Skip to main content

Morphogenesis of Prostate Cancer

  • Chapter
Stem Cells Handbook
  • 371 Accesses

Abstract

The three epithelial cell types of the prostatic epithelium—secretory luminal cells, basal cells, and neuroendocrine cells—arise from a common pluripotent stem cell in the basal layer through transit-amplifying cells that display intermediate phenotypes. The cellular diversity of the prostatic epithelium is maintained through a network of hormonal control, growth factors, and interactions with the basement membrane. Severe differentiation and proliferation disorders occur during the malignant transformation of the prostatic epithelium. In high-grade prostatic intraepithelial neoplasia (HGPIN), basal cells lose their proliferative capacity while luminal cells acquire increased proliferative activity. This process is associated with an abnormal expression of oncogenes (erbB-2, erbB-3, and c-met), the apoptosis-suppressing Bd-2, and the classic estrogen receptor a (ERa). Conversely, the ERβ which mediates chemopreventive effects of phytoestrogens is partially lost in HGPIN. Neoplastic progression to invasion is associated with loss of cell adhesion proteins and formation of new tumor-associated basement membranes, which provide a matrix for invasion. Common prostatic adenocarcinoma is composed of exocrine cell types expressing prostate-specific antigen and cytokeratins 8 and 18, as well as androgen receptors (Ars), making exocrine tumor cells androgen responsive even in androgen-insensitive stages of the disease. The only phenotype of common prostatic adenocarcinoma lacking the nuclear AR shows neuroendocrine differentiation. These endocrine tumor cells do not proliferate or undergo apoptosis, indicating that such tumor cells are androgen-insensitive and escape radiation therapy and other cytotoxic drugs. In addition, endocrine tumor cells secrete a number of endocrine growth factors that can maintain proliferative activity in exocrine tumor cells through a paracrine mechanism. After androgen deprivation therapy, prostate cancer cells acquire estrogen and progesterone receptors and may use the pertinent steroids to survive in an androgen-deprived milieu. This warrants clinical trials to test the efficacy of antiestrogens in the medical treatment of advanced prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berruti, A., Dogliotti, L., Mosca, A., et al. (2000) Circulating neuroendocrine markers in patients with prostate carcinoma. Cancer 88(11): 2590–2597.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H. (1996) Role of the basal cells in premalignant changes of the human prostate: a stem cell concept for the development of prostate cancer. Eur. Urol. 30:201–205.

    PubMed  CAS  Google Scholar 

  • Bonkhoff, H. (1998a) Analytical molecular pathology of epithelial-stromal interactions in the normal and neoplastic prostate. Anal. Quant. Cytol. Histol. 20(5):437–442.

    PubMed  CAS  Google Scholar 

  • Bonkhoff, H. (1998b) Neuroendocrine cells in benign and malignant prostate tissue: morphogenesis, proliferation, and androgen receptor status. Prostate Suppl. 8:18–22.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H. (2001) Neuroendocrine differentiation in human prostate cancer: morphogenesis, proliferation and androgen receptor status. Ann. Oncol. 12(Suppl. 2):141–144.

    Article  Google Scholar 

  • Bonkhoff, H. and Remberger, K. (1993) Widespread distribution of nuclear androgen receptors in the basal layer of the normal and hyperplastic human prostate. Virchows Archiv. A Pathol. Anat. 422: 35–38.

    Article  CAS  Google Scholar 

  • Bonkhoff, H. and Remberger, K. (1996) Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28(2):98–106.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H. and Remberger, K. (1998) Morphogenetic concepts of normal and abnormal growth of the human prostate. Virchows Arch. 433: 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Wernert, N., Dhom, G., and Remberger, K. (1991a) Basement membranes in fetal, adult normal, hyperplastic and neoplastic human prostate. Virchows Archiv. A Pathol. Anat. 418:375–381.

    Article  CAS  Google Scholar 

  • Bonkhoff, H., Wernert, N., Dhom, G., and Remberger, K. (1991b) Relation of endocrine-paracrine cells to cell proliferation in normal, hyperplastic and neoplastic human prostate. Prostate 18:91–98.

    Article  Google Scholar 

  • Bonkhoff, H., Wernert, N., Dhom, G., and Remberger, K. (1992) Distribution of basement membranes in primary and metastatic carcinomas of the prostate. Hum. Pathol. 23:934–939.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Stein, U., and Remberger, K. (1993a) Androgen receptor status in endocrine-paracrine cell types of the normal, hyperplastic, and neoplastic human prostate. Virchows Arch. A Pathol. Anat. Histopathol. 423(4):291–294.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Stein, U., and Remberger, K. (1993b) Differential expression of α-6 and α-2 very late antigen integrins in the normal, hyperplastic and neoplastic human prostate: simultaneous demonstration of cell surface receptors and their extracellular ligands. Hum. Pathol. 24: 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Stein, U., and Remberger, K. (1994a) Multidirectional differentiation in the normal, hyperplastic and neoplastic human prostate: simultaneous demonstration of cell specific epithelial markers. Hum. Pathol. 25:42–46.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Stein, U., and Remberger, K. (1994b) The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 24(3):114–118.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Stein, U., Welter, C., and Remberger, K. (1995a) Differential expression of the pS2 protein in the human prostate and prostate cancer: association with premalignant changes and neuroendocrine differentiation. Hum. Pathol. 26(8):824–828.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Stein, U., and Remberger, K. (1995b) Endocrine-paracrine cell types in the prostate and prostatic adenocarcinoma are postmitotic cells. Hum. Pathol. 26:167–170.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Stein, U., Aumüller, G., and Remberger, K. (1996) Differential expression of 5 α-reductase isoenzymes in the human prostate and prostatic carcinoma. Prostate 29:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Fixemer, T., and Remberger, K. (1998) Relation between Bd-2, cell proliferation and the androgen receptor status in prostate tissue and precursors of prostate cancer. Prostate 34(4):251–258.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Fixemer, T., Hunsicker, I., and Remberger, K. (1999a) Estrogen receptor expression in prostate cancer and premalignant prostatic lesions. Am. J. Pathol. 155(2):641–647.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Fixemer, T., Hunsicker, I., and Remberger, K. (1999b) Simultaneous detection of DNA fragmentation (apoptosis), cell proliferation (MIB-1), and phenotype markers in routinely processed tissue sections. Virchows Arch. 434(1):71–73.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Fixemer, T., Hunsicker, I., and Remberger, K. (2000) Estrogen receptor gene expression and its relation to the estrogeninducible HSP27 heat shock protein in hormone refractory prostate cancer. Prostate 45(1):36–41.

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff, H., Fixemer, T., Hunsicker, I., and Remberger, K. (2001) Progesterone receptor expression in human prostate cancer: correlation with tumor progression. Prostate 48:285–291.

    Article  PubMed  CAS  Google Scholar 

  • Bostwick, D. G. (1996) Prospective origins of prostate carcinoma: prostatic intraepithelial neoplasia and atypical adenomatous hyperplasia. Cancer 78(2):330–336.

    Article  PubMed  CAS  Google Scholar 

  • Chang, W. Y. and Prins, G. S. (1999) Estrogen receptor-beta: implications for the prostate gland. Prostate 40:115–124.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, L., Shan, A., Cheville, J. C., Qian, J., and Bostwick, D. G. (1998) Atypical adenomatous hyperplasia of the prostate: a premalignant lesion? Cancer Res. 58(3):389–391.

    PubMed  CAS  Google Scholar 

  • Culig, Z., Hobisch, A., Bartsch, G., and Klocker, H. (2000) Androgen receptor-an update of mechanisms of action in prostate cancer. Urol. Res. 28(4):211–219.

    Article  PubMed  CAS  Google Scholar 

  • Di Sant’ Agnese, P. A. (1992) Neuroendocrine differentiation in carcinoma of the prostate: diagnostic, prognostic and therapeutic implications. Cancer 70:254–268.

    Article  Google Scholar 

  • Di Sant’ Agnese, P. A. and Cockett, A. T. (1996) Neuroendocrine differentiation in prostatic malignancy. Cancer 78(2):357–361.

    Article  Google Scholar 

  • Fixemer, T., Remberger, K., and Bonkhoff, H. (2002) Apoptosis resostamce of neuroendocrine phenotypes in prostatic adenocarcinoma. Prostate 53:118–123.

    Article  PubMed  Google Scholar 

  • Fixemer, T., Bonkhoff, H., and Remberger, K. (2003) Differential expression of the estrogen receptor beta (ER() in human prostate tissue, premalignant changes, and in primary, metastatic and recurrent prostatic adenocarcinoma. Prostate 54:79–87.

    Article  PubMed  CAS  Google Scholar 

  • Fong, C., Sherwood, E., Sutkowski, D., et al. (1991) Reconstituted basement membrane promotes morphological and functional differentiation of primary human prostatic epithelial cells. Prostate 19: 221–235.

    Article  PubMed  CAS  Google Scholar 

  • Foster, C. S., Bostwick, D. G., Bonkhoff, H., et al. (2000) Cellular and molecular pathology of prostate cancer precursors. Scand. J. Urol. Nephrol. Suppl. 205:19–43.

    Article  PubMed  Google Scholar 

  • Griffiths, K. (2000) Estrogens and prostatic disease: International Prostate Health Council Study Group. Prostate 45:87–100.

    Article  PubMed  CAS  Google Scholar 

  • Knox, J. D., Cress, A. E., Clark, V., et al. (1994) Differential expression of extracellular matrix molecules and the alpha 6-integrins in the normal and neoplastic prostate. Am. J. Pathol. 145:167–174.

    PubMed  CAS  Google Scholar 

  • Koivisto, P., Kolmer, M., Visakorpi, T., and Kallioniemi, O. P. (1998) Androgen receptor gene and hormonal therapy failure of prostate cancer. Am. J. Pathol. 152:1–9.

    PubMed  CAS  Google Scholar 

  • Krege, J. H., Hodgin, J. B., Couse, J. F., et al. (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc. Natl. Acad. Sci. USA 95:15,677–15,682.

    Article  Google Scholar 

  • Montironi, R., Bostwick, D. G., Bonkhoff, H., et al. (1996) Origins of prostate cancer. Cancer 78:362–365.

    Article  PubMed  CAS  Google Scholar 

  • Myers, R. B. and Grizzle, W. E. (1996) Biomarker expression in prostatic intraepithelial neoplasia. Eur. Urol. 30:153–166.

    PubMed  CAS  Google Scholar 

  • Nagle, R. B., Brawer, M. K., Kittelson, J., and Clark, V. (1991) Phenotypic relationship of prostatic intraepithelial neoplasia to invasive prostatic carcinoma. Am. J. Pathol. 138:119–128.

    PubMed  CAS  Google Scholar 

  • Nagle, R. B., Hao, J., Knox, J. D., Dalkin, B. C., Clark, V., and Cress, A. E. (1995) Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am. J. Pathol. 146:1498–1507.

    PubMed  CAS  Google Scholar 

  • Nagle, R. B., Hao, J., Knox, J. D., Dalkin, B. C., Clark, V., and Cress, A. E. (1995) Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am. J. Pathol. 146:1498–1507.

    Google Scholar 

  • Pföhler, C., Fixemer, T., Jung, V., Dooley, S., Remberger, K., and Bonkhoff, H. (1998) In situ analysis of genes coding collagen IV al chain, laminin bl chain, and S-laminin in prostate tissue and prostate cancer: increased basement membrane gene expression in high grade and metastatic lesions. Prostate 36(3): 143–150.

    Article  PubMed  Google Scholar 

  • Qian, J., Jenkins, R. B., Bostwick, D. G. (1998) Determination of gene and chromosome dosage in prostatic intraepithelial neoplasia and carcinoma. Anal. Quant. Cytol. Histol. 20(5):373–380.

    PubMed  CAS  Google Scholar 

  • Steiner, M. S., Raghow, S., and Neubauer, B. L. (2001) Selective estrogen receptor modulators for the chemoprevention of prostate cancer. Urology 57(4 Suppl. 1):68–72.

    Article  PubMed  CAS  Google Scholar 

  • Wernert, N., Seitz, G., and Achtstätter, T. (1987) Immunohistochemical investigations of different cytokeratins and vimentin in the prostate from fetal period up to adulthood and in prostate carcinoma. Pathol. Res. Pract. 182:617–626.

    Article  PubMed  CAS  Google Scholar 

  • Xue, Y., Smedts, F., Debruyne, F. M., de la Rosette, J. J., and Schalken, J. A. (1998) Identification of intermediate cell types by keratin expression in the developing human prostate. Prostate 34(4):292–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonkhoff, H. (2004). Morphogenesis of Prostate Cancer. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_40

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics