Skip to main content

Development of the Cardiovascular System in Embryoid Bodies Derived from Embryonic Stem Cells

  • Chapter
  • 368 Accesses

Abstract

The vertebrate heart and circulatory system is the first embryonic organ to develop from cells in the embryoid body. Understanding how this happens has been examined through the use of reporter genes by expression of green fluorescent protein under the control of cardiac- and endothelial cell—specific promoters. The cardiac primordial may be recognized as bilaterally symmetric strands of mesenchymal cells derived from the lateral plate mesoderm, which forms separate layers of myocardium and endocardium separated by extracellular matrix (cardiac jelly). The endoderm derives from ingressing cells during gastrulation and provides signals (factors such as bone morphogenetic protein-2 (BMP-2), fibroblast growth factor-1,2,4 (FGF-1,2,4)) that influence the adjacent mesoderm. The endocardium is in turn influenced by transforming growth factor-β and vascular endothelial growth factor (VEGF). Other factors such as cardiotrophin-1 and leukemia inhibitory factor also control cardiac development. First there is a simple linear heart tube, which goes on to form modular elements (atria, ventricles, septa, and valves). By folding on itself and fusing, the four-chambered heart is formed. These structural events are triggered by specific signaling molecules and involve reactive oxygen species and characteristic action potentials correlated with specialized types of ion channels, as well as a developmentally controlled expression pattern of the cardiac-specific genes encoding atrial natriuretic factor and sarcomeric proteins (i.e., α- and β-cardiac myosin heavy chain, myosin light chain isoform 2V, titin [Z-disk], titin [M-band], a-actinin, myomesin, sarcomeric a-actin, and troponin T), followed by M-protein. Whereas in early stage embryonic stem (ES) cell—derived cardiomyocytes cell contraction is triggered by Ca2+ transients arising from intracellular Ca2+ stores, contraction of terminally differentiated cardiac cells is dependent on an evoked action potential leading to opening of L-type voltage-dependent Ca2+ channels that appear several days before “beating” of cardiomyocytes. The vascular structures of the embryo develop from angioblasts in the paraaxial and lateral plate mesoderm as well as in the yolk sac extraembryonic mesoderm, where they form the outer layer of blood islands. Vasculogenesis and angiogenesis are strictly regulated by the pericellular oxygen tension of the tissue through hypoxia inducible factor-1. Many of the genes involved in cardiovascular differentiation are directly or indirectly regulated by hypoxia, with VEGF being a principle factor required for vasculogenesis. Therapeutic use of ES cells would be greatly enhanced if we knew how to direct ES cells to specific cell lineages in the cardiovascular or other organ systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, D. M., Maltepe, E., and Simon, M. C. (1999) Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev. 13:2478–2483.

    Article  PubMed  CAS  Google Scholar 

  • Arnhold, S., Andressen, C., Hescheler, J., and Addicks, K. (1998) Microcinematographic studies on neurodifferentiation and neurotoxicity in vitro using mouse embryonic stem cells. ALTEX 15:59–66.

    PubMed  Google Scholar 

  • Bader, A., Al Dubai, H., and Weitzer, G. (2000) Leukemia inhibitory factor modulates cardiogenesis in embryoid bodies in opposite fashions. Circ. Res. 86:787–794.

    Article  PubMed  CAS  Google Scholar 

  • Bader, A., Gruss, A., Hollrigl, A., Al Dubai, H., Capetanaki, Y., and Weitzer, G. (2001) Paracrine promotion of cardiomyogenesis in embryoid bodies by LIF modulated endoderm. Differentiation 68: 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Barker, J. E. (1968) Development of the mouse hematopoietic system. I. Types of hemoglobin produced in embryonic yolk sac and liver. Dev. Biol. 18:14–29.

    Article  PubMed  CAS  Google Scholar 

  • Boller, K., Kemler, R., Baribault, H., and Doetschman, T. (1987) Differential distribution of cytokeratins after microinjection of anticytokeratin monoclonal antibodies. Eur. J. Cell Biol. 43:459–468.

    PubMed  CAS  Google Scholar 

  • Bremer, S., Worth, A. P., Paparella, M., et al. (2001) Establishment of an in vitro reporter gene assay for developmental cardiac toxicity. Toxicol. in Vitro 15:215–223.

    Article  PubMed  CAS  Google Scholar 

  • Bruneau, B. G. (2002) Transcriptional regulation of vertebrate cardiac morphogenesis. Circ. Res. 90:509–519.

    Article  PubMed  Google Scholar 

  • Carmeliet, P., Dor, Y., Herbert, J. M., et al. (1998) Role of HIF-lalpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490.

    Article  PubMed  CAS  Google Scholar 

  • Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., and Keller, G. (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732.

    PubMed  CAS  Google Scholar 

  • Cleemann, L., Wang, W., and Morad, M. (1998) Two-dimensional confocal images of organization, density, and gating of focal Ca2+ release sites in rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 95: 10,984–10,989.

    Article  CAS  Google Scholar 

  • Cockman, M. E., Masson, N., Mole, D. R., et al. (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 275:25,733–25,741.

    Article  CAS  Google Scholar 

  • Coffin, J. D., Harrison, J., Schwartz, S., and Heimark, R. (1991) Angioblast differentiation and morphogenesis of the vascular endothelium in the mouse embryo. Dev. Biol. 148:51–62.

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Gould, L. and Mikawa, T. (1996) The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis. Dev. Biol. 177:265–273.

    Article  PubMed  CAS  Google Scholar 

  • Conquet, F., Peyrieras, N., Tiret, L., and Brulet, P. (1992) Inhibited gastrulation in mouse embryos overexpressing the leukemia inhibitory factor. Proc. Natl. Acad. Sci. USA 89:8195–8199.

    Article  PubMed  CAS  Google Scholar 

  • Czyz, J. and Wobus, A. (2001) Embryonic stem cell differentiation: the role of extracellular factors. Differentiation 68:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87:27–45.

    PubMed  CAS  Google Scholar 

  • Epstein, J. A. and Buck, C. A. (2000) Transcriptional regulation of cardiac development: implications for congenital heart disease and DiGeorge syndrome. Pediatr. Res. 48:717–724.

    Article  PubMed  CAS  Google Scholar 

  • Fassler, R., Rohwedel, J., Maltsev, V., et al. (1996) Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. J. Cell. Sci. 109(Pt. 13):2989–2999.

    PubMed  Google Scholar 

  • Fishman, M. C. and Chien, K. R. (1997) Fashioning the vertebrate heart: earliest embryonic decisions. Development 124:2099–2117.

    PubMed  CAS  Google Scholar 

  • Folkman, J. (1997) Angiogenesis and angiogenesis inhibition: an overview. EXS 79:1–8.

    PubMed  CAS  Google Scholar 

  • Genschow, E., Scholz, G., Brown, N., et al. (2000) Development of prediction models for three in vitro embryotoxicity tests in an ECVAM validation study. In Vitro Mol. Toxicol. 13:51–66.

    CAS  Google Scholar 

  • Godin, I. E., Garcia-Porrero, J. A., Coutinho, A., Dieterlen-Lievre, F., and Marcos, M. A. (1993) Para-aortic splanchnopleura from early mouse embryos contains Bla cell progenitors. Nature 364:67–70.

    Article  PubMed  CAS  Google Scholar 

  • Gough, N. M., Williams, R. L., Hilton, D. J., et al. (1989) LIF: a molecule with divergent actions on myeloid leukaemic cells and embryonic stem cells. Reprod. Fertil. Dev. 1:281–288.

    Article  PubMed  CAS  Google Scholar 

  • Guan, K., Furst, D. O., and Wobus, A. M. (1999) Modulation of sarcomere organization during embryonic stem cell-derived cardiomyocyte differentiation. Eur. J. Cell Biol. 78:813–823.

    Article  PubMed  CAS  Google Scholar 

  • Hescheler, J., Fleischmann, B. K., Lentini, S., et al. (1997). Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc. Res. 36:149–162.

    Article  PubMed  CAS  Google Scholar 

  • Hescheler, J., Fleischmann, B. K., Wartenberg, M., et al. (1999). Establishment of ionic channels and signalling cascades in the embryonic stem cell-derived primitive endoderm and cardiovascular system. Cells Tissues Organs 165:153–164.

    Article  PubMed  CAS  Google Scholar 

  • Hescheler, J., Wartenberg, M., Fleischmann, B. K., Banach, K., Acker, H., and Sauer, H. (2002). Embryonic stem cells as a model for the physiological analysis of the cardiovascular system. Methods Mol. Biol. 185:169–187.

    PubMed  CAS  Google Scholar 

  • Iyer, N. V., Kotch, L. E., Agani, F., et al. (1998) Cellular and developmental control of 02 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12:149–162.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. M. and Thomson, J. A. (2000) Human embryonic stem cell technology. Semin. Reprod. Med. 18:219–223.

    Article  PubMed  CAS  Google Scholar 

  • Kallio, P. J., Wilson, W. J., O’Brien, S., Makino, Y., and Poellinger, L. (1999) Regulation of the hypoxia-inducible transcription factor 1 alpha by the ubiquitin-proteasome pathway. J. Biol. Chem. 274: 6519–6525.

    Article  PubMed  CAS  Google Scholar 

  • Kamino, K. (1991) Optical approaches to ontogeny of electrical activity and related functional organization during early heart development. Physiol. Rev. 71:53–91.

    PubMed  CAS  Google Scholar 

  • Kearney, J. B., Ambler, C. A., Monaco, K. A., Johnson, N., Rapoport, R. G., and Bautch, V. L. (2002) Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 99: 2397–2407.

    Article  PubMed  CAS  Google Scholar 

  • Kehat, I., Kenyagin-Karsenti, D., Snir, M., et al. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108:407–414.

    PubMed  CAS  Google Scholar 

  • Kieran, M. W. and Billett, A. (2001) Antiangiogenesis therapy: current and future agents. Hematol. Oncol. Clin. North Am. 15:835–51; viii, Review.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, M. L. and Waldo, K. L. (1990) Role of neural crest in congenital heart disease. Circulation 82:332–340.

    Article  PubMed  CAS  Google Scholar 

  • Klug, M. G., Soonpaa, M. H., Koh, G. Y., and Field, L. J. (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest. 98:216–224.

    Article  PubMed  CAS  Google Scholar 

  • Kolossov, E., Fleischmann, B. K., Liu, Q., et al. (1998) Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J. Cell. Biol. 143:2045–2056.

    Article  PubMed  CAS  Google Scholar 

  • Kotch, L. E., Iyer, N. V., Laughner, E., and Semenza, G. L. (1999) Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev. Biol. 209:254–267.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, C. T., Morrisey, E. E., Anandappa, R., et al. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11:1048–1060.

    Article  PubMed  CAS  Google Scholar 

  • Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., and Langer, R. (2002) Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 99:4391–4396.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lopez, J. R., Shacklock, P. S., Balke, C. W., and Wier, W. G. (1995) Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268:1042–1045.

    Article  PubMed  CAS  Google Scholar 

  • Lough, J. and Sugi, Y. (2000) Endoderm and heart development. Dev. Dyn. 217:327–342.

    Article  PubMed  CAS  Google Scholar 

  • Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A., and Simon, M. C. (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386:403–407.

    Article  PubMed  CAS  Google Scholar 

  • Maltsev, V. A., Rohwedel, J., Hescheler, J., and Wobus, A. M. (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44: 41–50.

    Article  PubMed  CAS  Google Scholar 

  • Maltsev, V. A., Wobus, A. M., Rohwedel, J., Bader, M., and Hescheler, J. (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res. 75:233–244.

    Article  PubMed  CAS  Google Scholar 

  • Maltsev, V. A., Ji, G. J., Wobus, A. M., Fleischmann, B. K., and Hescheler, J. (1999) Establishment of beta-adrenergic modulation of L-type Ca2+ current in the early stages of cardiomyocyte development. Circ. Res. 84:136–145.

    Article  PubMed  CAS  Google Scholar 

  • Marchetti, S., Gimond, C., Iljin, K., et al. (2002) Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J. Cell. Sci. 115: 2075–2085.

    PubMed  CAS  Google Scholar 

  • Maxwell, P. H. and Ratcliffe, P. J. (2002) Oxygen sensors and angiogenesis. Semin. Cell. Dev. Biol. 13:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Medvinsky, A. L., Samoylina, N. L., Muller, A. M., and Dzierzak, E. A. (1993) An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364:64–67.

    Article  PubMed  CAS  Google Scholar 

  • Miquerol, L., Langille, B. L., and Nagy, A. (2000) Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127:3941–3946.

    PubMed  CAS  Google Scholar 

  • Muller, A. M., Medvinsky, A., Strouboulis, J., Grosveld, F., and Dzierzak, E. (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1:291–301.

    Article  PubMed  CAS  Google Scholar 

  • Murray, P. and Edgar, D. (2001) The regulation of embryonic stem cell differentiation by leukaemia inhibitory factor (LIF). Differentiation 68:227–234.

    Article  PubMed  CAS  Google Scholar 

  • Narita, N., Bielinska, M., and Wilson, D. B. (1997) Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells. Development 124:3755–3764.

    PubMed  CAS  Google Scholar 

  • Olson, E. N. and Srivastava, D. (1996) Molecular pathways controlling heart develonment. Science 272:671–676.

    Article  PubMed  CAS  Google Scholar 

  • Passavant, C., Zhao, X., Das, S. K., Dey, S. K., and Mead, R. A. (2000) Changes in uterine expression of leukemia inhibitory factor receptor gene during pregnancy and its up-regulation by prolactin in the western spotted skunk. Biol. Reprod. 63:301–307.

    Article  PubMed  CAS  Google Scholar 

  • Pennica, D., King, K. L., Shaw, K. J., et al. (1995) Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc. Natl. Acad. Sci. USA 92:1142–1146.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, C. W., Chang, G. W., Cockman, M., et al. (1999) Regulation of gene expression by oxygen levels in mammalian cells. Adv. Nephrol. Necker Hosp. 29:191–206.

    PubMed  CAS  Google Scholar 

  • Risau, W. (1991) Embryonic angiogenesis factors. Pharmacol. Ther. 51:371–376.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., Sariola, H., Zerwes, H. G., et al. (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102:471–478.

    PubMed  CAS  Google Scholar 

  • Robertson, S. M., Kennedy, M., Shannon, J. M., and Keller, G. (2000) A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development 127: 2447–2459.

    PubMed  CAS  Google Scholar 

  • Rohwedel, J., Guan, K., Hegert, C., and Wobus, A. M. (2001) Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity studies: present state and future prospects. Toxicol. In Vitro 15:741–753.

    Article  PubMed  CAS  Google Scholar 

  • Rolfs, A., Kvietikova, I., Gassmann, M., and Wenger, R. H. (1997) Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J. Biol. Chem. 272:20,055–20,062.

    Article  CAS  Google Scholar 

  • Ryan, H. E., Lo, J., and Johnson, R. S. (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 17:3005–3015.

    Article  PubMed  CAS  Google Scholar 

  • Sack, M. N., Disch, D. L., Rockman, H. A., and Kelly, D. P. (1997) A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc. Natl. Acad. Sci. USA 94:6438–6443.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, H., Hofmann, C., Wartenberg, M., Wobus, A. M., and Hescheler, J. (1998) Spontaneous calcium oscillations in embryonic stem cellderived primitive endodermal cells. Exp. Cell. Res. 238:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, H., Rahimi, G., Hescheler, J., and Wartenberg, M. (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett. 476:218–223.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, H., Theben, T., Hescheler, J., Lindner, M., Brandt, M. C., and Wartenberg, M. (2001a) Characteristics of calcium sparks in cardiomyocytes derived from embryonic stem cells. Am. J. Physiol. Heart Circ. Physiol. 281:H411-H421.

    PubMed  CAS  Google Scholar 

  • Sauer, H., Wartenberg, M., and Hescheler, J. (2001b) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell. Physiol. Biochem. 11:173–186.

    Article  PubMed  CAS  Google Scholar 

  • Sedmera, D., Pexieder, T., Vuillemin, M., Thompson, R. P., and Anderson, R. H. (2000) Developmental patterning of the myocardium. Anat. Rec. 258:319–337.

    Article  PubMed  CAS  Google Scholar 

  • Shamblott, M. J., Axelman, J., Littlefield, J. W., et al. (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc. Natl. Acad. Sci. USA 98:113–118.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, Z., Pennica, D., Wood, W. I., and Chien, K. R. (1996) Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development 122:419–428.

    PubMed  CAS  Google Scholar 

  • Shiraishi, I., Takamatsu, T., and Fujita, S. (1995) Three-dimensional observation with a confocal scanning laser microscope of fibronectin immunolabeling during cardiac looping in the chick embryo. Anat. Embryol. (Berl.) 191:183–189.

    Article  CAS  Google Scholar 

  • Soudais, C., Bielinska, M., Heikinheimo, M., et al. (1995) Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development 121:3877–3888.

    PubMed  CAS  Google Scholar 

  • Stewart, C. L., Kaspar, P., Brunet, L. J., et al. (1992) Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359:76–79.

    Article  PubMed  CAS  Google Scholar 

  • Taber, L. A., Lin, I. E., and Clark, E. B. (1995) Mechanics of cardiac looping. Dev. Dyn. 203:42–50.

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto, K., Makino, Y., Pereira, T., and Poellinger, L. (2000) Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19:4298–4309.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Tosetti, F., Ferrari, N., De Flora, S., and Albini, A. (2002) Angioprevention: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J. 16:2–14.

    Article  PubMed  CAS  Google Scholar 

  • Townsend, P. J., Barton, P. J., Yacoub, M. H., and Farza, H. (1995) Molecular cloning of human cardiac troponin T isoforms: expression in developing and failing heart. J. Mol. Cell. Cardiol. 27:2223–2236.

    Article  PubMed  CAS  Google Scholar 

  • Viatchenko-Karpinski, S., Fleischmann, B. K., Liu, Q., et al. (1999). Intracellular Ca2+ oscillations drive spontaneous contractions in cardiomyocytes during early development. Proc. Natl. Acad. Sci. USA 96:8259–8264.

    Article  PubMed  CAS  Google Scholar 

  • Vittet, D., Prandini, M. H., Berthier, R., et al. (1996) Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88:3424–3431.

    PubMed  CAS  Google Scholar 

  • Wang, R., Clark, R., and Bautch, V. L. (1992) Embryonic stem cellderived cystic embryoid bodies form vascular channels: an in vitro model of blood vessel development. Development 114:303–316.

    PubMed  CAS  Google Scholar 

  • Wartenberg, M., Gunther, J., Hescheler, J., and Sauer, H. (1998) The embryoid body as a novel in vitro assay system for antiangiogenic agents. Lab. Invest. 78:1301–1314.

    PubMed  CAS  Google Scholar 

  • Wartenberg, M., Donmez, F., Ling, F. C., Acker, H., Hescheler, J., and Sauer, H. (2001) Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J. 15: 995–1005.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F. M. and Hogan, B. L. (2000). Out of Eden: stem cells and their niches. Science 287:1427–1430.

    Article  PubMed  CAS  Google Scholar 

  • Wenger, R. H., Kvietikova, I., Rolfs, A., Camenisch, G., and Gassmann, M. (1998) Oxygen-regulated erythropoietin gene expression is dependent on a CpG methylation-free hypoxia-inducible factor-1 DNA-binding site. Eur. J. Biochem. 253:771–777.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. L., Hilton, D. J., Pease, S., et al. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687.

    Article  PubMed  CAS  Google Scholar 

  • Wobus, A. M., Wallukat, G., and Hescheler, J. (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48:173–182.

    Article  PubMed  CAS  Google Scholar 

  • Wobus, A. M., Rohwedel, J., Maltsev, V., and Hescheler, J. (1995) Development of cardiomyocytes expressing cardiac-specific genes, action potentials, and ionic channels during embryonic stem cellderived cardiogenesis. Ann. NY Acad. Sci. 752:460–469.

    Article  PubMed  CAS  Google Scholar 

  • Wood, S. M., Wiesener, M. S., Yeates, K. M., et al. (1998) Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1 alpha-subunit (HIF-1alpha). Characterization of hif-1alpha- dependent and -independent hypoxia-inducible gene expression. J. Biol. Chem. 273:8360–8368.

    Article  PubMed  CAS  Google Scholar 

  • Yutzey, K. E. and Bader, D. (1995) Diversification of cardiomyogenic cell lineages during early heart development. Circ. Res. 77:216–219.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, H. and Bunn, H. F. (2001) Signal transduction: how do cells sense oxygen? Science 292:449–451.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, H., Jackson, T., and Bunn, H. F. (2002) Detecting and responding to hypoxia. Nephrol. Dial. Transplant. 17(Suppl. 1):3–7.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sauer, H., Wartenberg, M., Sachinidis, A., Hescheler, J. (2004). Development of the Cardiovascular System in Embryoid Bodies Derived from Embryonic Stem Cells. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics