Skip to main content

Mammary Epithelial Stem Cells

  • Chapter
Stem Cells Handbook
  • 381 Accesses

Abstract

A major interest in mammary stem cells relates to their potential role in the development of mammary cancer. The role of stem cells in development of premalignant and malignant lesions is exemplified by the study of the lesions, that develop in the mammary glands of mice infected with mouse mammary tumor virus. In addition, fragments or dispersed cells from the mammary glands of old or young mice possess equivalent ability to repopulate a cleared mammary fat pad through serial passages before reaching growth senescence. Limiting dilution experiments reveal lobule-limited and duct-limited progenitor cells in the cell mixtures, and both of these arise from a common mammary epithelial stem cell. Human mammary epithelial cells may be separated into myoepithelial (CALLA+) and luminal (MUC+). The luminal population is able to give rise to both populations, whereas the myoepithelial population only gives rise to myoepithelial cells. The luminal cell population contains pale- or light-staining cells that appear to have stem cell properties. By electron microscopy, five populations of mammary epithelial cells are identified: primitive small light cells (SLCs), undifferentiated large light cells (ULLCs), very differentiated large light cells, classic cytologically differentiated luminal cells, and the myoepithelial cell. The SLC represent only 3% of the total cells from puberty through postlactation, but these and ULLCs are absent from growth-senescent mammary cell transplants. Mammary epithelial cell progenitors have been tentatively identified by expression of stem cell antigen-1. Mammary cancer appears to arise from clonal expansion of a stem cell-derived cell population through progression from premalignant lesions. The reduction of breast cancer risk associated with early pregnancy appears to be related to an absence of a proliferative response of parous epithelium to environmental carcinogens, suggesting that parity produces a new cell population that is committed to the secretory fate, perhaps owing to expansion of a committed transit-amplifying population of cells. Little is known about the signaling that is responsible for the maintenance and control of the mammary stem cell population in the normal gland or in “immortalized” premalignant lesions, and this may be critical for preventing or controlling breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, I. and Watt, F. M. (2001) c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny.Curr. Biol. 11(8):558–568.

    Article  PubMed  CAS  Google Scholar 

  • Boulanger, C. A. and Smith, G. H. (2001) Reducing mammary cancer risk through premature stem cell senescence.Oncogene 20:2264–2272.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, R. and Smith, G. H. (2000) MMTV-induced mammary tumori-genesis: gene discovery, progression to malignancy and cellular pathways.Oncogene 19(8):992–1001.

    Article  PubMed  CAS  Google Scholar 

  • Chepko, G. and Smith, G. H. (1997) Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal.Tissue Cell 29(2):239–253.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, C. W. and Young, L. J. (1971) Influence of cell division on an aging process: life span of mouse mammary epithelium during serial propagation in vivo.Exp. Cell Res.65(l):27–32.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, C. W., DeOme, K. B. (1965) Growth of mouse mammary gland in vivo after monolayer culture.Science 149:634–636.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, C. DeOme, K., et al. (1968) The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study.Proc. Natl. Acad. Sci. USA 61:53–60.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, C. W., Young, L. J., et al. (1971) The influence of mammogenic hormones on serially transplanted mouse mammary gland.Exp. Gerontol. 6(1):95–101.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, C. W., Aidells, B. D., et al. (1975) Unlimited division potential of precancerous mouse mammary cells after spontaneous or carcinogen-induced transformation.Fed. Proc. 34(1):64–67.

    PubMed  CAS  Google Scholar 

  • Deng, G., Lu, Y., et al. (1996) Loss of heterozygosity in normal tissue adjacent to breast carcinomas.Science 274(5295):2057–2059.

    Article  PubMed  CAS  Google Scholar 

  • DeOme, K. B., et al. (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice.J. Natl. Cancer Inst. 78:751–757.

    Google Scholar 

  • DeOme, K. B., Miyamoto, M. J., et al. (1978a) Detection of inapparent nodule-transformed cells in the mammary gland tissues of virgin female BALB/cfC3H mice. Cancer Res. 38(7):2103–2111.

    PubMed  CAS  Google Scholar 

  • DeOme, K. B., Miyamoto, M. J., et al. (1978b) Effect of parity on recovery of inapparent nodule-transformed mammary gland cells in vivo. Cancer Res. 38(11 Pt. 2):4050–4053.

    Google Scholar 

  • Ehmann, U. K., Guzman, R. C., et al. (1987) Cultured mouse mammary epithelial cells: normal phenotype after implantation. J. Natl. Cancer Inst. 78(4):751–757.

    PubMed  CAS  Google Scholar 

  • Gudjonsson, T., Ronnov-Jessen, L., et al. (2002b) Normal and tumorderived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J. Cell Sci. 115(Pt. 1):39–50.

    PubMed  CAS  Google Scholar 

  • Gudjonnson, T., Villadsen, R., et al. (2002a) Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev. 16:693–706.

    Article  Google Scholar 

  • Hogan, D. L. and Smith, G. H. (1982) Unconventional application of standard light and electron immunocytochemical analysis to aldehyde-fixed, araldite-embedded tissues. J. Histochem. Cytochem. 30(12): 1301–1306.

    Article  PubMed  CAS  Google Scholar 

  • Kamiya, K., Gould, M. N., et al. (1998) Quantitative studies of ductal versus alveolar differentiation from rat mammary clonogens. Proc. Soc. Exp. Biol. Med. 219(3):217–225.

    PubMed  CAS  Google Scholar 

  • Kamiya, K., Higgins, P. D., et al. (1999) Kinetics of mammary clonogenic cells and rat mammary cancer induction by X-rays or fission neutrons. J. Radiat. Res. (Tokyo) 40(Suppl.):128–137.

    Article  Google Scholar 

  • Kittrell, F. S., Oborn, C. J., et al. (1992) Development of mammary preneoplasias in vivo from mouse mammary epithelial cell lines in vitro. Cancer Res. 52(7):1924–1932.

    PubMed  CAS  Google Scholar 

  • Kordon, E. C. and Smith, G. H. (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125 (10).1921–1930.

    PubMed  CAS  Google Scholar 

  • Kordon, E. C., McKnight, R. A., et al. (1995) Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev. Biol. 168(1):47–61.

    Article  PubMed  CAS  Google Scholar 

  • Lakhani, S. R., Slack, D. N., et al. (1996) Detection of allelic imbalance indicates that a proportion of mammary hyperplasia of usual type are clonal, neoplastic proliferations. Lab. Invest. 74(1):129–135.

    PubMed  CAS  Google Scholar 

  • Lakhani, S. R., Chaggar, R., et al. (1999) Genetic alterations in “normal” luminal and myoepithelial cells of the breast. J. Pathol. 189(4):496–503.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, W. R. (1958) Hormonal synergism in mammary growth. Proc. Roy. Soc. Lond. 149:303–325.

    Article  CAS  Google Scholar 

  • Medina, D. and Kittrell, F. S. (1993) Immortalization phenotype dissociated from the preneoplastic phenotype in mouse mammary epithelial outgrowths in vivo. Carcinogenesis 14(1):25–28.

    Article  PubMed  CAS  Google Scholar 

  • Medina, D., Obom, C. J., et al. (1986) Properties of mouse mammary epithelial cell lines characterized by in vivo transplantation and in vitro immunocytochemical methods.. J. Natl. Cancer Inst. 76(6):1143–1156.

    PubMed  CAS  Google Scholar 

  • Nicoll, C. S. and Tucker, H. A. (1965) Estimates of parenchymal, stromal, and lymph node deoxyribonucleic acid in mammary glands of C3H/ Crg1–2 mice. Life Sci. 4(9):993–1001.

    Article  PubMed  CAS  Google Scholar 

  • Pechoux, C., Gudjonsson, T., et al. (1999) Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev. Biol. 206(1):88–99.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, C. L., Larson, P. S., et al. (1997) Microsatellite alterations indicating monoclonality in atypical hyperplasias associated with breast cancer. Hum. Pathol. 28(2):214–219.

    Article  PubMed  CAS  Google Scholar 

  • Sheffield, L. G. and Welsch, C. W. (1988) Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: influence of mammotrophic hormones on growth of breast epithelia. Int. J. Cancer 41(5):713–719.

    Article  PubMed  CAS  Google Scholar 

  • Sivaraman, L., Stephens, L. C., et al. (1998) Hormone-induced refractoriness to mammary carcinogenesis in Wistar-Furth rats. Carcinogenesis 19(9):1573–1581.

    Article  PubMed  CAS  Google Scholar 

  • Sivaraman, L., Conneely, O. M., et al. (2001) p53 is a potential mediator of pregnancy and hormone-induced resistance to mammary carcinogenesis. Proc. Natl. Acad. Sci. USA 98(22):12,379–12,384.

    Article  Google Scholar 

  • Smalley, M. J., Titley, J., et al. (1999) Differentiation of separated mouse mammary luminal epithelial and myoepithelial cells cultured on EHS matrix analyzed by indirect immunofluorescence of cytoskeletal antigens. J. Histochem. Cytochem. 47(12).1513–1524.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. H. (1996) Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res. Treat. 39(1):21–31.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. H. and Boulanger, C. A. (2002) Mammary stem cell repertoire: new insights in aging epithelial populations Mech. Ageing Dev. 123: 1505–1519.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. H. and Medina, D. (1988) A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J. Cell Sci. 90(Pt 1):173–183.

    PubMed  Google Scholar 

  • Smith, G. H. and Vonderhaar, B. K. (1981) Functional differentiation in mouse mammary gland epithelium is attained through DNA synthesis, inconsequent of mitosis. Dev. Biol. 88(1):167–179.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. H., Vonderhaar, B. K., et al. (1984) Expression of pregnancyspecific genes in preneoplastic mouse mammary tissues from virgin mice. Cancer Res. 44(8):3426–3437.

    PubMed  CAS  Google Scholar 

  • Smith, G. H., Gallahan, D., et al. (1991) Long-term in vivo expression of genes introduced by retrovirus-mediated transfer into mammary epithelial cells. J. Virol. 65:6365–6370.

    PubMed  CAS  Google Scholar 

  • Smith, G. H., Strickland, P., and Daniel, C. W. (2002) Putative epithelial stem cell loss corresponds with mammary growth senescence. Cell Tissue Res. 310:313–320.

    Article  PubMed  Google Scholar 

  • Spradling, A., Drummond-Barbosa, D., et al. (2001) Stem cells find their niche. Nature 414(6859):98–104.

    Article  PubMed  CAS  Google Scholar 

  • Stingl, J., Eaves, C. J., et al. (1998) Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63(4):201–213.

    Article  PubMed  CAS  Google Scholar 

  • Stingl, J., Eaves, C. J., et al. (2001) Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res. Treat. 67:93–109.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, Y. C., Lu, Y., Nichols, P. W., Zlotnikov, G., Jones, P. A., and Smith, H. (1996) Contiguous patches of normal human epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res. 56:402–404.

    PubMed  CAS  Google Scholar 

  • Vonderhaar, B. K. and Smith, G. H. (1982) Dissociation of cytological and functional differential in virgin mouse mammary gland during inhibition of DNA synthesis. J. Cell Sci. 53:97–114.

    PubMed  CAS  Google Scholar 

  • Wagner, K.-U., Boulanger, C. A., Henry, M. D., Sagagias, M., Hennighausen, L., and Smith, G. H. (2002) An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development 129:1377–1386.

    PubMed  CAS  Google Scholar 

  • Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M., and Goodell, M. A. (2002) Sca-1pos cells in the mouse mammary gland represent an enriched progenitor cell population. Dev. Biol. 245:42–56.

    Article  PubMed  CAS  Google Scholar 

  • Welsch, C. W., O’Connor, D. H., et al. (1987) Normal but not carcinomatous primary rat mammary epithelium: readily transplanted to and maintained in the athymic nude mouse. J. Natl. Cancer Inst. 78(3): 557–565.

    PubMed  CAS  Google Scholar 

  • Williams, J. M. and Daniel, C. W. (1983) Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol. 97(2):274–290.

    Article  PubMed  CAS  Google Scholar 

  • Young, L. J., Medina, D., et al. (1971) The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland. Exp. Gerontol. 6(1):49–56.

    Article  PubMed  CAS  Google Scholar 

  • Zeps, N., Bentel, J. M., et al. (1998) Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation 62(5):221–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, G.H. (2004). Mammary Epithelial Stem Cells. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_39

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics