Skip to main content

Biology of Human Liver Stem Cells

  • Chapter
Stem Cells Handbook

Abstract

Although until recently the existence of the liver stem cell was questioned, now the race is on to obtain and characterize the human liver stem cell for clinical therapeutic use for gene replacement, liver repopulation, drug development, and bioartificial liver support systems. Experimental models have identified cells at different stages in the hepatocyte lineage, including mature hepatocytes, bipotential ductular cells (so-called oval cells), as well as blood-derived periductular cells, as possible liver progenitor cells (LPCs). In the human liver, many cholestatic diseases, associated with loss of bile ducts and proliferation of “ductular proliferative cells” with an appearance similar to oval cells, are seen. The origin of these cells is not clear; possibilities considered are canals of Hering, mature bile duct cells, metaplasia of hepatocytes, and blood-borne stem cells that locate in the liver. Specific markers for these cells have not been identified, but OV-6, a marker identified by a monoclonal antibody to a cytokeratin in rat oval cells and bile ducts, has been shown to identify a presumptive human LPC. Other markers seen on human oval cells are CD34 and c-kit, markers shared by hematopoietic stem cells, and indeed, after bone marrow transplantation, donor cells can be found in the recipient liver, albeit rarely. Cells from injured or normal human liver expressing c-kit have been selected, cultured in vitro, and shown to express biliary phenotype; cells expressing CD34 have been shown to give rise to hepatic epithelial cell phenotype; and cells expressing endothelial phenotype have also been identified. In addition, a CD34-, c-kit - mesenchymal cell from the bone marrow (so-called multipotential adult progenitor cell) can differentiate into hepatocytes. Human fetal hepatoblasts may also serve as a source for LPCs. A number of different factors may control differentiation of liver precursor cells, including Jagged/Notch signaling. Much further work is required before the potential of the therapeutic use of liver stem cells can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alison, M. (1998) Hepatic stem cells. J. Hepatol. 29:676–682.

    PubMed  CAS  Google Scholar 

  • Alison, M., Golding, M., Sarraf, C., Edwards, R., and Lalani, E. (1996) Liver damage in the rat induces hepatocyte stem cells from biliary epithelial cells. Gastroenterology 110:1182–1190.

    PubMed  CAS  Google Scholar 

  • Alison, M., Poulsom, R., Jeffery, R., et al. (2000) Hepatocytes from nonhepatic adult stem cells. Nature 406:257.

    PubMed  CAS  Google Scholar 

  • Anderson, D. J., Gage, F. H., and Weissman, I. L. (2001) Can stem cells cross lineage boundaries? Nat. Med. 7:393–395.

    PubMed  CAS  Google Scholar 

  • Andrews, R. G., Singer, J. W., and Bernstein, I. D. (1989) Precursors of colony forming cells by expression of the CD33 and CD34 antigens and light scattering properties. J. Exp. Med. 169:1721–1731.

    PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas, S., Rand, M. D., and Lake, R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science 284: 770–776.

    PubMed  CAS  Google Scholar 

  • Avital, I., Inderbitzin, D., Aoki, T., et al. (2001) Isolation, characterisation and transplantation of bone marrow derived hepatocyte stem cells. Biochem. Biophys. Res. Commun. 288:156–164.

    PubMed  CAS  Google Scholar 

  • Baumann, U., Crosby, H. A., Ramani, P., Kelly, D. A., and Strain, A. J. (1999) Expression of the stem cell factor receptor c-kit in normal and diseased pediatric liver: identification of a human hepatic progenitor cell? Hepatology 30:112–117.

    PubMed  CAS  Google Scholar 

  • Bianco, P., Riminucci, M., Gronthos, S., and Robey, P. G. (2001) Bone marrow stromal stem cells: nature, biology and potential applications. Stem Cells 19:180–192.

    PubMed  CAS  Google Scholar 

  • Bisgaard, H. C., Parmelee, D. C., Dunsford, H. A., Sechi, S., and Thorgeisson, S. S. (1993) Keratin 14 protein in cultured nonparenchymal rat hepatic epithelial cells: characterization of keratin 14 and keratin 19 as antigens for the commonly used mouse monoclonal antibody OV-6. Mol. Carcinogen 7:60–66.

    CAS  Google Scholar 

  • Bissell, D. M., Arenson, D. M., Maher, J. J., and Roll, F. J. (1987) Support of cultured hepatocytes by a laminin-rich gel: evidence for a functionally significant subendothelial matrix in normal rat liver. J. Clin. Invest. 79:801–812.

    PubMed  CAS  Google Scholar 

  • Blanc, P., Etienne, H., Daujat, M., et al. (1992) Mitotic responsiveness of cultured adult human hepatocytes to epidermal growth factor, trans-forming growth factor alpha and human serum. Gastroenterology 102: 1340–1350.

    PubMed  CAS  Google Scholar 

  • Bucher, N. L. R. and Farmer, S. (1998) Liver regeneration after partial hepatectomy: genes and metabolism. In: Liver Growth and Repair (Strain, A. J. and Diehl, A. M., eds.), Chapman & Hall, London, UK, pp. 3–27.

    Google Scholar 

  • Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., and Keller, G. (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732.

    PubMed  CAS  Google Scholar 

  • Crosbie, O. M., Reynolds, M., McEntee, G., Traynor, O., Heggarty, L. E., and O’Farrelly, C. (1999) In vitro evidence for the presence of hematopoietic stem cells in the adult human liver. Hepatology 29: 1193–1198.

    PubMed  CAS  Google Scholar 

  • Crosby, H. A., Hubscher, S., Joplin, R., Kelly, D. A., and Strain, A. J. (1998a) Immunolocalisation of OV-6, a putative stem cell marker in human fetal and diseased liver. Hepatology 28:980–985.

    PubMed  CAS  Google Scholar 

  • Crosby, H. A., Hubscher, S., Fabris, L., et al. (1998b) Immunolocalisation of putative human liver progenitor cells in liver of patients with end-stage primary biliary cirrhosis and sclerosing cholangitis using the monoclonal antibody OV-6. Am. J. Pathol. 152:771–779.

    PubMed  CAS  Google Scholar 

  • Crosby, H. A., Kelly, D. A., and Strain, A. J. (2001) Use of C-kit or CD34 to isolate putative stem cells from human liver which can differentiate into biliary epithelial cells Gastroenterology 120: 534–544.

    PubMed  CAS  Google Scholar 

  • Dabeva, M. A. and Shafritz, D. A. (1993) Activation, proliferation and differentiation of progenitor cells into hepatocytes in the D-galac-tosamine model of liver regeneration. Am. J. Pathol. 143:1606–1620.

    PubMed  CAS  Google Scholar 

  • De Vos, R. and Desmet, V. (1992) Ultrastructural characteristics of novel epithelial cell types identified in human pathologic liver specimens with chronic ductular reaction. Am. J. Pathol. 140:1441–1450.

    PubMed  CAS  Google Scholar 

  • Duncan, S. A. and Watt, A. J. (2001) BMPs on the road to hepatogenesis. Genes Dev. 15:1879–1884.

    PubMed  CAS  Google Scholar 

  • Dunsford, H. A. and Sell, S. (1989) Production of monoclonal antibodies to preneoplastic liver cell populations induced by chemical carcinogens in rats and to transplantable Morris hepatomas. Cancer Res. 49: 4887–4893.

    PubMed  CAS  Google Scholar 

  • Fabris, L., Strazzabosco, M., Crosby, H. A., et al. (2000) Characterization and isolation of ductular cells co-expressing neural cell adhesion molecule and Bcl-2 from primary cholangiopathies and ductal plate malformations. Am. J. Pathol. 156:1599–1612.

    PubMed  CAS  Google Scholar 

  • Farber, E. (1956) Similariies in the sequence of early histological changes induced in the livers by ethionine, 2-acetylaminofluorene and 3-methy14-dimethylaminoazobenzene. Cancer Res. 16:142–148.

    PubMed  CAS  Google Scholar 

  • Fausto, N. (2001) Liver regeneration: from laboratory to clinic. Liver Transplant. 7:835–844.

    CAS  Google Scholar 

  • Fausto, N., Lemire, J. M., and Shiojiri, N. (1993) Cell lineages in hepatic development and the identification of progenitor cells in normal and injured liver. Proc. Soc. Exp. Biol. Med. 204:237–241.

    PubMed  CAS  Google Scholar 

  • Fox, I. J., Chowdhury, J. R., Kaufman, S. S., etal. (1998) Treatment of the Crigler-Najjar Syndrome Type 1 with hepatocyte transplantation. N. Engl. J. Med. 338:1422–1426.

    PubMed  CAS  Google Scholar 

  • Fujio, K., Evarts, R. P., Hu, Z., Marsden, E. R., and Thorgeirsson, S. S. (1994) Expression of stem cell factor and it’s receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab. Invest. 70: 511–516.

    PubMed  CAS  Google Scholar 

  • Gehling, U. M., Ergun, S., Schumacher, U., et al. (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95:3106–3112.

    PubMed  CAS  Google Scholar 

  • Gerber, M. A., Thung, S. N., Shen, S., Stromeyer, F. W., and Ishak, K. G. (1983) Phenotypic characterization of hepatic proliferation: anti-genic expression by proliferating epithelial cells in fetal liver, massive hepatic necrosis, and nodular transformation of the liver. Am. J. Pathol. 110:70–74.

    PubMed  CAS  Google Scholar 

  • Gerber, M. A., Thung, S. N., Gerlach, J., et al. (1995) Electron microscopic studies on a hepatocyte culture model with woven multicompartment capillary systems. Hepatology 22:546.

    Google Scholar 

  • Germain, L., Noel, M., Gourdeau, H., and Marceau, N. (1988) Promotion of growth and differentiation of rat ductular oval cells in primary culture. Cancer Res. 48:368–378.

    PubMed  CAS  Google Scholar 

  • Golding, M., Sarraf C. E., Lalani, E., et al. (1995) Oval cell differentiation into hepatocytes in the acetylaminofluorene-treated regenerating rat liver. Hepatology 22:1243–1253.

    PubMed  CAS  Google Scholar 

  • Grisham, J. W. (1962) A morphologic study of DNA synthesis and cell proliferation in the regenerating liver. Cancer Res. 22:842–849.

    PubMed  CAS  Google Scholar 

  • Grisham, J. W. and Thorgeirsson, S. S. (1997) Liver stem cells. In: Stem Cells (Potten, C. S., ed.), Academic, London, UK, pp. 233–282.

    Google Scholar 

  • Guillouzo, A., Fabrice, M., Langouet, S., Maheo, K., and Maryvonne, R. (1997) Use of hepatocyte cultures for the study of hepatotoxic compounds. J. Hepatol. 26(Suppl.):73–80.

    PubMed  CAS  Google Scholar 

  • Haruna, Y., Saito, K., Spaulding, S., Nalesnik, M. A., and Gerber, M. A. (1996) Identification of bipotential progenitor cells in human liver development. Hepatology 23:476–481.

    PubMed  CAS  Google Scholar 

  • Hassan, H. T. and Zander, A. (1996) Stem cell factor as a survival and growth factor in normal and malignant hematopoiesis. Acta Haematol. 95:257–262.

    PubMed  CAS  Google Scholar 

  • Hillebrands, J., Klatter, F. A., van Dijk, W., and Rozing, J. (2002) Bone marrow does not contribute to endothelial cell replacement in transplant atherosclerosis. Nat. Med. 8:194–195.

    PubMed  Google Scholar 

  • Hsia, C. C., Evarts, R. P., Nakatsukasa, H., Marsden, E. R., and Thorgeirsson, S. S. (1992) Occurrence of oval-type cells in hepatitis B virus-associated human hepatocarcinogenesis. Hepatology 16: 1327–1333.

    PubMed  CAS  Google Scholar 

  • Joplin, R., Hishida, T., Tsubouchi, H., et al. (1992) Human intra-hepatic biliary epithelial cells proliferate in vitro in response to human hepatocyte growth factor. J. Clin. Invest. 90:1284–1289.

    PubMed  CAS  Google Scholar 

  • Kamiya, A., Kinoshita, T., Ito, Y., et al. (1999) Fetal liver development requires a paracrine action of oncostatinM through the gp130 signal transducer. EMBO J. 1999; 18:2127–2136

    Google Scholar 

  • Karanu, F. N., Murdoch, B., Gallacher, L., et al. (2001a) The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med. 192:1365–1372.

    Google Scholar 

  • Karanu, F. N., Murdoch, B., Miyabayashi, T., et al. (2001b) Human homologues of Deltal and Delta 4 function as itogenic regulators of primitive human hematopoietic cells. Blood 97:1960–1967.

    PubMed  CAS  Google Scholar 

  • Korbling, M., Katz, R., Khanna, A., et al. (2002) Hepatocytes and epithelial cells of donor origin in recipients of peripheral blood stem cells. N. Engl. J. Med. 346:738–746.

    PubMed  Google Scholar 

  • Krebs, L. T., Xue, Y., Norton, C. R., et al. (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14:1343–1352.

    PubMed  CAS  Google Scholar 

  • Kubota, H. and Reid, L. M. (2000) Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatability complex class I antigen. Proc. Natl. Acad. Sci. 97:12,132–12,137.

    Google Scholar 

  • Lagasse, E., Connors, H., Al-Dhalimy, M., et al. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6:1229–1234.

    PubMed  CAS  Google Scholar 

  • Lalor, P. F. and Adams, D. H. (1999) Adhesion of lymphocytes to hepatic endothelium. Mol. Pathol. 52:214–219.

    PubMed  CAS  Google Scholar 

  • Lenzi, R., Liu, M. H., Tarsetti, F., et al. (1992) Histogenesis of bile ductlike cells proliferating during ethionine carcinogenesis: evidence for a biliary epithelial nature of oval cells. Lab. Invest. 66: 390–402.

    PubMed  CAS  Google Scholar 

  • Lowes, K. N., Brennan, B. A., Yoeh, G. C., and Olynyk, J. K. (1999) Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am. J. Pathol. 154:537–541.

    PubMed  CAS  Google Scholar 

  • Malhi, H., Irani, A. N., Gagandeep, S., and Gupta, S. (2002) Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J. Cell Sci. 115:2679–2688.

    PubMed  CAS  Google Scholar 

  • Mallet, V. O., Mitchell, C., Mezey, E., et al. (2002) Bone marrow transplantation in mice leads to a minor population of hepatocytes that can be selectively amplified in vivo. Hepatology 35:799–804.

    PubMed  Google Scholar 

  • Masuko, K., Rubin, E., and Popper, H. (1964) Proliferation of bile ducts in cirrhosis. Arch. Pathol. 78:421–431.

    PubMed  CAS  Google Scholar 

  • Matsumoto, K., Fuji, H., Michalopoulos, G., Fung, J. J., and Demetris, A. J. (1994) Human biliary epithelial cells secrete and respond to Interleukin-6, HGF and EGF promote DNA synthesis in vitro. Hepatology 20:376–382.

    PubMed  CAS  Google Scholar 

  • McCright, B., Lozier, J., and Gridley, T. (2002) A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag 1 haploinsufficiency. Development 129:1075–1082.

    PubMed  CAS  Google Scholar 

  • Morshead, C. M., Benveniste, P., Iscove, N. N., Van der Koov, D. (2002) Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat. Med. 8: 268–273.

    PubMed  CAS  Google Scholar 

  • Mumm, J. S. and Kopan, R. (2000) Notch signalling from the outside in. Dev. Biol. 228:151–165.

    PubMed  CAS  Google Scholar 

  • Nijjar, S. S., Crosby, H. A., Wallace, L., Hubscher, S. G., and Strain, A. J. (2001) Notch receptor expression in adult human liver: a possible role in normal bile duct formation and endothelial cell function. Hepatology 34:1184–1192.

    PubMed  CAS  Google Scholar 

  • Nijjar, S. S., Wallace, L., Crosby, H. A., Hubscher, S. G., and Strain, A. J. (2002) Altered notch ligand expression in human liver disease: further evidence for a role of the Notch signaling pathway in hepatic neovascularisation and biliary ductular defects. Am. J. Pathol. 160: 1695–1703.

    PubMed  CAS  Google Scholar 

  • Oda, T., Elkahloun, A. G., Pike, B. L., et al. (1999) Mutations in the human Jaggedl gene are responsible for Alagille syndrome. Nat. Genet. 16:235–242.

    Google Scholar 

  • Omori, N., Omori, M., Evarts, R., et al. (1997) Partial cloning of rat CD34 cDNA and expression during stem cell-dependent liver regeneration in the rat. Hepatology 26:720–727.

    PubMed  CAS  Google Scholar 

  • Paku, S., Schnur, J., Nagy, P., and Thorgeirsson, S. S. (2001) Origin and structural evolution of the early proliferating oval cells in rat liver. Am. J. Pathol. 158:1313–1323.

    PubMed  CAS  Google Scholar 

  • Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170.

    PubMed  CAS  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  • Popper, H. (1990) The relation of mesenchymal cell products to heaptic epithelial systems. Prog. Liver Dis. 9:27–38.

    PubMed  CAS  Google Scholar 

  • Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., and Verfaillie, C. M. (2001) Purification and ex vivo expansion of postnatal human bone marrow mesodermal progenitor cells. Blood 98:2615–2625.

    PubMed  CAS  Google Scholar 

  • Reyes, M., Dudek, A., Jahagirdar, B., Koodie, L., Marker, P. H., and Verfaillie, C. M. (2002) Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest. 109:337–346.

    PubMed  CAS  Google Scholar 

  • Rogler, L. E. (1997) Selective bipotentila differentiation of mouse embryonic hepatoblasts in vitro. Am. J. Pathol. 150:591–602

    PubMed  CAS  Google Scholar 

  • Roskams, T., van den Oord, J. J., De Vos, R., and Desmet, V. J. (1990) Neuroendocrine features of reactive bile ducts in cholestatic liver disease. Am. J. Pathol. 137:1019–1025.

    PubMed  CAS  Google Scholar 

  • Roskams, T., Campos, R. V, Drucker, D. J., and Desmet, V. (1993) Reactive human bile ducts express parathyroid hormone-related peptide. Histopathology 23:11–19.

    PubMed  CAS  Google Scholar 

  • Roskams, T., De Vos, R., Van Eyken, P., et al. (1998a) Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man. J. Hepatol. 29:455–463.

    PubMed  CAS  Google Scholar 

  • Roskams, T, Van Eyken, P., and Desmet, V. (1998b) Human liver growth and development. In: Liver Growth and Repair (Strain, A. J. and Diehl, A. M., eds.), Chapman and Hall, London, pp.541–557.

    Google Scholar 

  • Ruck, P., Xiao, J., and Kaiserling, E. (1996) Small epithelial cells and the histogenesis of hepatoblastoma: electron microscopic, immunoelectron microscopic, and immunohistochemical findings. Am. J. Pathol. 148:321–329.

    PubMed  CAS  Google Scholar 

  • Schwartz, R. E., Reyes, M., Koodie, L., et al. (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. 109:1291–1302.

    PubMed  CAS  Google Scholar 

  • Sell, S. (1990) Is there a liver stem cell? Cancer Res. 50:3811–3815.

    PubMed  CAS  Google Scholar 

  • Sell, S. (1998) Comparison of liver progenitor cells in human atypical ductular reactions with those seen in models of liver injury. Hepatology 27:317–332.

    PubMed  CAS  Google Scholar 

  • Sell S. (2001) Heterogeneity and plasticity of hepatocyte lineages. Hepatology 33:738–750.

    PubMed  CAS  Google Scholar 

  • Simpson, G. E. C. and Finkh, E. S. (1963) Pattern of regeneration of rat liver after repeated partial hepatectomies. J. Pathol. Bacteriol. 86: 361–370.

    PubMed  CAS  Google Scholar 

  • Sirica, A. E., Mathis, G. A., Sano, N., and Elmore, L. (1990) Isolation, culture and transplantation of intrahepatic biliary epithelial cells and oval cells. Pathobiology 58:44–64.

    PubMed  CAS  Google Scholar 

  • Sirica, A. E. (1995) Ductular hepatocytes. Histol. Histopathol. 10: 433–456.

    PubMed  CAS  Google Scholar 

  • Slott, P. A., Liu, M. J., and Tavaloni, N. (1990) Origin, pattern and mechanism of bile duct proliferation following biliary obstruction. Gastroenterology 99:466–477.

    PubMed  CAS  Google Scholar 

  • Spinner, N. B., Colliton, R. P., Crosnier, C., Krantz, I. D., Hadchouel, M., and Meunier-Rotival, M. (2001) Jagged 1 mutations in alagille syndrome. Hum. Mutat. 17:18–33.

    PubMed  CAS  Google Scholar 

  • Strain, A. J. and Neuberger, J. M. (2002) A bioartificial liver: state of the art. Science 295:1005–1009.

    PubMed  CAS  Google Scholar 

  • Strain, A. J., Hill, D. J., Swenne, I., and Milner, R. D. G. (1987) The regulation of DNA synthesis in human fetal hepatocytes by placental lactogen growth hormone and insulin-like growth factor I/somatomedin-C. J. Cell. Physiol. 132:33–40.

    PubMed  CAS  Google Scholar 

  • Strain, A. J., Ismail, T., Tsubouchi, H., et al. (1991) Native and recombinant human hepatocyte growth factors are highly potent promoters of DNA synthesis in both human and rat hepatocytes. J. Clin. Invest. 87: 1853–1857.

    PubMed  CAS  Google Scholar 

  • Strom, S. C., Chowdhury, J. R., and Fox, I. J. (1999) Hepatocyte transplantation for the treatment of human liver disease. Semin. Liver Dis. 19:39–48.

    PubMed  CAS  Google Scholar 

  • Suzuki, A., Zheng, Y., Kondo, R., et al. (2000) Flow cytometric separation and enrichment of hepatic progenitor cells in developing mouse liver. Hepatology 32:1230–1239.

    PubMed  CAS  Google Scholar 

  • Taniguchi, T., Toyoshima, T., Fukao, K., and Nakuchi, H. (1996) Presence of hematopoietic stem cells in the adult liver. Nat. Med. 2:198–203.

    PubMed  CAS  Google Scholar 

  • Terada, N., Hamazaki, T., Oka, M., et al. (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416: 542–545.

    PubMed  CAS  Google Scholar 

  • Theise, N. D., Saxena, R., Portmann, B. C., et al. (1999) The canals of Hering and hepatic stem cells in humans. Hepatology 30:1425–1433.

    PubMed  CAS  Google Scholar 

  • Theise, N., Badve, S., Saxena, R., et al. (2000a) Derivation of hepatocytes from bone marrow cells in mice after radiation induced myeloablation. Hepatology 31:235–240.

    PubMed  CAS  Google Scholar 

  • Theise, N. D., Nimmakayalu, M., Gardner, R., et al. (2000b) Liver from bone marrow in humans. Hepatology 32:11–16.

    PubMed  CAS  Google Scholar 

  • Thorgeirsson, S. S. (1996) Hepatic stem cells in liver regeneration. FASEB J. 10:1249–1256.

    PubMed  CAS  Google Scholar 

  • Thung, S. N. (1990) The development of proliferating ductular structures in liver disease. Arch. Pathol. Lab. Med. 114:407–411.

    PubMed  CAS  Google Scholar 

  • Van den Heuvel, M. C., Sloof, J. H., Visser, L., et al. (2001) Expression of anti-OV6 antiboby and anti-NCAM antibody along the biliary line of normal and diseased human livers. Hepatology 33:1387–1393.

    Google Scholar 

  • Vandersteenhoven, A. M., Burchette, J., Michalopoulos, G. (1990) Characterization of ductulat hepatocytes in end-stage cirrhosis. Arch. Pathol. Lab. Med. 114:403— 406.

    PubMed  CAS  Google Scholar 

  • Van Eyken, P., Sciot, R., Paterson, A., Callea, F., Kew, M. C., and Desmet, V. J. (1988) Cytokeratin expression in hepatocellular carcinoma. Hum. Pathol. 19:562–568.

    PubMed  CAS  Google Scholar 

  • Van Eyken, P., Sciot, R., Calea, F., and Desmet, V. J. (1989) A cytokeratin immonohistochemical study of focal nodular hyperplasia of the liver: further evidence that ductular metaplasia of hepatocytes contributes to ductular proliferation. Liver 9:372–377.

    PubMed  Google Scholar 

  • Varnum-Finney, B., Xu, L., Brashem-Stein, C., et al. (2002) Pluripotent cytokine dependent hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 6:1278–1281.

    Google Scholar 

  • Wang, X., et al. (2003) Cell fusion is the principal source of bone marrowderived hepatocytes. Nature 422:897–901.

    PubMed  CAS  Google Scholar 

  • Watt, F. M. and Hogan, B. L. (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430.

    PubMed  CAS  Google Scholar 

  • Ying, Q., Nichols, J., Evans, E. P., and Smith, A. G. (2002) Changing potency by spontaneous fusion. Nature 416:545–548.

    PubMed  CAS  Google Scholar 

  • Yokomuro, S., Tsuji, H., Lunz, J. G., et al. (2000) Growth control of human biliary epithelial cells by interleukin-6, hepatocyte growth factor, transforming growth factor betal, and activin. Hepatology 32: 26–35.

    PubMed  CAS  Google Scholar 

  • Zaret, K. S. (2000) Liver specification and early morphogenesis. Mech. Dev. 92:83–88.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strain, A.J., Nijjar, S.S., Crosby, H.A. (2004). Biology of Human Liver Stem Cells. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_35

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics