Skip to main content

Normal Liver Progenitor Cells in Culture

  • Chapter
Stem Cells Handbook

Abstract

The stem cell nature of normal liver progenitor cells (LPCs) is addressed by studies of normal LPCs in culture. Several questions are addressed such as: What are the patterns of proliferation, lineage commitment, differentiated gene expression, plasticity, and responses to epigenetic and environmental signals? Early studies were interpreted to show that propagable LPCs were derived from dedifferentiated or retrodifferentiated mature liver cells. The recognition that oval cells seen in hepatocarcinogenesis models in rats had characteristics of LPCs suggested that these cells might actually be LPCs or descendants of LPCs. A comparison of more than 30 publications over three decades reporting explants; clonal lines; fresh isolates or strains of cells from noncarcinogen-exposed normal mouse, rat, pig, and human liver; or embryonic tissues indicates that small, immature LPCs, which have the plasticity to mature into ductal cells or hepatocytes, can be obtained from embryonic and fetal tissues, as well as adult liver. A wide variation in the methods of isolation, culture media, feeder layers, growth factors, and substrata used to study putative LPCs in vitro makes comparisons of results from different laboratories difficult. Although the liver is endodermally derived, putative coexpression of primitive hematopoietic and hepatocytic markers is consistent with LPCs in hepatic as well as in blood-forming tissues. In addition to bile duct and hepatocytic differentiation, LPCs have been reported to express markers of pancreatic and endothelial cells in vitro, and to differentiate into bile ducts, hepatocytes, pancreatic islet and acinar epithelial cells, intestinal epithelial cells, and cardiac myocytes after transplantation in vivo. Culture of LPCs on STO embryonic fibroblast feeder layers maintains primitive phenotypes, but requirements of feeder layers appear not to be absolute and are poorly understood. Emerging trends suggest HGF, Flt-3 ligand, SCF, EGF, and DMSO promote hepatocyte differentiation of LPCs, and that transforming growth factorβ, Na+-butyrate, and culture on Matrigel promote biliary differentiation; however, exceptions have been reported. Critical studies on proliferation kinetics have not convincingly shown self-renewal and asymmetric cell division expected of tissue stem cells, but long-term doublings (up to 150 generations) without spontaneous transformation suggest considerable growth potential. The source of LPCs in normal liver remains unknown and controversial. LPCs may be derived from a liver tissue progenitor cell located in the duct or periductal tissue; from retrodifferentiation of more mature hepatocytes; from bone marrow-derived cells, which circulate through the liver; or from bone marrow remnants of intrahepatic embryonic development. Given the lack of well-defined markers for LPCs, incomplete knowledge of their growth characteristics and regulation signals, their apparent heterogeneity, their apparent plasticity, the possibilities of transdifferentiation or retrodifferentiation of other cells to LPCs, or fusion of LPCs with other cells, as well as their potential for tumorigenesis, much research needs to be conducted to understand what LPCs are and how to use them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelev, G. I. (1968) Production of embryonal serum alpha-globulin by hepatomas. Review of experimental and clinical data. Cancer Res. 28:1344–1350.

    PubMed  CAS  Google Scholar 

  • Alison, M. R., Poulsom, R., Jeffery, R., et al. (2000) Hepatocytes from non-hepatic adult stem cells. Nature 406:257.

    Article  PubMed  CAS  Google Scholar 

  • Avital, I., Inderbitzin, D., Aoki, T., et al. (2001) Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells. Biochem. Biophys. Res. Commun. 288:156–164.

    Article  PubMed  CAS  Google Scholar 

  • Becker, F. F., and Sell, S. (1974) Early elevation of alphafetoprotein in N-2-fluorenylacetamide carcinogenesis. Cancer Res. 34:2489–2494.

    PubMed  CAS  Google Scholar 

  • Bissell, D. M. (1976) Study of hepatocyte function in cell culture. Prog. Liver Dis. 5:69–82.

    PubMed  CAS  Google Scholar 

  • Block, G. D., Locker, J., Bowen, W. C., et al. (1996) Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J. Cell Biol. 132:1133–1149.

    Article  PubMed  CAS  Google Scholar 

  • Blouin, M. J., Lamy, I., Loranger, A., et al. (1995) Specialization switch in differentiating embryonic rat liver progenitor cells in response to sodium butyrate. Exp. Cell Res. 217:22–30.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, D. A., Koch, K. S., and Leffert, H. L. (1989) Transforming growth factor alpha (TGF-α) initiates proto- oncogene c-jun expression and a mitogenic program in primary cultures of adult rat hepatocytes. DNA J. Cell. Mol. Biol. 8:279–285.

    Article  CAS  Google Scholar 

  • Byrne, J. A., Simonsson, S., and Gurdon, J. B. (2002) From intestine to muscle: nuclear reprogramming through defective cloned embryos. Proc. Natl. Acad. Sci. USA 99:6059–6063.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, K. H., McWhir, J., Ritchie, W. A., and Wilmut, I. (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66.

    Article  PubMed  CAS  Google Scholar 

  • Chessebeuf, M., Olsson, A., Bournot, P., et al. (1974) Long term cell culture of rat liver epithelial cells retaining some hepatic functions. Biochimie 56:1365–1379.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, W. B., Wennerberg, A. E., Smith, G. J., and Grisham, J. W. (1993) Regulation of the differentiation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. Am. J. Pathol. 142:1373–1382.

    PubMed  CAS  Google Scholar 

  • Coleman, W. B., Smith, G. J., and Grisham, J. W. (1994) Development of dexamethasone-inducible tyrosine aminotransferase activity in WB-F344 rat liver epithelial stemlike cells cultured in the presence of sodium butyrate. J. Cell Physiol. 161:463–469.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, W. B., McCullough, K. D., Esch, G. L., et al. (1997) Evaluation of the differentiation potential of WB-F344 rat liver epithelial stemlike cells in vivo: differentiation to hepatocytes after transplantation into dipeptidylpeptidase-IV-deficient rat liver. Am. J. Pathol. 151:353–359.

    PubMed  CAS  Google Scholar 

  • Coon, H. (1969) Clonal culture of differentiated cells from mammals: rat liver cell culture. Carnegie Inst. Washington Year Book 67:419–421.

    Google Scholar 

  • Crosby, H. A., Hubscher, S. G., Joplin, R. E., Kelly, D. A., and Strain, A.J. (1998) Immunolocalization of OV-6, a putative progenitor cell marker in human fetal and diseased pediatric liver. Hepatology 28:980–985.

    Article  PubMed  CAS  Google Scholar 

  • Crosby, H. A., Kelly, D. A., and Strain, A. J. (2001) Human hepatic stemlike cells isolated using c-kit or CD34 can differentiate into biliary epithelium. Gastroenterology 120:534–544.

    Article  PubMed  CAS  Google Scholar 

  • Crossley, P. H. and Martin, G. R. (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121: 439–451.

    PubMed  CAS  Google Scholar 

  • Dabeva, M. D. and Shafritz, D. A. (1993) Activation, proliferation, and differentiation of progenitor cells into hepatocytes in the D-galactosamine model of liver regeneration. Am. J. Pathol. 143:1606–1620.

    PubMed  CAS  Google Scholar 

  • Dabeva, M. D., Hwang, S-G., Vasa, S. R. G., et al. (1997) Differentiation of pancreatic epithelial progenitor cells into hepatocytes following transplantation into rat liver. Proc. Natl. Acad. Sci. USA 94:7356–7361.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, G., Jung, J., Zheng, M., Lora, J., and Zaret, K.S. (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128:871–881.

    PubMed  CAS  Google Scholar 

  • Dumble, M. L., Croager, E. J., Yeoh, G. C., and Quail, E. A. (2002) Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma. Carcinogenesis 23:435–445.

    Article  PubMed  CAS  Google Scholar 

  • Dunsford, H. A. and Sell, S. (1989) Production of monoclonal antibodies to preneoplastic liver cell populations induced by chemical carcinogens in rats and to transplantable Morris hepatomas. Cancer Res. 49:4887–4893.

    PubMed  CAS  Google Scholar 

  • Earp, H. S., Hepler, J. R., Petch, L. A., et al. (1988) Epidermal growth factor (EGF) and hormones stimulate phosphoinositide hydrolysis and increase EGF receptor protein synthesis and mRNA levels in rat liver epithelial cells: evidence for protein kinase C-dependent and -independent pathways. J. Biol. Chem. 263:13,868–13,874.

    Google Scholar 

  • Engelhardt, N. V., Factor, V. M., Medvinsky, A. L., Baranov, V. N., Lazareva, M. N., and Poltoranina, V. S. (1993) Common antigen of oval and biliary epithelial cells (A6) is a differentiation marker of epithelial and erythroid cell lineages in early development of the mouse. Differentiation 55:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Germain, L., Blouin, M. J., and Marceau, N. (1988) Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res. 48:4909–4918.

    PubMed  CAS  Google Scholar 

  • Gerschenson, L. E., Andersson, M., Molson, J., and Okigaki, T. (1970) Tyrosine transaminase induction by dexamethasone in a new rat liver cell line. Science 170:859–861.

    Article  PubMed  CAS  Google Scholar 

  • Golubovskaya, V. M., Filatov, L. V., Behe, C. I., et al. (1999) Telomere shortening, telomerase expression, and chromosome instability in rat hepatic epithelial stem-like cells. Mol. Carcinog. 24:209–217.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, G. J., Coleman, W. B., Hixson, D. C., and Grisham, J. W. (2000a) Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response. Am. J. Pathol. 156:607–619.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, G. J., Coleman, W. B., and Grisham, J. W. (2000b) Temporal analysis of hepatocyte differentiation by small hepatocyte-like progenitor cells during liver regeneration in retrorsine-exposed rats. Am. J. Pathol. 157:771–786.

    Article  PubMed  CAS  Google Scholar 

  • Grisham, J. W. (1980) Cell types in long-term propagable cultures of rat liver. Ann. NY Acad. Sci. 349:128–137.

    Article  PubMed  CAS  Google Scholar 

  • Grisham, J. W., Thal, S. B., and Nagel, A. (1975) Cellular derivation of continuously cultured epithelial cells in normal rat liver. In Gene Expression and Carcinogenesis in Cultured Liver (Gerschenson, L. E. and Thompson, E. B., eds.), Academic, New York, pp. 1–23.

    Google Scholar 

  • Grisham, J. W., Coleman, W. B., and Smith, G. J. (1993) Isolation, culture, and transplantation of rat hepatocytic precursor (stem-like) cells. Proc. Soc. Exp. Biol. Med. 204:270–279.

    PubMed  CAS  Google Scholar 

  • Gupta, S., Rajvanshi, P., Sokhi, R. P., Vaidya, S., Irani, A. N., and Gorla, G. R. (1999) Position-specific gene expression in the liver lobule is directed by the microenvironment and not by the previous cell differentiation state. J. Biol. Chem. 274:2157–2165.

    Article  PubMed  CAS  Google Scholar 

  • Gurdon, J. B., Laskey, R. A., and Reeves, O. R. (1975) The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. J. Embryol. Exp. Morphol. 34:93–112.

    PubMed  CAS  Google Scholar 

  • Haruna, Y., Saito, K., Spaulding, S., Nalesnik, M. A., and Gerber, M. A. (1996) Identification of bipotential progenitor cells in human liver development. Hepatology 23:476–481.

    Article  PubMed  CAS  Google Scholar 

  • Herring, A. S., Raychaudhuri, R., Kelley, S. P., and Iype, P. T. (1983) Repeated establishment of diploid epithelial cell cultures from normal and partially hepatectomized rats. In Vitro 19:576–588.

    Article  Google Scholar 

  • Hillebrands, J. L., Klatter, F. A., van Dijk, W. D., and Rozing, J. (2002). Bone marrow does not contribute substantially to endothelial-cell replacement in transplant arteriosclerosis. Nat. Med. 8:194–195.

    Article  PubMed  Google Scholar 

  • Hixson, D. C. and Allison, J. P. (1985) Monoclonal antibodies recognizing oval cells induced in the liver of rats by N-2-fluorenylacetamide or ethionine in a choline-deficient diet. Cancer Res. 45:3750–3760.

    PubMed  CAS  Google Scholar 

  • Hixson, D. C., Chapman, L., McBride, A., Faris, R., and Yang, L. (1997) Antigenic phenotypes common to rat oval cells, primary hepatocellular carcinomas and developing bile ducts. Carcinogenesis 18:1169–1175.

    Article  PubMed  CAS  Google Scholar 

  • Hochedlinger, K. and Jaenisch, R. (2002). Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415:1035–1038.

    Article  PubMed  CAS  Google Scholar 

  • Hooth, M. J., Coleman, W. B., Presnell, S. C., Borchert, K. M., Grisham, J. W., and Smith, G. J. (1998) Spontaneous neoplastic transformation of WB-F344 rat liver epithelial cells. Am. J. Pathol. 153:1913–1921.

    Article  PubMed  CAS  Google Scholar 

  • Isfort, R. J., Cody, D. B., Doersen, C. J., et al. (1997) The tetratricopeptide repeat containing Tg737 gene is a liver neoplasia tumor suppressor gene. Oncogene 15:1797–1803.

    Article  PubMed  CAS  Google Scholar 

  • Isfort, R. J., Cody, D. B., Richards, W. G., Yoder, B. K., Wilkinson, J. E., and Woychik, R. P. (1998) Characterization of growth factor responsiveness and alterations in growth factor homeostasis involved in the tumorigenic conversion of mouse oval cells. Growth Factors 15:81–94.

    Article  PubMed  CAS  Google Scholar 

  • Iype, P.T. (1971) Cultures from adult rat liver cells. I. Establishment of monolayer cell-cultures from normal liver. J. Cell Physiol. 78:281–288.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. A., Tosh, D., Wilson, D. I., Lindsay, S., and Forrester, L. M. (2002) Hepatic differentiation of murine embryonic stem cells. Exp. Cell Res. 272:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Jung, J., Zheng, M., Goldfarb, M., and Zaret, K. (1999) Initiation of mammalian liver development from endoderm and fibroblast growth factors. Science 284:1999–2003.

    Article  Google Scholar 

  • Kaighn, M. E. and Prince, A. M. (1971) Production of albumin and other serum proteins by clonal cultures of normal human liver. Proc. Natl. Acad. Sci. USA 68:2396–2400.

    Article  PubMed  CAS  Google Scholar 

  • Kano, J., Noguchi, M., Kodama, M., and Tokiwa, T. (2000) The in vitro differentiating capacity of nonparenchymal epithelial cells derived from adult porcine livers. Am. J. Pathol. 156:2033–2043.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, W. K., Behe, C. I., Golubovskaya, V. M., et al. (2001) Aberrant cell cycle checkpoint function in transformed hepatocytes and WB-F344 hepatic epithelial stem-like cells. Carcinogenesis 22:1257–1269.

    Article  PubMed  CAS  Google Scholar 

  • Knight, B., Yeoh, G.C.T., Husk, K.L., et al. (2000) Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J. Exp. Med. 192:1809–1818.

    Article  PubMed  CAS  Google Scholar 

  • Koch, K. and Leffert, H. L. (1974) Growth control of differentiated fetal rat hepatocytes in primary monolayer culture. VI. Studies with conditioned medium and its functional interactions with serum factors. J. Cell Biol. 62:780–791.

    Article  PubMed  CAS  Google Scholar 

  • Koch, K. S. and Leffert, H. L. (1979) Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation. Cell 18:153–163.

    Article  PubMed  CAS  Google Scholar 

  • Koch, K. S. and Leffert, H. L. (1980) Growth control of differentiated adult rat hepatocytes in primary culture. Ann. NY Acad. Sci. 349:111–127.

    Article  PubMed  CAS  Google Scholar 

  • Koch, K. S. and Leffert, H. L. (1994) Hepatic regeneration and gene expression: a tribute to Hidematsu Hirai. J. Tumour Marker Oncol. 9:35–56.

    Google Scholar 

  • Koch, K. S., Shapiro, P., Skelly, H., and Leffert, H. L. (1982) Rat hepatocyte proliferation is stimulated by insulin-like peptides in defined medium. Biochem. Biophys. Res. Commun. 109:1054–1060.

    Article  PubMed  CAS  Google Scholar 

  • Koch, K. S., Lu, X. P., Brenner, D. A., Fey, G. H., Martinez-Conde, A., and Leffert, H. L. (1990) Mitogens and hepatocyte growth control in vivo and in vitro. In Vitro Cell. Dev. Biol. 26:1011–1023.

    Article  CAS  Google Scholar 

  • Koch, K. S., Lu, X. P., and Leffert, X. P. (1994) Primary rat hepatocytes express cyclin D1 messenger RNA during their growth cycle and during mitogenic transitions induced by transforming growth factoralpha. Biochem. Biophys. Res. Commun. 204:91–97.

    Article  PubMed  CAS  Google Scholar 

  • Kruijer, W., Skelly, H., Botteri, F., et al. (1986) Proto-oncogene expression in regenerating liver is simulated in cultures of primary adult rat hepatocytes. J. Biol. Chem. 261:7929–7933.

    PubMed  CAS  Google Scholar 

  • Kubota, H. and Reid, L. M. (2000) Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proc. Natl. Acad. Sci. USA 97:12,132–12,137.

    Article  Google Scholar 

  • Laconi, E., Oren, R., Mukhopadhyay, D. K., et al. (1998) Long-term, near-total liver replacement by transplantation of isolated hepatocytes in rats treated with retrorsine. Am. J. Pathol. 153:319–329.

    Article  PubMed  CAS  Google Scholar 

  • Lad, P. J., Shier, W. T., Skelly, H., de Hemptinne, B., and Leffert, H. L. (1982) Adult rat hepatocytes in primary culture. VI. Developmental changes in alcohol dehydrogenase activity and ethanol conversion during the growth cycle. Alcohol. Clin. Exp. Res. 6:64–71.

    Article  PubMed  CAS  Google Scholar 

  • Lagasse, E., Connors, H., Al-Dhalimy, M., et al. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6:1229–1234.

    Article  PubMed  CAS  Google Scholar 

  • Lazaro, C. A., Rhim, J. A., Yamada, Y., and Fausto, N. (1998) Generation of hepatocytes from oval cell precursors in culture. Cancer Res. 58:5514–5522.

    PubMed  CAS  Google Scholar 

  • Le Douarin, N. M. (1975) An experimental analyisis of liver development. Med. Biol. 53:427–455.

    PubMed  CAS  Google Scholar 

  • Lee, L. W., Tsao, M. S., Grisham, J. W., and Smith, G. J. (1989) Emergence of neoplastic transformants spontaneously or after exposure to N-methyl-N′-nitro-N-nitrosoguanidine in populations of rat liver epithelial cells cultured under selective and nonselective conditions. Am. J. Pathol. 135:63–71.

    PubMed  CAS  Google Scholar 

  • Leffert, H. L. (1974a) Growth control of differentiated fetal rat hepatocytes in primary monolayer culture. V. Occurrence in dialyzed fetal bovine serum of macromolecules having both positive and negative growth regulatory functions. J. Cell Biol. 62:767–779.

    Article  PubMed  CAS  Google Scholar 

  • Leffert, H. L. (1974b) Growth control of differentiated fetal rat hepatocytes in primary monolayer culture. VII. Hormonal control of DNA synthesis and its possible significance to the problem of liver regeneration. J. Cell Biol. 62:792–801.

    Article  PubMed  CAS  Google Scholar 

  • Leffert, H. L. and Koch, K. S. (1977) Control of animal cell proliferation. In: Growth, Nutrition and Metabolism of Cells in Culture (Rothblat, G. H. and Cristofalo, V. J., eds.), vol. 3, Academic, New York, pp. 225–294.

    Chapter  Google Scholar 

  • Leffert, H. L. and Koch, K. S. (1978) Proliferation of hepatocytes. In: Hepatotrophic Factors, vol. 55, CIBA Foundation Symposium, London, UK, pp. 61–83.

    Google Scholar 

  • Leffert, H. L. and Koch, K. S. (1979) Regulation of growth of hepatocytes by sodium ions. Prog. Liver Dis. 6:123–134.

    PubMed  CAS  Google Scholar 

  • Leffert, H. L. and Koch, K. S. (1980) Ionic events at the membrane initiate rat liver regeneration. Ann. NY Acad. Sci. 339:201–215.

    Article  PubMed  CAS  Google Scholar 

  • Leffert, H. L. and Koch, K. S. (1982a) Hepatocyte growth regulation by hormones in chemically-defined medium: a two-signal hypothesis. Cold Spring Harbor Symp. Cell Prolif. 9:597–613.

    CAS  Google Scholar 

  • Leffert, H. L. and Koch, K. S. (1982b) Monovalent cations and the control of hepatocyte proliferation in chemically defined medium. In: Ions, Cell Proliferation and Cancer (Boynton, A., McKeenan, W. L. and Whitfield, J. F., eds.), Academic, New York, pp. 103–130.

    Google Scholar 

  • Leffert, H. L. and Koch, K. S. (1985) Experimental issues in hepatocyte growth control studies in primary culture. In: Growth and Differentiation of Cells in Defined Environment (Murakami, H., Yamane, I., Barnes, D. W., Mather, J. P., Hayashi, I., and Sato, G. H., eds.), Springer-Verlag, Berlin, pp. 9–18.

    Google Scholar 

  • Leffert, H. L. and Paul, D. (1972) Studies on primary cultures of differentiated fetal liver cells. J. Cell Biol. 52:559–568.

    Article  PubMed  CAS  Google Scholar 

  • Leffert, H. L. and Paul, D. (1973) Serum dependent growth of primary cultured differentiated fetal rat hepatocytes in arginine-deficient medium. J. Cell Physiol. 81:113–124.

    Article  PubMed  CAS  Google Scholar 

  • Leffert, H. L. and Sell, S. (1974) Alpha1 -fetoprotein biosynthesis during the growth cycle of differentiated fetal rat hepatocytes in primary monolayer culture. J. Cell Biol. 61:823–829.

    Article  PubMed  CAS  Google Scholar 

  • Leffert, H. L. and Weinstein, D. B. (1976) Growth control of differentiated fetal rat hepatocytes in primary monolayer culture. IX. Specific inhibition of DNA synthesis initiation by very low density lipoprotein and possible significance to the problem of liver regeneration. J. Cell Biol. 70:20–32.

    Article  PubMed  CAS  Google Scholar 

  • Leffert, H. L., Moran, T., Boorstein, R. T., and Koch, K. S. (1977) Procarcinogen activation and hormonal control of cell proliferation in differentiated primary adult rat liver cell cultures. Nature 267:58–61.

    Article  PubMed  CAS  Google Scholar 

  • Leffert, H., Moran, T., Sell, S., et al. (1978a) Growth state dependent phenotypes of adult hepatocytes in primary monolayer culture. Proc. Natl. Acad. Sci. USA 75:1834–1838.

    Article  PubMed  CAS  Google Scholar 

  • Leffert, H. L., Koch, K. S., Rubalcava, B., Sell, S., Moran, T., and Boorstein, R. (1978b) Hepatocyte growth control: in vitro approach to problems of liver regeneration and function. Natl. Cancer Inst. Monogr. 48:87–101.

    PubMed  Google Scholar 

  • Leffert, H. L., Koch, K. S., Moran, T., and Williams, M. (1979) Liver cells. In: Methods in Enzymology, vol. 58 (Jakoby, W. and Pastan, I., eds.), Academic, New York, pp. 536–544.

    Google Scholar 

  • Leffert, H. L., Koch, K. S., Sell, S., Skelly, H., and Shier, W. T. (1983) Biochemistry and biology of N-acetyl-2-aminofluorene in primary cultures of adult rat hepatocytes. In: Application of Biological Markers to Carcinogen Testing, vol. 29 (Milman, H. A. and Sell, S., eds.), U.S. Environmental Protection Agency, Environmental Sciences Research, Washington, DC, pp. 119–133.

    Google Scholar 

  • Leffert, H. L., Koch, K. S., Lad, P. J., Shapiro, P., Skelly, H., and de Hemptinne, B. (1988) Hepatocyte regeneration, replication and differentiation. In: The Liver: Biology and Pathobiology (Arias, I., Popper, H., Schacter, D., and Shafritz, D., eds.), 2nd ed., Raven, New York, pp. 833–850.

    Google Scholar 

  • Lin, P., Liu, C., Tsao, M. S., and Grisham, J. W. (1987) Inhibition of proliferation of cultured rat liver epithelial cells at specific cell cycle stages by transforming growth factor-beta. Biochem. Biophys. Res. Commun. 143:26–30.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X. P., Koch, K. S., Lew, D. J., et al. (1992) Induction of cyclin mRNA and histone H1-kinase during liver regeneration. J. Biol. Chem. 267:2841–2844.

    PubMed  CAS  Google Scholar 

  • Mackay, A. R., Gomez, D. E., Cottam, D. W., Rees, R. C., Nason, A. M., and Thorgeirsson, U. P. (1993) Identification of the 72-kDa (MMP-2) and 92-kDa (MMP-9) gelatinase/type IV collagenase in preparations of laminin and Matrigel. Biotechniques 15:1048–1051.

    PubMed  CAS  Google Scholar 

  • Malouf, N. N., Coleman, W. B., Grisham, J. W., et al. (2001) Adultderived stem cells from the liver become myocytes in the heart in vivo. Am. J. Pathol. 158:1929–1935.

    Article  PubMed  CAS  Google Scholar 

  • Marceau, N., Goyette, R., Deschenes, J., and Valet, J. P. (1980) Morphological differences between epithelial and fibroblast cells in rat liver cultures, and the roles of cell surface fibronectin and cytoskeletal element organization in cell shape. Ann. NY Acad. Sci. 349:138–152.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. R. and Evans, M. J. (1975) Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl. Acad. Sci. USA 72:1441–1445.

    Article  PubMed  CAS  Google Scholar 

  • McCulloch, E. A. (2003) Normal and leukemia hematopoietic stem cells and lineages. In: Stem Cells Handbook (Sell, S., ed.), Humana, Totowa, NJ, pp. 119–132.

    Chapter  Google Scholar 

  • McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., Ferrari, G., Mavilio, F., and Goodell, M. A. (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc. Natl. Acad. Sci. USA 99:1341–1346.

    Article  PubMed  CAS  Google Scholar 

  • McMahon, J. B., Richards, W. L., del Campo, A. A., Song, M.-K. H., and Thorgeirsson, S. S. (1986) Differential effects of transforming growth factor-β on proliferation of normal and malignant rat liver epithelial cells in culture. Cancer Res. 46:4665–4671.

    PubMed  CAS  Google Scholar 

  • Mitaka, T., Sato, F., Mizuguchi, T., Yokono, T., and Mochizuki, Y. (1999) Reconstruction of hepatic organoid by rat small hepatocytes and hepatic nonparenchymal cells. Hepatology 29:111–125.

    Article  PubMed  CAS  Google Scholar 

  • Monga, S. P., Tang, Y., Candotti, F., et al. (2001) Expansion of hepatic and hematopoietic stem cells utilizing mouse embryonic liver explants. Cell Transplant. 10:81–89.

    PubMed  CAS  Google Scholar 

  • Ott, M., Rajvanshi, P., Sokhi, R. P., et al. (1999) Differentiation-specific regulation of transgene expression in a diploid epithelial cell line derived from the normal F344 rat liver. J. Pathol. 187:365–373.

    Article  PubMed  CAS  Google Scholar 

  • Parlow, M. H., Bolender, D. L., Koran-Moore, N. P., and Lough, J. (1991) Localization of bFGF-like proteins as punctate inclusions in the preseptation myocardium of the chicken embryo. Dev. Biol. 146: 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Paul, D., Leffert, H., Sato, G., and Holley, R. W. (1972) Stimulation of DNA and protein synthesis in fetal rat liver cells by serum from partially hepatectomized rats. Proc. Nail. Acad. Sci. USA 69:374–377.

    Article  CAS  Google Scholar 

  • Petersen, B. E., Goff, J. P., Greenberger, J. S., and Michalopoulos, G. K. (1998) Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. Hepatology 27:433–445.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999) Bone marrow as a potential source of hepatic oval cells. Science 264:1168–1170.

    Article  Google Scholar 

  • Petkov, P. M., Kim, K., Sandhu, J., Shafritz, D. A., and Dabeva, M. D. (2000) Identification of differentially expressed genes in epithelial stem/progenitor cells of fetal rat liver. Genomics 68:197–209.

    Article  PubMed  CAS  Google Scholar 

  • Plescia, C., Rogler, C., and Rogler, L. (2001) Genomic expression analysis implicates Wnt signaling pathway and extracellular matrix alterations in hepatic specification and differentiation of murine hepatic stem cells. Differentiation 68:254–269.

    Article  PubMed  CAS  Google Scholar 

  • Rao, M. S., Subbarao, V., and Reddy, J. K. (1986) Induction of hepatocytes in the pancreas of copper-depleted rats following copper repletion. Cell Differ. 18:109–117.

    Article  PubMed  CAS  Google Scholar 

  • Richards, W. G., Yoder, B. K., Isfort, R. J., et al. (1996) Oval cell proliferation associated with the murine insertional mutation TgN737Rpw. Am. J. Pathol. 149:1919–1930.

    PubMed  CAS  Google Scholar 

  • Richards, W. G., Yoder, B. K., Isfort, R. J., et al. (1997) Isolation and characterization of liver epithelial cell lines from wild-type and mutant TgN737Rpw mice. Am. J. Pathol. 150:1189–1197.

    PubMed  CAS  Google Scholar 

  • Rideout, W. M. III, Hochedlinger, K., Kyba, M., Daley, G. Q., and Jaenisch, R. (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109:17–27.

    Article  PubMed  CAS  Google Scholar 

  • Rogler, L.E. (1997) Selective bipotential differentiation of mouse embryonic hepatoblasts in vitro. Am. J. Pathol. 150:591–602.

    PubMed  CAS  Google Scholar 

  • Rosenthal, M. D., Wishnow, R. M., and Sato, G. H. (1970) In vitro growth and differentiation of clonal populations of multipotential mouse cells derived from a transplantable testicular teratocarcinoma. J. Natl. Cancer Inst. 44:1001–1014.

    PubMed  CAS  Google Scholar 

  • Rossi, J. M., Dunn, N. R., Hogan, B. L., and Zaret, K. S. (2001) Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 15:1998–2009.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, H. (2001) Multistage carcinogenesis in cell culture. Dev. Biol. (Basel) 106:61–66.

    CAS  Google Scholar 

  • Seglen, P. 0. (1997) DNA ploidy and autophagic protein degradation as determinants of hepatocellular growth and survival. Cell Biol. Toxicol. 13:301–315.

    Article  PubMed  CAS  Google Scholar 

  • Sell, S. (1978) Distribution of alphafetoprotein and albumin containing cells in the livers of Fischer rats fed N-2- fluorenyl-acetamide. Cancer Res. 38:3107–3113.

    PubMed  CAS  Google Scholar 

  • Sell, S. (2001) Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 33:738–750.

    Article  PubMed  CAS  Google Scholar 

  • Sell, S. and Ilic, I. (1997) Liver Stem Cells, R. G. Landes and Chapman & Hall, New York.

    Google Scholar 

  • Sell, S. and Leffert, H. L. (1982) An evaluation of cellular lineages in the pathogenesis of experimental hepatocellular carcinoma. Hepatology 2:77–86.

    Article  PubMed  CAS  Google Scholar 

  • Sell, S., Leffert, H., Mueller-Eberhard, U., Kida, S., and Skelly, H. (1975) Relationship of the biosynthesis of alpha1-fetoprotein, albumin, hemopexin and haptoglobin to the growth state of fetal rat hepatocyte cultures. Ann. NY Acad. Sci. 259:45–48.

    Article  PubMed  CAS  Google Scholar 

  • Sell, S., Becker, F. F., Leffert, H. L., and Watabe, H. (1976) Expression of an oncodevelopmental gene product (alpha1-fetoprotein) during fetal development and adult oncogenesis. Cancer Res. 36:4239–4249.

    PubMed  CAS  Google Scholar 

  • Sell, S., Osborn, K., and Leffert, H.L. (1981a) Autoradiography of oval cells appearing rapidly in the livers of rats fed N-2-fluorenylacetamide in a choline-devoid diet. Carcinogenesis 2:7–14.

    Article  PubMed  CAS  Google Scholar 

  • Sell, S., Leffert, H. L., Shinozuka, H., Lombardi, B., and Gochman, N. (1981b) Rapid development of large numbers of AFP-containing “ovalh” cells in the liver of rats fed N-2-fluorenylacetamide in a choline-devoid diet. GANN 72:479–487.

    PubMed  CAS  Google Scholar 

  • Shiojiri, N. and Mizuno, T. (1993) Differentiation of functional hepatocytes and biliary epithelial cells from immature hepatocytes of the fetal mouse in vitro. Anat. Embrvol. (Berl.) 187:221–229.

    CAS  Google Scholar 

  • Siminovitch, L., McCulloch, E. A., and Till, J. E. (1963) The distribution of colony-forming cells among spleen colonies. J. Cell. Comp. Physiol. 62:327–336.

    Article  CAS  Google Scholar 

  • Sirica, A. E., Richards, W., Tsukada, Y., Sattler, C. A., and Pitot, H. C. (1979) Fetal phenotypic expression by adult rat hepatocytes on collagen gel/nylon meshes. Proc. Natl. Acad. Sci. USA 76:283–287.

    Article  PubMed  CAS  Google Scholar 

  • Sirica, A. E., Mathis, G. A., Sano, N., and Elmore, L. W. (1990) Isolation, culture, and transplantation of intrahepatic biliary epithelial cells and oval cells. Pathobiology 58:44–64.

    Article  PubMed  CAS  Google Scholar 

  • Spagnoli, F. M., Amicone, L., Tripodi, M., and Weiss, M. C. (1998) Identification of a bipotential precursor cell in hepatic cell lines derived from transgenic mice expressing cyto-met in the liver. J. Cell Biol. 143:1101–1112.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, G., Bawden, M. J., Anderson, A., and May, B. K. (1989) Drug induction of P450IIB1/IIB2 and 5-aminolevulinate synthase mRNAs in rat tissues. Biochim. Biophys. Acta 100:192–195.

    Google Scholar 

  • Steinberg, P., Steinbrecher, R., Radaeva, S., et al. (1994) Oval cell lines OC/CDE 6 and OC/CDE 22 give rise to cholangiocellular and undifferentiated carcinomas after transformation. Lab. Invest. 71:700–709.

    PubMed  CAS  Google Scholar 

  • Suzuki, A., Taniguchi, H., Zheng, Y.W., et al. (2000) Clonal colony formation of hepatic stem/progenitor cells enhanced by embryonic fibroblast conditioning medium. Transplant. Proc. 32:2328–2330.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, A., Zheng, Y.-W., Kaneko, S., et al. (2002) Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J. Cell Biol. 156:173–184.

    Article  PubMed  CAS  Google Scholar 

  • Takaoka, T., Yasumoto, S., and Katsuta, H. (1975) A simple method for the cultivation of rat liver cells. J. Exp. Med. 45:317–326.

    CAS  Google Scholar 

  • Taniguchi, H., Toyoshima, T., Fukao, K., and Nakauchi, H. (1996) Presence of hematopoietic stem cells in the adult liver. Nat. Med. 2:198–203.

    Article  PubMed  CAS  Google Scholar 

  • Tateno, C. and Yoshizato, K. (1996a) Growth and differentiation in culture of clonogenic hepatocytes that express both phenotypes of hepatocytes and biliary epithelial cells. Am. J. Pathol. 149:1593–1605.

    PubMed  CAS  Google Scholar 

  • Tateno, C. and Yoshizato, K. (1996b) Long-term cultivation of adult rat hepatocytes that undergo multiple cell divisions and express normal parenchymal phenotypes. Am. J. Pathol. 148:383–392.

    PubMed  CAS  Google Scholar 

  • Terada, N., Hamazaki, T., Oka, M., et al. (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545.

    Article  PubMed  CAS  Google Scholar 

  • Theise, N. D., Badve, S., Saxena, R., et al. (2000a) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31:235–240.

    Article  PubMed  CAS  Google Scholar 

  • Theise, N. D., Nimmakayalu, M., Gardner, R., et al. (2000b) Liver from bone marrow in humans. Hepatology 32:11–16.

    Article  PubMed  CAS  Google Scholar 

  • Till, J. E. and McCulloch, E. A. (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14:1419–1430.

    Article  Google Scholar 

  • Till, J. E., McCulloch, E. A., and Siminovitch, L. (1963) A stochastic model of stem cell proliferation based on the growth of spleen colonyforming cells. Proc. Natl. Acad. Sci. USA 51:29–36.

    Article  Google Scholar 

  • Tsao, M. S., Grisham, J. W., and Nelson, K. G. (1985) Clonal analysis of tumorigenicity and paratumorigenic phenotypes in rat liver epithelial cells chemically transformed in vitro. Cancer Res. 45:5139–5144.

    PubMed  CAS  Google Scholar 

  • Tsao, M. S., Earp, H. S., and Grisham, J. W. (1986) The effects of epidermal growth factor and the state of confluence on enzymatic activities of cultured rat liver epithelial cells. J. Cell Physiol. 126:167–173.

    Article  PubMed  CAS  Google Scholar 

  • Tsao, M.S., Smith, J.D., Nelson, K.G., and Grisham, J.W. (1984) A diploid epithelial cell line from normal adult rat liver with phenotypic properties of “oval” cells. Exp. Cell Res. 154:38–52.

    Article  PubMed  CAS  Google Scholar 

  • Tsao, M.S., Sanders, G.H., and Grisham, J.W. (1987) Regulation of growth of cultured hepatic epithelial cells by transferrin. Exp. Cell Res. 171:52–62.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Al-Dhalimy, M., Lagasse, E., Finegold, M., and Grompe, M. (2001) Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells. Am. J. Pathol. 158:571–579.

    Article  PubMed  CAS  Google Scholar 

  • Watabe, H. (1971) Early appearance of embryonic alpha-globulin in rat serum during carcinogenesis with 4-dimethylaminoaxobenzene. Cancer Res. 31:1192–1194.

    PubMed  CAS  Google Scholar 

  • Watabe, H., Leffert, H., and Sell, S. (1976) Developmental and maturational changes in alpha1-fetoprotein and albumin production in cultured fetal rat hepatocytes. In: Oncodevelopmental Gene Expression, Fourth Meeting, International Study Group for Carcinoembryonic Proteins (Fishman, W. and Sell, S., eds.), Academic, New York, pp. 123–130.

    Google Scholar 

  • Watt, A. J., Jones, E. A., Ure, J. M., Peddie, D., Wilson, D. I., and Forrester, L. M. (2001) A gene trap integration provides an early in situ marker for hepatic specification of the foregut endoderm. Mech. Dev. 100:205–215.

    Article  PubMed  CAS  Google Scholar 

  • Williams, G. M., Weisburger, E. K., and Weisburger, J. H. (1971) Isolation and long-term cell culture of epithelial-like cells from rat liver. Exp. Cell Res. 69:106–112.

    Article  PubMed  CAS  Google Scholar 

  • Ying, Q.-L., Nichols, J., Evans, E. P., and Smithe, A. G. (2002) Changing potency by spontaneous fusion. Nature 416:545–548.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, M., Sell, S., and Leffert, H. L. (2003) Hepatic progenitor cell lines from allyl alcohol-treated adult rats are derived from γ-irradiated mouse STO cells. Stem Cells 21:449–458.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X., Sasse, J., McAllister, D., and Lough, J. (1996) Evidence that fibroblast growth factors 1 and 4 participate in regulation of cardiogenesis. Dev. Dyn. 207:429–438.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koch, K.S., Leffert, H.L. (2004). Normal Liver Progenitor Cells in Culture. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_33

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics