Skip to main content

Stem Cell Origin of Cell Lineages, Proliferative Units, and Cancer in the Gastrointestinal Tract

  • Chapter
Stem Cells Handbook

Abstract

The gastrointestinal (GI) stem cell has the ability to differentiate into every epithelial lineage in the GI tract and is proposed as the target of GI carcinogenesis. There is considerable difference in the epithelial tissue of the GI tract including the oral cavity, pharynx, esophagus, stomach, small intestine, and colon, yet each appears to have a common stem cell that can give rise to both metaplasia and cancer throughout the GI tract. These cells may be located in the basal layer of the mucosa or in specialized niches at the base or just above the base of glands in the stomach and intestines. The underlying mesenchymal cells of the lamina propria provide an environment, that is responsible for normal differentiation. The crypts are composed of monoclonal units of differentiating cells similar to the epidermal poliferative unit of the skin. However, although the crypts are monoclonal, the villi of the small intestine are polyclonal, indicating that multiple crypts may contribute to the cells of the villi. Bone marrow transplantation studies indicate that marrow stem cells can engraft into the small intestine and colon and differentiate into intestinal subepithelial myofibroblast cells located within the lamina propria. Mucosal stem cells may also derive from transplanted bone marrow cells. There is evidence for both monoclonal and polyclonal origins of epithelial cancer. The presence of multiple, synchronous premalignant foci associated with invasive cancer has led to the field cancerization hypothesis, which predicts that a carcinogenic stimulus leads to transformation of multiple cells in a tissue and that one of these “clones” may grow out because of a mutation that favors its expansion over the others. In this case, a polyclonal expansion may be followed by a clonal proliferation, indicating that the carcinogenic process starts out polyclonal and ends up clonal. The “adenomas” of familial adenomatous polyposis and some animal models of carcinogenesis are multiclonal, whereas the cancers in this condition are monoclonal. Even though the clonal nature of the normal expansion of GI cells is well established, the clonal origin of intestinal epithelial neoplasms is unresolved; data support both possibilities. The genetic and molecular regulatory mechanisms involved in GI tumorigenesis are being unraveled, and it may well be that different molecular mechanisms lead to cellular pathways to cancer. For example, a mutation in APC may lead to polyclonal adenoma formation and further mutations to monoclonal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alison, M. R., Poulsom, R., Jeffery, R., et al. (2000) Hepatocytes from non-hepatic adult stem cells. Nature 406(6793):257.

    Article  PubMed  CAS  Google Scholar 

  • Arber, N., Hibshoosh, H., Moss, S. F., et al. (1996) Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology 110(3):669–674.

    Article  PubMed  CAS  Google Scholar 

  • Barth, A. I., Nathke, I. S., Nelson, W. J. (1997) Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr. Opin. Cell. Biol. 9(5):683–690.

    Article  PubMed  CAS  Google Scholar 

  • Baulida, J., Batlle, E., and Garcia De Herreros, A. (1999) Adenomatous polyposis col i protein (APC)-independent regulation of betacatenin/Tcf-4 mediated transcription in intestinal cells. Biochem. J. 344(Pt. 2):565–570.

    Article  PubMed  CAS  Google Scholar 

  • Beck, F., Chawengsaksophak, K., Waring, P., et al. (1999) Reprogramming of intestinal differentiation and intercalary regeneration in Cdx2 mutant mice. Proc. Natl. Acad. Sci. USA 96(13):7318–7323.

    Article  PubMed  CAS  Google Scholar 

  • Beresford, J. N., Bennett, J. H., Devlin, C., et al. (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell Sci. 102: 341–351.

    PubMed  CAS  Google Scholar 

  • Bienz, M. and Clevers, H. (2000) Linking colorectal cancer to Wnt signaling. Cell 103:311–320.

    Article  PubMed  CAS  Google Scholar 

  • Bjerknes, M. (1996) Expansion of mutant stem cell populations in the human colon. J. Theor. Biol. 178(4):381–385.

    Article  PubMed  CAS  Google Scholar 

  • Bjerknes, M. and Cheng, H. (1981) The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. Am. J. Anat. 160(1):51–63.

    Article  PubMed  CAS  Google Scholar 

  • Bjerknes, M. and Cheng, H. (1999) Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology116:7–14.

    Article  PubMed  CAS  Google Scholar 

  • Bjerknes, M., Cheng, H., Kim, H., et al. (1997) Clonality of dysplastic epithelium in colorectal adenomas from familial adenomatous polyposis patients. Cancer Res. 57(3):355–361.

    PubMed  CAS  Google Scholar 

  • Bjornson, C. R. R., Rietze, R. L., Reynolds, B. A., et al. (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283(5401):534–537.

    Article  PubMed  CAS  Google Scholar 

  • Bloching, M., Hofmann, A., Lautenschlager, C., et al. (2000) Exfoliative cytology of normal buccal mucosa to predict the relative risk of cancer in the upper aerodigestive tract using the MN-assay. Oral Oncol. 36(6):550–555.

    Article  PubMed  CAS  Google Scholar 

  • Bodmer, W. (1999) Familial adenomatous polyposis (FAP) and its gene, APC. Cytogenet. Cell. Genet. 86(2):99–104.

    Article  PubMed  CAS  Google Scholar 

  • Bodmer, W. F., Bailey, C. J., Bodmer, J., et al. (1987) Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328(6131):614–616.

    Article  PubMed  CAS  Google Scholar 

  • Brabletz, T., Jung, A., Dag, S., et al. (1999) Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am. J. Pathol. 155(4):1033–1038.

    Article  PubMed  CAS  Google Scholar 

  • Brabletz, T., Herrmann, K., Jung, A., et al. (2000) Expression of nuclear beta-catenin and c-myc is correlated with tumor size but not with proliferative activity of colorectal adenomas. Am. J. Pathol. 156(3): 865–870.

    Article  PubMed  CAS  Google Scholar 

  • Brasitus, T. A. and Bissonnette, M. (1998) PKC isoforms: villains in colon cancer? Gastroenterology 115(1):225–227.

    Article  PubMed  CAS  Google Scholar 

  • Brittan, M., Hunt, T., Jeffery, R. et al. (2002) Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut 50(6):752–757.

    Article  PubMed  CAS  Google Scholar 

  • Chawengsaksophak, K., James, R., Hammond, V. E., et al. (1997) Homeosis and intestinal tumors in Cdx2 mutant mice. Nature 386 (6620):84–87.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, H. and Bjerknes, M. (1985) Whole population cell kinetics and postnatal development of the mouse intestinal epithelium. Anat. Rec. 211(4):420–426.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, H. and LeBlond, C. P. (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am. J. Anat. 141(4):537–561.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, H., Bjerknes, M., Amar, J., et al. (1986) Crypt production in normal and diseased human colonic epithelium. Anat. Rec. 216(1):44–48.

    Article  PubMed  CAS  Google Scholar 

  • Chung, I. M., Schwartz, S. M., and Murry, C. E. (1998) Clonal architecture of normal and atherosclerotic aorta: implications for atherogenesis and vascular development. Am. J. Pathol. 152(4):913–923.

    PubMed  CAS  Google Scholar 

  • Crabtree, M. D., Tomlinson, I. P., and Talbot, I. C. (2001) Variability in the severity of colonic disease in familial adenomatous polyposis results from differences in tumor initiation rather than progression and depends relatively little on patient age. Gut 49(4):540–543.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, H. C., Fingleton, B. M., Rudolph-Owen, L. A., et al. (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18(18):2883–2891.

    Article  PubMed  CAS  Google Scholar 

  • Cutler, S. J., Scotto, J., Devesa, S. S., et al. (1974) Third National Cancer Survey-an overview of available information. J. Natl. Cancer Inst. 53(6):1565–1575.

    PubMed  CAS  Google Scholar 

  • da Costa, L. T., He, T C., Yu, J., et al. (1999) CDX2 is mutated in a colorectal cancer with normal APC/beta-catenin signaling. Oncogene 18(35):5010–5014.

    Article  PubMed  CAS  Google Scholar 

  • Deamant, F. D. and Iannaccone, P. M. (1985) Evidence concerning the clonal nature of chemically induced tumors: phosphoglycerate kinase1 isozyme patterns in chemically induced fibrosarcomas. J. Natl. Cancer Inst. 74(1):145–150.

    PubMed  CAS  Google Scholar 

  • Ee, H. C., Erler, T., Bhathal, P. S., et al. (1995) Cdx-2 homeodomain protein expression in human and rat colorectal adenoma and carcinoma. Am. J. Pathol. 147(3):586–592.

    PubMed  CAS  Google Scholar 

  • Eglitis, M. A. and Mezey, E. (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. USA 94(8):4080–4085.

    Article  PubMed  CAS  Google Scholar 

  • Fearon, E. R., Hamilton, S. R., and Vogelstein, B. (1987) Clonal analysis of human colorectal tumors. Science 238(4824):193–197.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, G., Cusella-De Angelis, G., Coletta, M., et al. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528–1530.

    Article  PubMed  CAS  Google Scholar 

  • Fialkow, P. J. (1976) Clonal origin of human tumors. Biochem. Biophys. Acta 458(3):283–321.

    PubMed  CAS  Google Scholar 

  • Fuller, C. E., Davies, R. P., Williams, G. T., et al. (1990) Crypt restricted heterogeneity of goblet cell mucus glycoprotein in histologically normal human colonic mucosa: a potential marker of somatic mutation. Br. J. Cancer 61(3):382–384.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Z., McAlister, V. C., and Williams, G. M. (2001) Repopulation of liver endothelium by bone-marrow-derived cells. Lancet 357(9260): 932–933.

    Article  PubMed  CAS  Google Scholar 

  • Gradl, D., Kuhl, M., and Wedlich, D. (1999) The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol. Cell. Biol. 19(8):5576–5587.

    PubMed  CAS  Google Scholar 

  • Griffiths, D. F., Sacco, P., Williams, D., et al. (1989) The clonal origin of experimental large bowel tumors. Br. J. Cancer 59(3):385–387.

    Article  PubMed  CAS  Google Scholar 

  • Gusterson, B. A., Anbazhagan, R., Warren, W, et al. (1991) Expression of p53 in premalignant and malignant squamous epithelium. Oncogene 6(10):1785–1789.

    PubMed  CAS  Google Scholar 

  • Harada, N., Tamai, Y., Ishikawa, T., et al. (1999) Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 18(21):5931–5942.

    Article  PubMed  CAS  Google Scholar 

  • Hata, A., Shi, Y., and Massague, J. (1998) TGF-beta signaling and cancer: structural and functional consequences of mutations in Smads. Mol. Med. Today 4(6):257–262.

    Article  PubMed  CAS  Google Scholar 

  • He, T. C., Sparks, A. B., Rago, C., et al. (1988) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1511.

    Article  Google Scholar 

  • Hori, Y., Nakamura, T., Matsumoto, K., et al. (2001) Experimental study on in situ tissue engineering of the stomach by an acellular collagen sponge scaffold graft. ASAIO J. 47(3):206–210.

    Article  PubMed  CAS  Google Scholar 

  • Hori, Y., Nakamura, T., Kimura, D., et al. (2002) Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. J. Surg. Res. 102(2):156–160.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, S. H., Luk, G. D., Krush, A. J., et al. (1983) Multiclonal origin of polyps in Gardner syndrome. Science 221(4614):951–953.

    Article  PubMed  CAS  Google Scholar 

  • Iannaccone, P. M., Gasdner, R. L., and Harris, H. (1978) The cellular origin of chemically induced tumors. J. Cell. Sci. 29:249–269.

    PubMed  CAS  Google Scholar 

  • Iannaccone, P. M., Weinberg, W. C., and Deamant, F. D. (1987) On the clonal origin of tumors: a review of experimental models. Int. J. Cancer 39(6):778–784.

    Article  PubMed  CAS  Google Scholar 

  • Ijichi, H., Ikenoue, T., Kato, N., et al. (2001) Systematic analysis of the TGF-beta-Smad signaling pathway in gastrointestinal cancer cells. Biochem. Biophys. Res. Comm. 289(2):350–357.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, K. A., Mi, T., and Goodell, M. A. (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl. Acad. Sci. USA 96:14,482–14,486.

    CAS  Google Scholar 

  • Jackson, K. A., Majka, S. M., Wang, H., et al. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107(11):1395–1402.

    Article  PubMed  CAS  Google Scholar 

  • Jass, J. R. and Robertson, A M. (1994) Colorectal mucin histochemistry in health and disease: a critical review. Pathol. Int. 44:487–504.

    Article  PubMed  CAS  Google Scholar 

  • Karam, S. M. (1999) Lineage commitment and maturation of epithelial cells in the gut. Frontiers Biosci. 4:286–298.

    Article  Google Scholar 

  • Kinzler, K. W. and Vogelstein, B. (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170.

    Article  PubMed  CAS  Google Scholar 

  • Kirkland, S. (1988) Clonal origin of columnar, mucous, and endocrine cell lineages in human colorectal epithelium. Cancer 61:1359–1363.

    Article  PubMed  CAS  Google Scholar 

  • Knudson, A. G. (1993) Antioncogenes and human cancer. Proc. Natl. Acad. Sci. USA 90(23):10,914–10,921.

    Google Scholar 

  • Kopp, P., Jaggi, R., Tobler, A., et al. (1997) Clonal X-inactivation analysis of human tumors using the human androgen receptor gene (HUMARA) polymorphism: a non-radioactive and semiquantitative strategy applicable to fresh and archival tissue. Mol. Cell. Probes 11(3):217–228.

    Article  PubMed  CAS  Google Scholar 

  • Korbling, M., Katz, R L., Khanna, A., et al. (2002) Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N. Engl. J. Med. 346(10):738–746.

    Article  PubMed  Google Scholar 

  • Korchynskyi, O., Landstrom, M., Stoika, R., et al. (1999) Expression of Smad proteins in human colorectal cancer. Int. J. Cancer 82(2):197–202.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs, L. and Potten, C. S. (1973) An estimation of proliferative population size in stomach, jejunum and colon of DBA-2 mice. Cell Tissue Kinet. 6:125–134.

    PubMed  CAS  Google Scholar 

  • Kovacs, G., Tory, K., and Kovacs, A. (1994) Development of papillary renal cell tumors is associated with loss of Y-chromosome-specific DNA sequences. J. Pathol. 173(1):39–44.

    Article  PubMed  CAS  Google Scholar 

  • Krause, D. S., Thiese, N. D., Collector, M. I., et al. (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105(3):369–377.

    Article  PubMed  CAS  Google Scholar 

  • Lagaaij, E. L., Cramer-Knijnenburg, G. F., van Kemenade, F. J., et al. (2001) Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet 357(9249):33–37.

    Article  PubMed  CAS  Google Scholar 

  • Lagasse, E., Connors, H., Al-Dhalimy, M., et al. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6(11):1229–1234.

    Article  PubMed  CAS  Google Scholar 

  • Lickert, H., Domon, C., Huls, G., et al. (2000) Wnt/(beta)-catenin signaling regulates the expression of the homeobox gene Cdxl in embryonic intestine. Development 127(17):3805–3813.

    PubMed  CAS  Google Scholar 

  • Liechty, K. W., MacKenzie, T. C., Shaaban, A. F., et al. (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 6(11):1282–1286.

    Article  PubMed  CAS  Google Scholar 

  • Lorentz, O., Cardoret, A., Duluc, I., et al. (1999) Downregulation of the colon tumor-suppressor homeobox gene Cdx-2 by oncogenic ras. Oncogene 18(1):87–92.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S. L., Akiyama, Y., Nagasaki, H., et al. (1995) Mutations of the transforming growth factor-beta type II receptor gene and genomic instability in hereditary nonpolyposis colorectal cancer. Biochem. Biophys. Res. Commun. 216(2):452–457.

    Article  PubMed  CAS  Google Scholar 

  • Mahmood, A., Lu, D., Wang, L., et al. (2001) Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49(5):1196–1203.

    PubMed  CAS  Google Scholar 

  • Mann, B., Gelos, M., Siedow, A., et al. (1999) Target genes of betacatenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc. Natl. Acad. Sci. USA 96(4):1603–1608.

    Article  PubMed  CAS  Google Scholar 

  • Markowitz, S., Wang, J., Myeroff, L., et al. (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268(5215):1336–1338.

    Article  PubMed  CAS  Google Scholar 

  • Massague, J. (1998) TGF-beta signal transduction. Annu. Rev. Biochem. 67:753–791.

    Article  PubMed  CAS  Google Scholar 

  • McLellan, E. A., Medline, A., and Bird, R. P. (1991) Sequential analyses of the growth and morphological characteristics of aberrant crypt foci: putative preneoplastic lesions. Cancer Res. 51(19):5270–5274.

    PubMed  CAS  Google Scholar 

  • Mei, J. M., Hord, N. G., Winterstein, D. F., et al. (1999) Differential expression of prostaglandin endoperoxide H synthase-2 and formation of activated beta-catenin-LEF-1 transcription complex in mouse colonic epithelial cells contrasting in Apc. Carcinogenesis 20(4):737–740.

    Article  PubMed  CAS  Google Scholar 

  • Merritt, A. J., Gould, K A., and Dove, W. F. (1997) Polyclonal structure of intestinal adenomas in ApcMin/+ mice with concomitant loss of Apc+ from all tumor lineages. Proc. Natl. Acad. Sci. USA 94(25):13,927–13,931.

    Article  CAS  Google Scholar 

  • Middleton, S. B., Frayling, I. M., and Phillips, R. K. (2000) Desmoids in familial adenomatous polyposis are monoclonal proliferations. Br. J. Cancer 82(4):827–832.

    Article  PubMed  CAS  Google Scholar 

  • Minamoto, T., Yamashita, N., Ochiai, A., et al. (1995) Mutant K-ras in apparently normal mucosa of colorectal cancer patients: its potential as a biomarker of colorectal tumorigenesis. Cancer 75(Suppl. 6): 1520–1526.

    Article  PubMed  CAS  Google Scholar 

  • Miyaki, M., Konishi, M., Kikuchi-Yanoshita, R., et al. (1994) Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 54(11):3011–3020.

    PubMed  CAS  Google Scholar 

  • Miyazono, K., ten Dijke, P., and Heldin, C. H. (2000) TGF-beta signaling by Smad proteins. Adv. Immunol. 75:115–157.

    Article  PubMed  CAS  Google Scholar 

  • Moser, A. R., Pitot, H. C., and Dove, W. F. (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247(4940):322–324.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, S., Kino, I., and Baba, S. (1993) Nuclear DNA content of isolated crypts of background colonic mucosa from patients with familial adenomatous polyposis and sporadic colorectal cancer. Gut 34(9):1240–1244.

    Article  PubMed  CAS  Google Scholar 

  • Nesbitt, M. N. (1974) Chimeras vs X inactivation mosaics: significance of differences in pigment distribution. Dev. Biol. 38(1):202–207.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, S., Kaminishi, M., Sugiyama, K., et al. (1996) Clonal analysis of isolated single fundic and pyloric gland of stomach using X-linked polymorphism. Biochem. Biophys. Res. Commun. 226(2):385–390.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, S., Esumi, H., Job, C., et al. (1998) Lineage and clonal development of gastric glands. Dev. Biol. 204(1):124–135.

    Article  PubMed  CAS  Google Scholar 

  • Novelli, M. R., Williamson, J. A., Tomlinson, I. P., et al. (1996) Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science 272(5265):1187–1190.

    Article  PubMed  CAS  Google Scholar 

  • Novelli, M., Cossu, A., Oukrif, D., et al. (2003) X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc. Natl. Acad. Sci. USA 100(6):3311–3314.

    Article  PubMed  CAS  Google Scholar 

  • Nowell, P. C. (1976) The clonal evolution of tumor cell populations. Science 196(4260):23–28.

    Article  Google Scholar 

  • Orlic, D., Kajstura, J., Chimenti, S., et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, M., Oshima, H., Kitagawa, K., et al. (1995) Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc. Natl. Acad. Sci. USA 92(10):4482–4486.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, H., Oshima, M., Kobayashi, M., et al. (1997) Morphological and molecular processes of polyp formation in Apc(delta716) knockout mice. Cancer Res. 57(9):1644–1649.

    PubMed  CAS  Google Scholar 

  • Park, H. S., Goodlad, R. A., and Wright, N. A. (1995) Crypt fission in the small intestine and colon: a mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am. J. Pathol. 147(5):1416–1427.

    PubMed  CAS  Google Scholar 

  • Park, H. S., Goodlad, R. A., Ahnen, D. J., et al. (1997a) Effects of epidermal growth factor and dimethylhydrazine on crypt size, cell proliferation, and crypt fission in the rat colon: cell proliferation and crypt fission are controlled independently. Am. J. Pathol. 151(3), 843–852.

    PubMed  CAS  Google Scholar 

  • Park, H. S., Goodlad, R. A., and Wright, N. A. (1997b) The incidence of aberrant crypt foci and colonic carcinoma in dimethylhydrazinetreated rats varies in a site-specific manner and depends on tumor histology. Cancer Res. 57(20):4507–4510.

    PubMed  CAS  Google Scholar 

  • Paulsen, J. E., Steffensen, I. L., Namork, E., et al. (1994) Scanning electron microscopy of aberrant crypt foci in rat colon. Carcinogenesis 15(10):2371–2373.

    Article  PubMed  CAS  Google Scholar 

  • Peifer, M. (1997) Beta-catenin as oncogene: the smoking gun. Science 275(5307):1752–1753.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999) Bone marrow as a potential source of hepatic oval cells. Science 284(5417):1168–1170.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147.

    Article  PubMed  CAS  Google Scholar 

  • Ponder, B. A., Schmidt, G. H., Wilkinson, M. M., et al. (1985) Derivation of mouse intestinal crypts from single progenitor cells. Nature 313(6004):689–691.

    Article  PubMed  CAS  Google Scholar 

  • Ponder, B A. J. and Wilkinson, M. M. (1986) Direct examination of the clonality of carcinogen-induced colonic epithelial dysplasia in chimeric mice. J. Natl. Cancer Inst. 77(4), 967–976.

    PubMed  CAS  Google Scholar 

  • Potten, C. S. and Hendry, J. H. (1995) Radiation and Gut, Elsevier, Amsterdam.

    Google Scholar 

  • Poulsom, R., Forbes, S. J., Hodivala-Dilke, K., et al. (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J. Pathol. 195(2):229–235.

    Article  PubMed  CAS  Google Scholar 

  • Powell, D. W., Mifflin, R. C., Valentich, J. D., et al. (1999) Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am. J. Physiol. 277:C183–C201.

    PubMed  CAS  Google Scholar 

  • Powell, S. M., Zilz, N., Beazer-Barclay, Y., et al. (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359(6392):235–237.

    Article  PubMed  CAS  Google Scholar 

  • Pretlow, T. P. (1995) Aberrant crypt foci and K-ras mutations: earliest recognized players or innocent bystanders in colon carcinogenesis? Gastroenterology 108(2):600–603.

    Article  PubMed  CAS  Google Scholar 

  • Pretlow, T. P., Cheyer, C., and O’Riordan, M. A. (1994) Aberrant crypt foci and colon tumors in F344 rats have similar increases in proliferative activity. Int. J. Cancer 56(4):599–602.

    Article  PubMed  CAS  Google Scholar 

  • Rau, D., Neubauer, S., Koster, A., et al. (1992) Cytogenetic, oncogenetic, and histopathologic characteristics of colorectal carcinomas with 17p abnormalities. Hum. Genet. 89(1):64–68.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, A. L. and Fialkow, P. J. (1979) Multicellular origin of fibrosarcomas in mice induced by the chemical carcinogen 3-methylcholanthrene. J. Exp. Med. 150(4):878–887.

    Article  PubMed  CAS  Google Scholar 

  • Renan, M. J. (1993) How many mutations are required for tumorigenesis? Implications from human cancer data. Mol. Carcinog. 7(3):139–146.

    Article  PubMed  CAS  Google Scholar 

  • Romagnolo, B., Berrebi, D., Saadi-Keddoucci, S., et al. (1999) Intestinal dysplasia and adenoma in transgenic mice after overexpression of an activated beta-catenin. Cancer Res. 59(16):3875–3879.

    PubMed  CAS  Google Scholar 

  • Schmidt, G. H. and Mead, R. (1990) On the clonal origin of tumorslessons from studies of intestinal epithelium. BioEssays 12(1):37–40.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, G., Winton, D. J., and Ponder, B. A. (1988) Development of the pattern of cell renewal in the crypt-villus unit of chimeric mouse small intestine. Development 103:785–790.

    PubMed  CAS  Google Scholar 

  • Shen, C. N., Slack, J. M., and Tosh, D. (2000) Molecular basis of transdifferentiation of pancreas to liver. Nat. Cell. Biol. 2(12):879–887.

    Article  PubMed  CAS  Google Scholar 

  • Shih, I. M., Wang, T. L., Traverso, G., et al. (2001) Top-down morphogenesis of colorectal tumors. Proc. Natl. Acad. Sci. USA 98(5):2640–2645.

    Article  PubMed  CAS  Google Scholar 

  • Silberg, D. G., Furth, E. E., Taylor, J. K., et al. (1997) CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology 113(2):478–486.

    Article  PubMed  CAS  Google Scholar 

  • Siu, I. M., Robinson, D. R., Schwartz, S., et al. (1999) The identification of monoclonality in human aberrant crypt foci. Cancer Res. 59(1):63–66.

    PubMed  CAS  Google Scholar 

  • Slaughter, D. P., Southwick, H., and Smejkol, W. (1953) “Field cancerization” in oral stratified squamous epithelium: clinical implications of multicentric origin. Cancer 6(5):963–968.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K., Bui, T. D., Poulsom, R., et al. (1999) Up-regulation of macrophage wnt gene expression in adenoma-carcinoma progression of human colorectal cancer. Br. J. Cancer 81(3):496–502.

    Article  PubMed  CAS  Google Scholar 

  • Smits, R., Kielman, M. F., Breukel, C., et al. (1999) Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev. 13(10):1309–1321.

    Article  PubMed  CAS  Google Scholar 

  • Sparks, A. B., Morin, P. J., Vogelstein, B., et al. (1998) Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58(6):1130–1134.

    PubMed  CAS  Google Scholar 

  • Subramanian, V., Meyer, B. I., Gruss, P., et al. (1995) Disruption of the murine homeobox gene Cdxl affects axial skeletal identities by altering the mesodermal expression domains of hox genes. Cell 83:641–653.

    Article  PubMed  CAS  Google Scholar 

  • Sugihara, K. and Jass, J. R. (1986) Colorectal goblet cell sialomucin heterogeneity: its relation to malignant disease. J. Clin. Pathol. 39:1088–1095.

    Article  PubMed  CAS  Google Scholar 

  • Sunter, J. P., Appleton, D. R., Wright, N. A., et al. (1978) Pathological features of the colonic tumors induced in rats by the administration of 1,2-dimethylhydrazine. Virchows Arch. B Cell. Pathol. 29(3):211–223.

    PubMed  CAS  Google Scholar 

  • Takaku, K., Oshima, M., Miyoshi, H., et al. (1998) Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92(5):645–656.

    Article  PubMed  CAS  Google Scholar 

  • Tatematsu, M., Fukami, H., Yamamoto, M., et al. (1994) Clonal analysis of glandular stomach carcinogenesis in C3H/HeN< == >BALB/c chimeric mice treated with N-methyl-N-nitrosourea. Cancer Lett. 83 (1–2):37–42.

    Article  PubMed  CAS  Google Scholar 

  • Tetsu, O. and McCormick, F. (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726):422–426.

    Article  PubMed  CAS  Google Scholar 

  • Thiese, N. D., Badve, S., Saxena, R., et al. (2001) Derivation of hepatocytes from bone marrow cells in mice after radiation induced myeloblation. Hepatology 31:253–240.

    Google Scholar 

  • Thiese, N. D., Nimmakalu, M., Gardner, R., et al. (2000) Liver from bone marrow in humans. Hepatologv 32:11–16.

    Article  Google Scholar 

  • Thomas, G. A., Williams, D., and Williams, E. D. (1988) The demonstration of tissue clonality by X-linked enzyme histochemistry. J. Pathol. 155(2):101–108.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, M., Fleming, K. A., Evans, D. J., et al. (1990) Gastric endocrine cells share a clonal origin with other gut cell lineages. Development 110:477–481.

    PubMed  CAS  Google Scholar 

  • Tomlinson, I., Ilyas, M., and Novelli, M. (1997) Molecular genetics of colon cancer. Cancer Metastasis Rev. 16(1–2):67–79.

    Article  PubMed  CAS  Google Scholar 

  • Totafurno, J, Bjerknes, M., and Cheng, H. (1987) The crypt cycle: crypt and villus production in the adult intestinal epithelium. Biophys. J. 52(2):279–294.

    Article  PubMed  CAS  Google Scholar 

  • von Kries, J. P., Winbeck, G., Asbrand, C., et al. (2000) Hot spots in betacatenin for interactions with LEF-1, conductin and APC. Nat. Struct. Biol. 7(9):800–807.

    Article  CAS  Google Scholar 

  • Wakitani, S., Saito, T., and Caplan, A. L. (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5azacytidine. Muscle Nerve 18(12):1417–1426.

    Article  PubMed  CAS  Google Scholar 

  • Wasan, H. S., Park, H. S., Liu, K. C., et al. (1998) APC in the regulation of intestinal crypt fission. J. Pathol. 185(3):246–255.

    Article  PubMed  CAS  Google Scholar 

  • Wielenga, V. J., Smits, R., Korinek, V., et al. (1999) Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am. J. Pathol. 154(2):515–523.

    Article  PubMed  CAS  Google Scholar 

  • Willert, K. and Nusse, R. (1998) Beta-catenin: a key mediator of Wnt signaling. Curr. Opin. Genet. Dev. 8:95–102.

    Article  PubMed  CAS  Google Scholar 

  • Williams, E. D., Lowes, A. P., Williams, D., et al. (1992) A stem cell niche theory of intestinal crypt maintenance based on a study of somatic mutation in colonic mucosa. Am. J. Pathol. 141 (4):773–776.

    PubMed  CAS  Google Scholar 

  • Winton, D. J. and Ponder, B. A. (1990) Stem-cell organization in mouse small intestine. Proc. Roy. Soc. 241:13–18.

    Article  CAS  Google Scholar 

  • Withers, H. R. and Elkind, M. M. (1970) Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int. J. Radiat. Biol. 17:261–267.

    Article  CAS  Google Scholar 

  • Worsham, M. J., Wolman, S. R., Carey, T. E., et al. (1995) Common clonal origin of synchronous primary head and neck squamous cell carcinomas: analysis by tumor karyotypes and fluorescence in situ hybridization. Hum. Pathol. 26(3):251–261.

    Article  PubMed  CAS  Google Scholar 

  • Wright, N. A. and Alison, M. R. (1984) Biology of Epithelial Cell Populations, vol. 2, Clarendon, Oxford, UK.

    Google Scholar 

  • Wright, N. A. (2000) Epithelial stem cell repertoire in the gut: clues to the origin of cell lineages, proliferative units and cancer. Int. J. Exp. Pathol. 81(2):117–143.

    Article  PubMed  CAS  Google Scholar 

  • Wright, N. A. and Poulsom, R. (2002) Top down or bottom up? Competing management structures in the morphogenesis of colorectal neoplasms. Gut 51(3):306–308.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H. K., Linnoila, R. I., Conrad, N. K., et al. (1995) TP53 and RAS mutations in metachronous tumors from patients with cancer of the upper aerodigestive tract. Int. J. Cancer 64(4).229–233.

    Article  PubMed  CAS  Google Scholar 

  • Yatabe, Y., Tavare, S., and Shibata, D. (2001) Investigating stem cells in human colon by using methylation patterns. Proc. Natl. Acad. Sci. USA 98(19):1187–1190.

    Article  Google Scholar 

  • Zhao, L. R., Duan, W. M., Reyes, M., et al. (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp. Neurol. 174:11–20.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brittan, M., Wright, N.A. (2004). Stem Cell Origin of Cell Lineages, Proliferative Units, and Cancer in the Gastrointestinal Tract. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_30

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics