. Factors in the pathomechanism of chronic lymphocytic leukemia. Annu Rev Med 1977; 28: 131–141.

    Article  PubMed  CAS  Google Scholar 

  53. Matsuda S, Uchida T, Kariyone S. Kinetic studies on lymphocytes labelled with indium 111-oxine in patients with chronic lymphocytic leukaemia. Scand J Haematol 1985; 35: 210–218.

    Article  PubMed  CAS  Google Scholar 

  54. Petti MC, Testa MG, Deb G, Amadori S. Cytokinetic studies in chronic lymphocytic leukemia. Relationship to other variables at diagnosis and survival. Biomedicine 1980; 33: 188–190.

    PubMed  CAS  Google Scholar 

  55. Andreeff M, Darzynkiewicz Z, Sharpless TK, Clarkson BD, Melamed MR. Discrimination of human leukemia subtypes by flow cytometric analysis of cellular DNA and RNA. Blood 1980; 55: 282–293.

    PubMed  CAS  Google Scholar 

  56. de Melo N, Matutes E, Cordone I, Morilla R, Catovksy D. Expression of Ki-67 nuclear antigen in B and T cell lymphoproliferative disorders. J Clin Pathol 1992; 45: 660–663.

    Article  PubMed  Google Scholar 

  57. Stephenson CF, Desai ZR, Bridges JM. The proliferative activity of B-chronic lymphocytic leukaemia lymphocytes prior to and after stimulation with TPA and PHA. Leuk Res 1991; 15: 1005–1012.

    Article  PubMed  CAS  Google Scholar 

  58. Lin CW, Manshouri T, Jilani I, et al. Proliferation and apoptosis in acute and chronic leukemias and myelodysplastic syndrome. Leuk Res 2002; 26: 551–559.

    Article  PubMed  Google Scholar 

  59. Diamond LW, Bearman RM, Berry PK, et al. Prolymphocytic leukemia: flow microfluorometric, immunologic, and cytogenetic observations. Am J Hematol 1980; 9: 319–330.

    Article  PubMed  CAS  Google Scholar 

  60. Decker T, Schneller F, Hipp S, et al. Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27. Leukemia 2002; 16: 327–334.

    Article  PubMed  CAS  Google Scholar 

  61. Garcia-Marco JA, Price CM, Ellis J, et al. Correlation of trisomy 12 with proliferating cells by combined immunocytochemistry and fluorescence in situ hybridization in chronic lymphocytic leukemia. Leukemia 1996; 10: 1705–1711.

    PubMed  CAS  Google Scholar 

  62. Juliusson G, Gahrton G. Clinical implications of CLL cell proliferation in vitro. Nouv Rev Fr Hematol 1988; 30: 399–401.

    PubMed  CAS  Google Scholar 

  63. Moayeri H, Sokal JE. In vitro leukocyte thymidine uptake and prognosis in chronic lymphocytic leukemia. Am J Med 1979; 66: 773–778.

    Article  PubMed  CAS  Google Scholar 

  64. Simonsson B, Nilsson K. 3H-thymidine uptake in chronic lymphocytic leukaemia cells. Scand J Haemato11980; 24: 169–173.

    Google Scholar 

  65. Kimby E, Mellstedt H, Nilsson B, et al. Blood lymphocyte characteristics as predictors of prognosis in chronic lymphocytic leukemia of B-cell type. Hematol Oncol 1988; 6: 47–55.

    Article  PubMed  CAS  Google Scholar 

  66. Orfao A, Ciudad J, Gonzalez M, et al. Prognostic value of S-phase white blood cell count in B-cell chronic lymphocytic leukemia. Leukemia 1992; 6: 47–51.

    PubMed  CAS  Google Scholar 

  67. Astsaturov IA, Samoilova RS, Iakhnina EI, Pivnik AV, Vorobiov AI. The relevance of cytological studies and Ki-67 reactivity to the clinical course of chronic lymphocytic leukemia. Leuk Lymph 1997; 26: 337–342.

    CAS  Google Scholar 

  68. Vinolas N, Reverter JC, Urbano-Ispizua A, Montserrat E, Rozman C. Lymphocyte doubling time in chronic lymphocytic leukemia: an update of its prognostic significance. Blood Cells 1987; 12: 457–470.

    PubMed  CAS  Google Scholar 

  69. del Giglio A, O’Brien S, Ford R, et al. Prognostic value of proliferating cell nuclear antigen expression in chronic lymphoid leukemia. Blood 1992; 79: 2717–2720.

    PubMed  Google Scholar 

  70. Cordone I, Matutes E, Catovsky D. Monoclonal antibody Ki-67 identifies B and T cells in cycle in chronic lymphocytic leukemia: correlation with disease activity. Leukemia 1992; 6: 902–906.

    PubMed  CAS  Google Scholar 

  71. Vrhovac R, Delmer A, Tang R, Marie JP, Zittoun R, Ajchenbaum-Cymbalista F. Prognostic significance of the cell cycle inhibitor p27Kipl in chronic B-cell lymphocytic leukemia. Blood 1998; 91: 4694–4700.

    PubMed  CAS  Google Scholar 

  72. Dormer P, Theml H, Lau B. Chronic lymphocytic leukemia: a proliferative or accumulative disorder? Leuk Res 1983; 7: 1–10.

    Article  PubMed  CAS  Google Scholar 

  73. Schwartz BR, Pinkus G, Bacus S, Toder M, Weinberg DS. Cell proliferation in non-Hodgkin’s lymphomas. Digital image analysis of Ki-67 antibody staining. Am J Pathol 1989; 134: 327–336.

    PubMed  CAS  Google Scholar 

  74. Gerdes J, Dallenbach F, Lennert K, Lemke H, Stein H. Growth fractions in malignant non-Hodgkin’s lymphomas (NHL) as determined in situ with the monoclonal antibody Ki-67. Hematol Oncol 1984; 2: 365–371.

    PubMed  CAS  Google Scholar 

  75. Weiss LM, Strickler JG, Medeiros LJ, Gerdes J, Stein H, Warnke RA. Proliferative rates of non-Hodgkin’s lymphomas as assessed by Ki-67 antibody. Hum Pathol 1987; 18: 1155–1159.

    Article  PubMed  CAS  Google Scholar 

  76. Witzig TE, Gonchoroff NJ, Greipp PR, et al. Rapid S-phase determination of non-Hodgkin’s lymphomas with the use of an immunofluorescence bromodeoxyuridine labeling index procedure. Am J Clin Pathol 1989; 91: 298–301.

    PubMed  CAS  Google Scholar 

  77. Sebo TJ, Roche PC, Witzig TE, Kurtin PJ. Proliferative activity in non-Hodgkin’s lymphomas. A comparison of the bromodeoxyuridine labeling index with PCNA immunostaining and quantitative image analysis. Am J Clin Pathol 1993; 99: 668–672.

    PubMed  CAS  Google Scholar 

  78. Lindh J, Jonsson H, Lenner P, Roos G. ‘Aggressive’ low grade lymphocytic lymphomas can be identified by flow cytometric S-phase determinations. Hematol Oncol 1992; 10: 171–179.

    Article  PubMed  CAS  Google Scholar 

  79. Granziero L, Ghia P, Circosta P, et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2777–2783.

    Article  PubMed  CAS  Google Scholar 

  80. Robertson LE, Pugh W, O’Brien S, et al. Richter’s syndrome: a report on 39 patients. J Clin Oncol 1993; 11: 1985–1989.

    PubMed  CAS  Google Scholar 

  81. Nikicicz EP, Norback DH. Spectrum of argyrophilic nucleolar organizer region (AgNOR) staining patterns in chronic and transformed B-cell leukemias. Arch Pathol Lab Med 1992; 116: 265–268.

    PubMed  CAS  Google Scholar 

  82. Cobo F, Martinez A, Pinyol M, et al. Multiple cell cycle regulator alterations in Richter’s transformation of chronic lymphocytic leukemia. Leukemia 2002; 16: 1028–1034.

    Article  PubMed  CAS  Google Scholar 

  83. Wickremasinghe RG, Hoffbrand AV. Biochemical and genetic control of apoptosis: relevance to normal hematopoiesis and hematological malignancies. Blood 1999; 93: 3587–3600.

    PubMed  CAS  Google Scholar 

  84. Reed JC. Double identity for proteins of the Bc1–2 family. Nature 1997; 387: 773–776.

    Article  PubMed  CAS  Google Scholar 

  85. Gottardi D, Alfarano A, De Leo AM, et al. In leukaemic CD5+ B cells the expression of BCL-2 gene family is shifted toward protection from apoptosis. Br J Haematol 1996; 94: 612–618.

    Article  PubMed  CAS  Google Scholar 

  86. Klein A, Miera O, Bauer O, Golfier S, Schriever F. Chemosensitivity of B cell chronic lymphocytic leukemia and correlated expression of proteins regulating apoptosis, cell cycle and DNA repair. Leukemia 2000; 14: 40–46.

    Article  PubMed  CAS  Google Scholar 

  87. Raghoebier S, van Krieken JH, Kluin-Nelemans JC, et al. Oncogene rearrangements in chronic B-cell leukemia. Blood 1991; 77: 1560–1564.

    PubMed  CAS  Google Scholar 

  88. Reed JC. Molecular biology of chronic lymphocytic leukemia. Semin Oncol 1998; 25: 11–18.

    PubMed  CAS  Google Scholar 

  89. Schena M, Larsson LG, Gottardi D, et al. Growth- and differentiation-associated expression of bc1–2 in B-chronic lymphobytic leukemia cells. Blood 1992; 79: 2981–2989.

    PubMed  CAS  Google Scholar 

  90. Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC. bc1–2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 1993; 82: 1820–1828.

    PubMed  CAS  Google Scholar 

  91. McConkey DJ, Chandra J, Wright S, et al. Apoptosis sensitivity in chronic lymphocytic leukemia is determined by endogenous endonuclease content and relative expression of BCL-2 and BAX. J Immunol 1996; 156: 2624–2630.

    PubMed  CAS  Google Scholar 

  92. Krajewski S, Gascoyne RD, Zapata JM, et al. Immunolocalization of the ICE/Ced-3-family protease, CPP32 (Caspase-3), in non-Hodgkin’s lymphomas, chronic lymphocytic leukemias, and reactive lymph nodes. Blood 1997; 89: 3817–3825.

    PubMed  CAS  Google Scholar 

  93. Pepper C, Hoy T, Bentley P. Elevated Bcl-2/Bax are a consistent feature of apoptosis resistance in B-cell chronic lymphocytic leukaemia and are correlated with in vivo chemoresistance. Leuk Lymph 1998; 28: 355–361.

    CAS  Google Scholar 

  94. Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JF. Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 1989; 71: 343–350.

    Article  PubMed  CAS  Google Scholar 

  95. Mainou-Fowler T, Prentice AG. Modulation of apoptosis with cytokines in B-cell chronic lymphocytic leukaemia. Leuk Lymph 1996; 21: 369–377.

    Article  CAS  Google Scholar 

  96. Aguilar-Santelises M, Magnusson KP, Wiman KG, Mellstedt H, Jondal M. Progressive B-cell chronic lymphocytic leukaemia frequently exhibits aberrant p53 expression. Int J Cancer 1994; 58: 474–479.

    Article  PubMed  CAS  Google Scholar 

  97. Tangye SG, Raison RL. Human cytokines suppress apoptosis of leukaemic CD5+ B cells and preserve expression of bcl-2. Immunol. Cell Biol 1997; 75: 127–135.

    Article  PubMed  CAS  Google Scholar 

  98. Buschle M, Campana D, Carding SR, Richard C, Hoffbrand AV, Brenner MK. Interferon gamma inhibits apoptotic cell death in B cell chronic lymphocytic leukemia. J Exp Med 1993; 177: 213–218.

    Article  PubMed  CAS  Google Scholar 

  99. Dancescu M, Rubio-Trujillo M, Biron G, Bron D, Delespesse G, Sarfati M. Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J Exp Med 1992; 176: 1319–1326.

    Article  PubMed  CAS  Google Scholar 

  100. Molica S, Vitelli G, Levato D, Levato L, Dattilo A, Gandolfo GM. Clinico-biological implications of increased serum levels of interleukin-8 in B-cell chronic lymphocytic leukemia. Haematologica 1999; 84: 208–211.

    PubMed  CAS  Google Scholar 

  101. Plate JM, Long BW, Kelkar SB. Role of beta2 integrins in the prevention of apoptosis induction in chronic lymphocytic leukemia B cells. Leukemia 2000; 14: 34–39.

    Article  PubMed  CAS  Google Scholar 

  102. Cordingley FT, Bianchi A, Hoffbrand AV, et al. Tumour necrosis factor as an autocrine tumour growth factor for chronic B-cell malignancies. Lancet 1988; 1: 969–971.

    Article  PubMed  CAS  Google Scholar 

  103. Gamberale R, Geffner JR, Trevani A, et al. Immune complexes inhibit apoptosis of chronic lymphocytic leukaemia B cells. Br J Haematol 1999; 107: 870–876.

    Article  PubMed  CAS  Google Scholar 

  104. Schattner EJ. Cd40 ligand in cll pathogenesis and therapy. Leuk Lymph 2000; 37: 461–472.

    Article  CAS  Google Scholar 

  105. Bernal A, Pastore RD, Asgary Z, et al. Survival of leukemic B cells promoted by engagement of the antigen receptor. Blood 2001; 98: 3050–3057.

    Article  PubMed  CAS  Google Scholar 

  106. Laytragoon-Lewin N, Duhony E, Bai XF, Mellstedt H. Downregulation of the CD95 receptor and defect CD40mediated signal transduction in B-chronic lymphocytic leukemia cells. Eur J Haematol 1998; 61: 266–271.

    Article  PubMed  CAS  Google Scholar 

  107. Kneitz C, Goller M, Wilhelm M, et al. Inhibition of T cell/B cell interaction by B-CLL cells. Leukemia 1999; 13: 98–104.

    Article  PubMed  CAS  Google Scholar 

  108. Ghia P, Caligaris-Cappio F. The indispensable role of microenvironment in the natural history of low-grade B-cell neoplasms. Adv Cancer Res 2000; 79: 157–173.

    Article  PubMed  CAS  Google Scholar 

  109. de la Fuente MT, Casanova B, Garcia-Gila M, Silva A, Garcia-Pardo A. Fibronectin interaction with alpha4betal integrin prevents apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax. Leukemia 1999; 13: 266–274.

    Article  PubMed  CAS  Google Scholar 

  110. Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV. Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 1996; 92: 97–103.

    Article  PubMed  CAS  Google Scholar 

  111. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 1998; 91: 2387–2396.

    PubMed  CAS  Google Scholar 

  112. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 2000; 96: 2655–2663.

    PubMed  CAS  Google Scholar 

  113. Ricciardi MR, Petrucci MT, Gregorj C, et al. Reduced susceptibility to apoptosis correlates with kinetic quiescence in disease progression of chronic lymphocytic leukaemia. Br J Haematol 2001; 113: 391–399.

    Article  PubMed  CAS  Google Scholar 

  114. Robertson LE, Plunkett W, McConnell K, Keating MJ, McDonnell TJ. Bc1–2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia 1996; 10: 456–459.

    PubMed  CAS  Google Scholar 

  115. Kitada S, Andersen J, Akar S, et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. Blood 1998; 91: 3379–3389.

    PubMed  CAS  Google Scholar 

  116. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  PubMed  CAS  Google Scholar 

  117. Cordone I, Masi S, Mauro FR, et al. p53 expression in B-cell chronic lymphocytic leukemia: a marker of disease progression and poor prognosis. Blood 1998; 91: 4342–4349.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Douglas, V.K., Braylan, R.C. (2004). Immunophenotypic Differential Diagnosis and Cell Cycle Analysis. In: Faguet, G.B. (eds) Chronic Lymphocytic Leukemia. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-412-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-412-2_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-355-8

  • Online ISBN: 978-1-59259-412-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics