Skip to main content

Stem Cells in Dermal Wound Healing

  • Chapter
  • 370 Accesses

Abstract

Repair of damaged dermal tissue is accomplished by dynamic cell-cell and cell-matrix interactions involving activation of resident cells as well as cells that migrate into the lesion. Immediately after injury there is a hemostatic response that activates platelets. Platelets release transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF), which begin the recruitment of inflammatory cells and activate several resident dermal cell types. The most notable early inflammatory response is the infiltration of neutrophils. These are necessary to control infection and begin clearing the damaged tissue but are not critical to the healing process. Wound healing begins a few days later with the infiltration of monocyte/macrophages at the site. These cells release a number of cyotokines, synthesize extracellular matrix (ECM), and serve as a source of stem cells. The ECM becomes vascularized by angiogenesis and forms granulation tissue. Neovascularization is accomplished using both resident endothelial cells and circulating progenitor cells from the blood. Scar formation proceeds with the activation, migration, and proliferation of fibroblasts and the formation of a three-dimensional scaffold of ECM. A hematologically derived monocyte/stem cell may be the major contributor to early matrix synthesis. These blood-derived stem cells are able to produce a wide variety of proinflammatory cytokines (IL-1β, TNF-α, MIP-1α, MIP-1β, PDGF-A and TGF-β), which make major contributions to the healing process. Contraction of the wound is driven by activation and differentiation of mesenchymal cells into myofibroblasts that are able to draw the edges of the damaged tissue over the deficit. Migration of viable keratinocytes within the wound and from the edges of it stimulated by types I and IV collagen, fibronectin and vitronectin, as well as serum factors is responsible for reepithelialization of the surface. The cells include both the basal stem cells of the epidermis and the transit-amplifying cells. If epidermal stem cells are lost, migrating stem cells from surviving hair follicles are able to supply epidermal cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, R., Donnelly, S. C., Peng, T., Bucala, R., and Metz, C. N. (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J. Immunol. 166:7556–7562.

    PubMed  CAS  Google Scholar 

  • Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M., and Cerami, A. (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1:71–81.

    PubMed  CAS  Google Scholar 

  • Carmeliet, P. and Luttun, A. (2001) The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb. Haemost. 86:289–297.

    PubMed  CAS  Google Scholar 

  • Chen-Kiang, S., Cardinale, G. J., and Udenfriend, S. (1977) Expression of collagen biosynthetic activities in lymphocytic cells. Proc. Natl. Acad. Sci. USA 75:1379–1383.

    Article  Google Scholar 

  • Chesney, J., Metz C., Stavitsky, A. B., Bacher, M., and Bucala, R. (1998) Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J. Immunol. 160:419–425.

    PubMed  CAS  Google Scholar 

  • Clark, R. A. F. (1996) Overview of wound repair. In: The Molecular and Cellular Biology of Wound Repair (Clark, R. A. F., ed.), Plenum, New York, pp. 3–50.

    Google Scholar 

  • Clark, R. A. F., Lanigan, J. M., DellaPelle, P., Manseau, E., Dvorak, H. F. and Colvin, R. B. (1982) Fibronecin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J. Invest. Dermatol. 79:264–269.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, I. K., Diegelmann, R. F., and Lindblad, W. J., eds. (1992) Wound Healing: Biochemical and Clinical Aspects, Saunders, Philadelphia, PA.

    Google Scholar 

  • Cohnheim, J. (1867) Ueber entzundung und eiterung. Virchows Arch. 40:1.

    Article  Google Scholar 

  • Desmoulière, A., Redard, M., Darby, I., and Gabbiani, G. (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am. J. Pathol. 146:56–66.

    PubMed  Google Scholar 

  • Dunphy, J. E. and Upuda, K. N. (1955) Chemical and histochemical sequences in the normal healing of wounds. N. Engl. J. Med. 253: 847–851.

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani, G., Ryan, G. B., and Majno, G. (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27:549–550.

    Article  PubMed  CAS  Google Scholar 

  • Gillman, T. and Wright, L. J. (1966) Autoradiographic evidence suggesting in vivo transformation of some blood mononuclears in repair and fibrosis. Nature 209:1086–1090.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, B. and Green, H. (1968) The synthesis of collagen and protocollagen hydroxylase by fibroblastic and nonfibroblastic cell lines. Pathology 59:1110–1116.

    CAS  Google Scholar 

  • Graham, M. F., Diegelmann, R. F., Lindblad, W. J., Gay, S., Gay, R., and Cohen, I. K. (1984) Effects of inflammation on wound healing: in vitro studies and in vivo studies. In: Soft and Hard Tissue Repair: Biological and Clinical Aspects (Hunt, T. K., Heppenstall, R. B., Pines, E., Rovee, D., eds.), Praeger Scientific, New York, pp. 361–379.

    Google Scholar 

  • Gross, J. (1996) Getting to mammalian wound repair and amphibian limb regeneration: A mechanistic link in the early events. Wound Rep. Reg. 4:190–202.

    Article  CAS  Google Scholar 

  • Jang, Y.-C., Arumugam S., Gibran, N. S., and Isik, F. F. (1999) Role of αv integrins and angiogenesis during wound repair. Wound Rep. Reg. 7:375–380.

    Article  CAS  Google Scholar 

  • Jensen, U., Lowell, S., and Watt, F. M. (1999) The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labeling and lineage analysis. Development 126:2409–2418.

    PubMed  CAS  Google Scholar 

  • Jones, P. H. and Watt, F. M. (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. H., Harper, S., and Watt, F. M. (1995) Stem cell patterning and fate in human epidermis. Cell 80:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Leibovich, S. J. and Ross, R. (1975) The role of the macrophage in wound repair: a study with hydrocortisone and antimacrophage serum. Am. J. Pathol. 78:71–100.

    PubMed  CAS  Google Scholar 

  • Lindblad, W. J., French, J. A., Redford, K. S., Buenaventura, S. K., and Cohen, I. K. (1987) Induction of prolyl hydroxylase activity in a nonadherent population of human leukocytes. Biochem. Biophys. Res. Commun. 147:486–493.

    Article  PubMed  CAS  Google Scholar 

  • Lindblad, W. J. (1998) Collagen expression by novel cell populations in the dermal wound environment. Wound Rep. Reg. 6:186–193.

    Article  CAS  Google Scholar 

  • Madri, J. A. and Bell, L. (1992) Vascular cell responses to injury: Modulation by extracellular matrix and soluble factors. In: Ultrastructure, Membranes and Cell Interactions in Atherosclerosis (Robenek, H. and Severs, N., eds.), CRC, Boca Raton, FL, pp. 167–181.

    Google Scholar 

  • Mast, B. A. and Schultz, G. S. (1996) Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Rep. Reg. 4:411–420.

    Article  CAS  Google Scholar 

  • Metchnikoff, E. (1893) Lectures on the Comparative Pathology of Inflammation, Keegan, Paul, and Trubner, London, UK.

    Google Scholar 

  • Myllyla, R. and Seppa, H. (1979) Studies on the enzymes of collagen biosynthesis and the synthesis of hydroxyproline in macrophages and mast cells. Biochem. J. 182:311–316.

    PubMed  CAS  Google Scholar 

  • Odland, G. and Ross, R. (1968) Human wound repair. I. Epidermal regeneration. J. Cell Biol. 39:135–151.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K., and Barrandon, Y. (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104:233–245.

    Article  PubMed  CAS  Google Scholar 

  • Rappolee, D. A., Mark, D., Banda, M. J., and Werb, Z. (1988) Wound macrophages express TGF-α and other growth factors in vivo: analysis by mRNA phenotyping. Science 241:708–712.

    Article  PubMed  CAS  Google Scholar 

  • Reyes, M., Dudek, A., Jahagirdar, B., Koodie, L., Marker, P. H., and Verfaillie, C. M. (2002) Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest. 109:337–315.

    PubMed  CAS  Google Scholar 

  • Roberts, A. B., (1995) Transforming growth factor-β: activity and efficacy in animal models of wound healing. Wound Rep. Reg. 3: 408–418.

    Article  CAS  Google Scholar 

  • Rochat, A., Kobayashi, K., and Barrandon, Y. (1994) Location of stem cells of human hair follicles by clonal analysis. Cell 76:1063–1073.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, A. A., Burnett, S., Moore, J. C., Shakespeare, P. G., and Chen, W. Y. J. (1995) Involvement of proteolytic enzymes (plasminogen activators and matrix metalloproteinases) in the pathophysiology of pressure ulcers. Wound Rep. Reg. 3:273–283.

    Article  CAS  Google Scholar 

  • Ross, R., Everett, N. B., and Tyler, R. (1970) Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis. J. Cell Biol. 44:645–654.

    Article  PubMed  CAS  Google Scholar 

  • Savill, J. (1997) Apoptosis in the resolution of inflammation. J. Leukoc. Biol. 61:375–380.

    PubMed  CAS  Google Scholar 

  • Shelton, E., and Rice, M. E. (1959) Growth of normal peritoneal cells in diffusion chambers: a study in cell modulation. Am. J. Anat. 105: 281–303.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, D. M. and Ross, R. (1972) The neutrophilic leukocyte in wound repair: a study with antineutrophil serum. J. Clin. Invest. 51: 2009–2023.

    Article  PubMed  CAS  Google Scholar 

  • Squier, M. K., Sehnert, A. J., and Cohen, J. J. (1995) Apoptosis in leukocytes. J. Leukoc. Biol. 57:2–10.

    PubMed  CAS  Google Scholar 

  • Stenn, K. S. and Dvoretzky, I. (1979) Human serum and epithelial spread in tissue culture. Arch. Dermatol. Res. 246:3–15.

    Article  Google Scholar 

  • Vaage, J. and Lindblad, W. J. (1990) Production of collagen type I by mouse peritoneal macrophages. J. Leukoc. Biol. 48:274–280.

    PubMed  CAS  Google Scholar 

  • Woodley, D. T., Wynn, K. C., and O’Keefe, E. J. (1990) Type IV collagen and fibronectin enhance human keratinocyte thymidine incorporation. J. Invest. Dermatol. 94:139–143.

    Article  PubMed  CAS  Google Scholar 

  • Yager, D. R. and Nwomeh, B. C. (1999) The proteolytic environment of chronic wounds. Wound Rep. Reg. 7:433–441.

    Article  CAS  Google Scholar 

  • Yamada, K. M. and Clark, R. A. F. (1996) Provisional matrix. In: The Molecular and Cellular Biology of Wound Repair (Clark, R. A. F., ed.), Plenum, New York, pp. 51–94.

    Google Scholar 

  • Zhai Y., Vaage, J., and Lindblad, W. J. (1996) Expression of type I procollagen by cultured mouse peritoneal macrophages detected by in situ hybridization and immunohistochemical staining. Wound Rep. Reg. 4:185 (abstract).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lindblad, W.J. (2004). Stem Cells in Dermal Wound Healing. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics