Skip to main content

The Stem Cell Plasticity of Aggressive Melanoma Tumor Cells

  • Chapter
  • 371 Accesses

Abstract

Microarray analysis of melanoma cell lines suggests that aggressive melanomas have a pluripotent, embryonic-like phenotype, implying the possibility of a stem cell origin for tumor components. Aggressive melanoma cells also form vascular structures and express endothelial-associated genes (including vascular endothelial-cadherin and EphA2) critical for vessel formation, indicating that the tumor cells have the plasticity to generate progeny, which express multiple cellular phenotypes with additional biological potential. This does not occur in poorly aggressive tumors, and, thus, expression of these genes is a predictor of biological behavior of the tumor. The aggressive tumor cells were able to participate in the neovascularization of ischemic tissue and produce factors that influence poorly aggressive tumor cells to assume a vascular phenotype. Understanding the molecular underpinnings of the plasticity of melanoma cells may lead to more effective diagnosis, treatment, and prevention measures for aggressive melanoma tumors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. J., Gage, F. H., and Weissman, L. (2001) Can stem cells cross lineage boundaries? Nat. Med. 7(4):393–395.

    Article  PubMed  CAS  Google Scholar 

  • Bissell, M. (1999) Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch : A rose by any other name? Am. J. Pathol. 155(3):675–679.

    Article  PubMed  CAS  Google Scholar 

  • Bittner, M., Meltzer, P., Chen, Y., et al. (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406(6795):536–540.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P. (2000) Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6:389–395.

    Article  PubMed  CAS  Google Scholar 

  • Colognato, H. and Yurchenco, P.D. (2000) Form and function: the laminin family of heterotrimers. Dev. Dyn. 218:213–234.

    Article  PubMed  CAS  Google Scholar 

  • Condorelli, G., Borello, U., De Angelis, L., et al. (2001) Cardiomyocytes induce endothelial cells to transdifferentiate into cardiac muscle: implications for myocardium regeneration. Proc. Natl. Acad. Sci. USA 98(19): 10,733–10,738.

    CAS  Google Scholar 

  • Ellisen, L.W., Bird, J., West, D.C., et al. (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66:649–661.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. (1995) Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N. Engl. J. Med. 333:1757–1763.

    Article  PubMed  CAS  Google Scholar 

  • Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G., and Quaranta, V. (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228.

    Article  PubMed  CAS  Google Scholar 

  • Gridley, T. (2001) Notch signaling during vascular development. Proc. Natl. Acad. Sci. USA 98:10,733–10,738.

    Article  Google Scholar 

  • Gumbiner, B. M. (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 4:345–357.

    Article  Google Scholar 

  • Hartlapp, I., Abe, R., Saeed, R. W., et al. (2001) Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J. 15:2215–2224.

    Article  PubMed  CAS  Google Scholar 

  • Hendrix, M. J. C., Seftor, E. A., Kirschmann, D. A., and Seftor, R. E. B. (2000) Molecular biology of breast cancer metastasis: molecular expression of vascular markers by aggressive breast cancer cells. Breast Cancer Res. 2:417–422.

    Article  PubMed  CAS  Google Scholar 

  • Hendrix, M. J. C., Seftor, E. A., Meltzer, P. S., et al. (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl. Acad. Sci. USA 98:8018–8023.

    Article  PubMed  CAS  Google Scholar 

  • Hendrix, M. J. C., Seftor, R. E. B., Seftor, E. A., et al. (2002) Transendothelial function of human metastatic melanoma cells: role of the micro-environment in cell-fate determination. Cancer Res. 62: 665–668.

    PubMed  CAS  Google Scholar 

  • Hendrix, M. J. C., Seftor, E. A., Hess, A. R., and Seftor, R. E. B. (2003) Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma. Nature Rev. Cancer 3:411–421.

    Article  CAS  Google Scholar 

  • Hess, A. R., Seftor, E. A., Gardner, L. M. G., et al. (2001) Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation. role of epithelial cell kinase (Eck/EphA2). Cancer Res. 61:3250–3255.

    PubMed  CAS  Google Scholar 

  • Hoang, M. P., Selim, M. A., Bentley, R. C., Burchette, J. L., and Shea, C. R. (2001) CD34 expression in desmoplastic melanoma. J. Cutan. Pathol. 28:508–512.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R. O. (1992) Specificity of cell adhesion in development: the cadherin superfamily. Curr. Opin. Genet. Dev. 2:621–624.

    Article  PubMed  CAS  Google Scholar 

  • Kazunori, K. and Fujiwara, T. (1994) Transformation of fibroblasts into endothelial cells during angiogenesis. Cell Tissue Res. 278:625–628.

    Article  Google Scholar 

  • Kemler, R. (1992) Classical cadherins. Semin. Cell Biol. 3:149–155.

    Article  PubMed  CAS  Google Scholar 

  • Khan, J., Simon, R., Bittner, M., et al. (1998) Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res. 58:5009–5013.

    PubMed  CAS  Google Scholar 

  • Koshikawa, N., Giannelli, G., Cirulli, V., Miyazaki, K., and Quaranta, V. (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J. Cell Biol. 148:615–624.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, R. and Fidler, I. J. (1998) Angiogenic molecules and cancer metastasis. In Vivo 12:27–34.

    PubMed  CAS  Google Scholar 

  • Lampugnani, M. G., Resnati, M., Raiteri, M., et al. (1992) A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J. Cell Biol. 118:1511–1522.

    Article  PubMed  CAS  Google Scholar 

  • Luo, J., Duggan, D. J., Chen, Y., et al. (2001) Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 61:4683–4688.

    PubMed  CAS  Google Scholar 

  • Malinda, K. M. and Kleinman, H. K. (1996) The laminins. Int. J. Biochem. Cell Biol. 28(9):957–995.

    Article  PubMed  CAS  Google Scholar 

  • Malinda, K. M., Motoyoshi, N., Melissa, C., et al. (1999) Identification of laminin α1 and β1 chain peptides active for endothelial cell adhesion, tube formation, and aortic sprouting. FASEB J. 13:53–62.

    PubMed  CAS  Google Scholar 

  • Maniotis, A. J., Folberg, R., Hess, A., et al. (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 155(3):739–752.

    Article  PubMed  CAS  Google Scholar 

  • Pasquale, E. B. (1997) The Eph family of receptors. Curr. Opin. Cell. Biol. 9:608–615.

    Article  PubMed  CAS  Google Scholar 

  • Perou, C. M., Sorlie, T., Eisen, M. B., et al. (2000) Molecular portraits of human breast tumours. Nature 406:747–752.

    Article  PubMed  CAS  Google Scholar 

  • Rak, J. and Kerbel, R. S. (1996) Treating cancer by inhibiting angiogenesis: new hopes and potential pitfalls. Cancer Metastasis. Rev. 15:231–236.

    Article  PubMed  CAS  Google Scholar 

  • Reya, T, Morrison, S. J., Clarke, M. F., and Weissman, I. (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W. (1997) Mechanisms of angiogenesis. Nature 386:671–674.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, J., Blonel, B. J., Gallahan, D., and Callahan, R. (1992) Mouse mammary tumor gene Int-3: a member of the Notch gene family transforms mammary epithelial cells. J. Virol. 66:2594–2599.

    PubMed  CAS  Google Scholar 

  • Rosenburg, I. M., Goke, M., Kanai, M., Reinecker, H. C., Podolsky, D. K. (1997) Epithelial cell kinase-B-61: an autocrine loop modulating intestinal epithelial migration and barrier function. Am. .1. Physiol. 273(4 Pt. 1):G824-G832.

    Google Scholar 

  • Seftor, E. A., Meltzer, P. S., Schatteman, G. C., et al. (2002a) Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit. Rev. Oncol. Hematol. 44: 17–27.

    Article  PubMed  Google Scholar 

  • Seftor, E.A., Meltzer, P.S., Kirschmann, D.A., Pe’er, J., Maniotis, A.J., Trent, J.M., Folberg, R., and Hendrix, M.J.C. (2002) Molecular determinants of human uveal melanoma invasion and metastasis. Clin. Exp. Metastasis. 19:233–246.

    Article  PubMed  CAS  Google Scholar 

  • Seftor, R. E. B., Seftor, E. A., Koshikawa, N., et al. (2001) Cooperative interactions of laminin 5 y2 chain, matrix metalloproteinase-2, and membrane type-1 matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res. 61:6322–6327.

    PubMed  CAS  Google Scholar 

  • Seftor, R. E. B., Seftor, E. A., Hess, A. R., et al. (2003) The role of the vasculogenic phenotype and its associated extracellular matrix in tumor progression: Implications for immune surveillance. Clin. Applied Immunol. Rev. 3:263–276.

    Article  CAS  Google Scholar 

  • Sharma, N., Seftor, R. E. B., Seftor, E. A., et al. (2002) Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate 50:189–201.

    Article  PubMed  Google Scholar 

  • Shirakawa, K., Kobayashi, H. Keike, Y., et al. (2002) Rapid accumulation and internalization of radiolabeled herceptin in an inflammatory breast cancer xenograft with vasculogenic mimicry predicted by the contrast-enhanced dynamic MRI with the macromolecular contrast agent G6-(1B4M-Gd)(256). Cancer Res. 62(3):860–866.

    PubMed  Google Scholar 

  • Shou, J., Ross, S., Koeppen, H., de Sauvage, F. J., and Gao, W.-Q. (2001) Dynamics of Notch expression during murine prostate development and tumorigenesis. Cancer Res. 61:7291–7297.

    PubMed  CAS  Google Scholar 

  • Sood, A. K., Seftor, E. A., Fletcher, M. S., et al. (2001) Molecular determinants of ovarian cancer plasticity. Am. J. Pathol. 158(4):1279–1288.

    Article  PubMed  CAS  Google Scholar 

  • Straume, O. and Akslen, L. A. (2001) Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and Ephrin-A1/EphA2 on melanoma progression. Am. J. Pathol. 160(3):1009–1019.

    Article  Google Scholar 

  • Uyttendaele, H., Ho, J., Rossant, J., and Kitajewski, J. (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc. Natl. Acad. Sci. USA 98, 5643–5648.

    Article  PubMed  CAS  Google Scholar 

  • Voehringer, D. W., Hirschberg, D. L., Xiao, J., et al. (2000) Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc. Natl. Acad. Sci. USA 97: 2680–2685.

    Article  PubMed  CAS  Google Scholar 

  • Zagouras, P., Stifani, S., Blaumueller, C. M., Carcangiu, M. L., and Artavanis-Tsakonas, S. (1995) Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl. Acad. Sci. USA 92: 6414–6418.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, T. P., Childs, S., Leu, J. P., and Fishman, M. C. (2001) Gridlock signaling pathway fashions the first embryonic artery. Nature 414: 216–220.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hendrix, M.J.C. et al. (2004). The Stem Cell Plasticity of Aggressive Melanoma Tumor Cells. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_27

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics