Skip to main content

Molecular Genetic Approaches in the Study of Retinal Progenitor Cells and Stem Cells

  • Chapter
Stem Cells Handbook
  • 367 Accesses

Abstract

Understanding how to take advantage of the special nature of multipotential stem cells responsible for renewal of retinal neurons in the mammalian eye could lead to more effective treatment of retinal blindness. The retina develops from precursor cells in the anterior neural plate through a highly conserved histogenic order. The differentiating cells migrate vertically from multipotent retinal progenitor cells in the pseudostratified neuroepithelium to form the inner layer of the optic cup. The differentiation of retinal cell types is promoted or inhibited by a number of secreted factors. Like other lineage systems, the developing retina has a few stem cells and larger numbers of transit-amplifying cells that are more restricted, presumably through neurogenic transcription factors of the bHLH class, including Pax6, Rx 1 , Six3/6, and Lhx2. In the adult, the peripheral rim of the neuroretina of amphibians and fish contribute to growth of the eye throughout adult life. In adult mammals, rare progenitor cells may be found in the pigmented ciliary margin of the eye. Under specific conditions, donor progenitor cells may be incorporated into the adult eye after injection into the subretinal space, but differentiation into functioning retinal neurons has not been achieved. This might be accomplished by the appropriate control of the required transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexiades, M. R. and Cepko, C. L. (1997) Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny. Development 124:1119–1131.

    PubMed  CAS  Google Scholar 

  • Anderson, D. J. (2001) Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30:19–35.

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas, S., Rand, M. D., and Lake, R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776.

    Article  PubMed  CAS  Google Scholar 

  • Ashery-Padan, R. and Gruss P. (2002). Pax6 lights-up the way for eye development. Curr. Opin. Cell. Biol. 13:706–714.

    Article  Google Scholar 

  • Barnstable, C. J., Hofstein, R., and Akagawa, K. (1985) A marker of early amacrine cell development in rat retina. Brain Res. 352:286–290.

    PubMed  CAS  Google Scholar 

  • Belecky-Adams, T., Tomarev, S., Li, H. S., et al. (1997) Pax-6, Prox 1, and Chx10 homeobox gene expression correlates with phenotypic fate of retinal precursor cells. Invest. Ophthalmol. Vis. Sci. 38:1293–1303.

    PubMed  CAS  Google Scholar 

  • Belliveau, M. J. and Cepko, C. L. (1999) Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Development 126:555–566.

    PubMed  CAS  Google Scholar 

  • Belliveau, M. J., Young, T. L., and Cepko, C. L. (2000) Late retinal progenitor cells show intrinsic limitations in the production of cell types and the kinetics of opsin synthesis. J. Neurosci. 20:2247–2254.

    PubMed  CAS  Google Scholar 

  • Bernier, G., Panitz, F., Zhou, X., Hollemann, T., Gruss, P., and Pieler, T. (2000) Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos. Mech. Dev. 93: 59–69.

    Article  PubMed  CAS  Google Scholar 

  • Boncinelli, E. and Morgan, R. (2001) Downstream of Otx2, or how to get a head. Trends Genet. 17:633–666.

    Article  PubMed  CAS  Google Scholar 

  • Brown, N. L., Kanekar, S., Vetter, M. L., Tucker, P. K., Gemza, D. L., and Glaser, T. (1998) Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 125:4821–4833.

    PubMed  CAS  Google Scholar 

  • Cepko, C. L. (1999) The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr. Opin. Neurobiol. 9:37–46.

    Article  PubMed  CAS  Google Scholar 

  • Cepko, C. L., Ryder, E., Austin, C., Golden, J., Fields-Berry, S., and Lin, J. (1998) Lineage analysis using retroviral vectors. Methods 14: 393–406.

    Article  PubMed  CAS  Google Scholar 

  • Chow, R. L., Altmann, C. R., Lang, R. A., and Hemmati-Brivanlou, A. (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126: 4213–4222.

    PubMed  CAS  Google Scholar 

  • Crossley, P. H., Martinez, S., Ohkubo, Y., and Rubenstein, J. L. (2001) Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 108:183–206.

    Article  PubMed  CAS  Google Scholar 

  • Dorsky, R. I., Chang, W. S., Rapaport, D. H., and Harris, W. A. (1997) Regulation of neuronal diversity in the Xenopus retina by Delta signalling. Nature 385:67–70.

    Article  PubMed  CAS  Google Scholar 

  • Dowling, J. E. (1987) The Retina: An Approachable Part of the Brain. Belknap Press of Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Eriksson, B., Bergqvist, I., Eriksson, M., and Holmberg, D. (2000) Functional expression of Cre recombinase in sub-regions of mouse CNS and retina. FEBS Lett. 102:106–110.

    Article  Google Scholar 

  • Ezzeddine, Z. D., Yang, X., DeChiara, T., Yancopoulos, G., and Cepko, C. L. (1997) Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124: 1055–1067.

    PubMed  CAS  Google Scholar 

  • Farah, M. H., Olson, J. M., Sucic, H. B., Hume, R. I., Tapscott, S. J., and Turner, D. L. (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127: 693–702.

    PubMed  CAS  Google Scholar 

  • Fischer, A. J. and Reh, T. A. (2000) Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev. Biol. 220:197–210.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, A. J. and Reh, T. A. (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat. Neurosci. 4:247–252.

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi-Shimogori, T. and Grove, E. A. (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 128:3585–3594.

    Google Scholar 

  • Furukawa, T., Kozak, C. A., and Cepko, C. L. (1997a) Rax, a novel pairedtype homeobox gene, shows expression in the anterior neural fold and developing retina. Proc. Natl. Acad. Sci. USA 94:3088–3093.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, T., Morrow, E. M., and Cepko, C. L. (1997b) Crx, a novel otxlike homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 14:531–541.

    Article  Google Scholar 

  • Furuta, Y., Lagutin, O., Hogan, B. L., and Oliver, G. C. (2000) Retina- and ventral forebrain-specific Cre recombinase activity in transgenic mice. Genesis 26:130–132.

    Article  PubMed  CAS  Google Scholar 

  • Gaiano, N., Kohtz, J. D., Turnbull, D. H., and Fishell, G. (1999) A method for rapid gain-of-function studies in the mouse embryonic nervous system. Nat. Neurosci. 2:812–819.

    Article  PubMed  CAS  Google Scholar 

  • Galli-Resta, L., Resta, G., Tan, S. S., and Reese, B. E. (1997) Mosaics of islet- 1 -expressing amacrine cells assembled by short-range cellular interactions. J. Neurosci. 17:7831–7838.

    PubMed  CAS  Google Scholar 

  • Gan, L., Wang, S. W., Huang, Z., and Klein, W. H. (1999) POU domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification. Dev. Biol. 210:469–480.

    Article  PubMed  CAS  Google Scholar 

  • Gehring, W. J. and Ikeo, K. (1999) Pax 6: mastering eye morphogenesis and eye evolution [see comments]. Trends Genet. 15:371–377.

    Article  PubMed  CAS  Google Scholar 

  • Goldowitz, D., Rice, D. S., and Williams, R. W. (1996) Clonal architecture of the mouse retina. Prog. Brain Res. 108:3–15.

    Article  PubMed  CAS  Google Scholar 

  • Grindley, J. C., Davidson, D. R., and Hill, R. E. (1995) The role of Pax6 in eye and nasal development. Development 121:1433–1442.

    PubMed  CAS  Google Scholar 

  • Guillemot, F. (1999) Vertebrate bHLH genes and the determination of neuronal fates. Exp. Cell. Res. 253:357–364.

    Article  PubMed  CAS  Google Scholar 

  • Haruta, M., Kosaka, M., Kanegae, Y., et al. (2001) Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat. Neurosci. 4:1163–1164.

    Article  PubMed  CAS  Google Scholar 

  • Haverkamp, S. and Wassle, H. (2000) Immunocytochemical analysis of the mouse retina. J. Comp. Neurol. 424:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Hogan, B., Beddington, R., Costantini, F., and Lacy, E. (1994) Manipulating the Mouse Embryo, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Hojo, M., Ohtsuka, T., Hashimoto, N., Gradwohl, G., Guillemot, F., and Kageyama, R. (2000). Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127:2515–2522.

    PubMed  CAS  Google Scholar 

  • Hollyfield, J. G. (1971). Differential growth of the neural retina in Xenopus laevis larvae. Dev. Biol. 24:264–286.

    Article  PubMed  CAS  Google Scholar 

  • Holt, C. E., Bertsch, T. W., Ellis, H. M., and Harris, W. A. (1988). Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1:15–26.

    Article  PubMed  CAS  Google Scholar 

  • Jean, D., Bernier, G., and Gruss, P. (1999) Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mech. Dev. 84:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, A. M. and Raff, M. C. (1997) Continuous observation of multipotential retinal progenitor cells in clonal density culture. Dev. Biol. 188:267–279.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P. R. (1978) Growth of the adult goldfish eye. III. Source of the new retinal cells. J. Comp. Neurol. 176:178–198.

    Google Scholar 

  • Kelley, M. W., Turner, J. K., and Reh, T. A. (1995) Regulation of proliferation and photoreceptor differentation in fetal human retinal cell cultures. Invest. Ophthalmol. Vis. Sci. 36:1280–1289.

    PubMed  CAS  Google Scholar 

  • Kenyon, K. L., Zaghloul, N., and Moody, S. A. (2001) Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate. Dev. Biol. 240:77–91.

    Article  PubMed  CAS  Google Scholar 

  • Li, H. S., Yang, J. M., Jacobson, R. D., Pasko, D., and Sundin, O. (1994) Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev. Biol. 162:181–194.

    Article  PubMed  CAS  Google Scholar 

  • Lillien, L. (1995) Changes in retinal cell fate induced by overexpression of EGF receptor. Nature 377:158–162.

    Article  PubMed  CAS  Google Scholar 

  • Lillien, L. (1998) Neural progenitors and stem cells: mechanisms of progenitor heterogeneity. Curr. Opin. Neurobiol. 8:37–44.

    Article  PubMed  CAS  Google Scholar 

  • Liu, W., Mo, Z., and Xiang, M. (2001) The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development. Proc. Natl. Acad. Sci. USA 98: 1649–1654.

    Article  PubMed  CAS  Google Scholar 

  • Lobe, C. G., Koop, K. E., Kreppner, W., Lomeli, H., Gertsenstein, M., Nagy, A. (1999) Z/AP, a double reporter for cre-mediated recombination. Dev. Biol. 208:281–292.

    Article  PubMed  CAS  Google Scholar 

  • Loosli, F., Winkler, S., and Wittbrodt, J. (1999) Six3 overexpression initiates the formation of ectopic retina. Genes Dev. 13:649–654.

    Article  PubMed  CAS  Google Scholar 

  • Mansouri, A. (2001) Determination of gene function by homologous recombination using embryonic stem cells and knockout mice. Methods Mol. Biol. 175:397–413.

    PubMed  CAS  Google Scholar 

  • Marquardt, T. and Gruss, P. (2002). Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci. 25:32–38.

    Article  PubMed  CAS  Google Scholar 

  • Marquardt, T., Ashery-Padan, R., Andrejewski, N., Scardigli, R., Guillemot, F., and Gruss, P. (2001). Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55.

    Article  PubMed  CAS  Google Scholar 

  • Marszalek, J. R., Liu, X., Roberts, E. A., et al. (2000) Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102:175–187.

    Article  PubMed  CAS  Google Scholar 

  • Mathers, P. H., Grinberg, A., Mahon, K. A., and Jamrich, M. (1997) The Rx homeobox gene is essential for vertebrate eye development. Nature 387:603–760.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, K. L., Gunther, E. C., and Reh, T. A. (1999) The development of the pattern of retinal ganglion cells in the chick retina: mechanisms that control differentiation. Development 126:5713–5724.

    PubMed  CAS  Google Scholar 

  • Morrow, E. M., Furukawa, T., Lee, J. E., and Cepko, C. L. (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126:23–36.

    PubMed  CAS  Google Scholar 

  • Neumann, C. J. and Nuesslein-Volhard, C. (2000) Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 289: 2137–2139.

    Article  PubMed  CAS  Google Scholar 

  • Ngo-Muller, V. and Muneoka, K. (2000) Exo utero surgery. Methods Mol. Biol. 135:481–492.

    PubMed  CAS  Google Scholar 

  • Oliver, G., Mailhos, A., Wehr, R., Copeland, N. G., Jenkins, N. A., and Gruss, P. (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121:4045–4055.

    PubMed  CAS  Google Scholar 

  • Otteson, D. C. (2001) Putative stem cells and the lineage of rod photoreceptors in the mature retina of the goldfish. Dev. Biol. 232:62–76.

    Article  PubMed  CAS  Google Scholar 

  • Perron, M. and Harris, W. A. (2000) Determination of vertebrate retinal progenitor cell fate by the Notch pathway and basic helix-loop-helix transcription factors. Cell. Mol. Life Sci. 57:215–223.

    Article  PubMed  CAS  Google Scholar 

  • Perron, M., Kanekar, S., Vetter, M. L., and Harris, W. A. (1998) The genetic sequence of retinal development in the ciliary margin of the Xenopus eve. Dev. Biol. 199:185–200.

    Article  PubMed  CAS  Google Scholar 

  • Perron, M., Opdecamp, K., Butler, K., Harris, W. A., and Bellefroid, E. J. (1999) X-ngnr-1 and Xath3 promote ectopic expression of sensory neuron markers in the neurula ectoderm and have distinct inducing properties in the retina. Proc. Natl. Acad. Sci. USA 96:14,996–15,001.

    Article  CAS  Google Scholar 

  • Porter, F. D., Drago, J., Xu, Y., et al. (1997) Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124:2935–2944.

    PubMed  CAS  Google Scholar 

  • Prada, C., Puga, J., Perez-Mendez, L., Lopez, R., and Ramirez, G. (1991) Spatial and temproal patterns of neurogenesis in the chick retina. Eur. J. Neurosci. 3:559–569.

    Article  PubMed  Google Scholar 

  • Price, J., Turner, D., and Cepko, C. (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 84:156–160.

    Article  PubMed  CAS  Google Scholar 

  • Rajewsky, K., Gu, H., Kuhn, R., Betz, U. A., Muller, W., Roes, J., and Schwenk, F. (1996) Conditional gene targeting. J. Clin. Invest. 98:600–603.

    Article  PubMed  CAS  Google Scholar 

  • Reh, T. (1987) Cell-specific regulation of neuronal production in the larval frog retina. J. Neurosci. 7:3317–3324.

    PubMed  CAS  Google Scholar 

  • Reh, T. A. and Levine, E. M. (1998) Multiopotential stem cells and progenitor cells in the vertebrate retina. J. Neurobiol. 36:206–220.

    Article  PubMed  CAS  Google Scholar 

  • Reh, T. A. and Nagy, T. (1987) A possible role for the vascular membrane in retinal regeneration in Rana catesbienna tadpoles. Dev. Biol. 122:471–482.

    Article  PubMed  CAS  Google Scholar 

  • Reyer, R. W. (1977) Repolarization of reversed, regenerating lenses in adult newts, Notophtalmus viridescens. Exp. Eye Res. 24:501–509.

    Article  CAS  Google Scholar 

  • Roe, T., Reynolds, T. C., Yu, G., and Brown, P. O. (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 12: 2099–2108.

    PubMed  CAS  Google Scholar 

  • Saito, T. and Nakatsuji, N. (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240:237–246.

    Article  PubMed  CAS  Google Scholar 

  • Seigel, G. M. (1996) Establishment of an E1A-immortalized retinal cell culture. In Vitro Cell Dev. Biol. Anim. 32:66–68.

    Article  PubMed  CAS  Google Scholar 

  • Seigel, G. M., Takahashi, M., Adamus, G., and McDaniel, T. (1998) Intraocular transplantation of E1A-immortalized retinal precursor cells. Cell Transplant. 7:559–566.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, K., Leonard, A. E., Lettieri, K., and Pfaff, S. L. (2000) Genetic and epigenetic mechanisms contribute to motor neuron pathfinding. Nature 406:515–519.

    Article  PubMed  CAS  Google Scholar 

  • Sparrow, J. R., Hicks, D., and Barnstable, C. J. (1990) Cell commitment and differentiation in explants of embryonic rat neural retina: comnparison with the developmental potential of dissociated retina. Brain Res. Dev. Brain Res. 51:69–84.

    Article  PubMed  CAS  Google Scholar 

  • Stone, L. S. (1950) The role of retinal pigment cells in regenerating neural retinae of adult salamander eyes. J. Exp. Zool. 113:9–31.

    Article  Google Scholar 

  • Tabata, H. and Nakajima, K. (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M., Palmer, T. D., Takahashi, J., and Gage, F. H. (1998) Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol. Cell. Neurosci. 12: 340–348.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, W. R., He, S., Levick, W. R., and Vaney, D. I. (2000) Dendritic computation of direction selectivity by retinal ganglion cells [see comments]. Science 289:2347–2350.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512.

    Article  PubMed  CAS  Google Scholar 

  • Tomita, K., Ishibashi, M., Nakahara, K., et al. (1996) Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16:723–734.

    Article  PubMed  CAS  Google Scholar 

  • Tropepe, V., Coles, B. L., Chiasson, B. J., et al. (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, J. Z., Chen, D. F., Gerber, D., et al. (1996) Subregion- and cell type—restricted gene knockout in mouse brain [see comments]. Cell 87:1317–1326.

    Article  PubMed  CAS  Google Scholar 

  • Turner, D. L. and Cepko, C. L. (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328: 131–136.

    Article  PubMed  CAS  Google Scholar 

  • Turner, D. L., Snyder, E. Y., and Cepko, C. L. (1990) Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4:833–845.

    Article  PubMed  CAS  Google Scholar 

  • Waid, D. K. and McLoon, S. C. (1998) Ganglion cells influence the fate of dividing retinal cells in culture. Development 125:1059–1066.

    PubMed  CAS  Google Scholar 

  • Walther, C. and Gruss, P. (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113:1435–1449.

    PubMed  CAS  Google Scholar 

  • Wang, S. W., Kim, B. S., Ding, K., et al. (2001) Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 15:24–29.

    Article  PubMed  CAS  Google Scholar 

  • Warfvinge, K., Kamme, C., Englund, U., and Wictorin, K. (2001) Retinal integration of grafts of brain-derived precursor cell lines implanted subretinally into adult, normal rats. Exp. Neurol. 169:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Wassle, H. and Boycott, B. B. (1991) Functional architecture ot the mammalian retina. Physiol. Rev. 71:447–480.

    PubMed  CAS  Google Scholar 

  • Weber, P., Metzger, D., Chambon, P. (2001) Temporally controlled targeted somatic mutagenesis in the mouse brain. Eur. J. Neurosci. 14: 1777–8173.

    Article  PubMed  CAS  Google Scholar 

  • Wetts, R. and Fraser, S. E. (1988) Multipotent precursors can give rise to all major cell types of the frog retina. Science 239:1142–1145.

    Article  PubMed  CAS  Google Scholar 

  • Wetts, R., Serbedzija, G. N., and Fraser, S. E. (1989) Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev. Biol. 136:254–263.

    Article  PubMed  CAS  Google Scholar 

  • Xiang, M. (1998) Requirement for Brn-3b in early differentiation of postmitotic retinal ganglion cell precursors. Dev. Biol. 197:155–169.

    Article  PubMed  CAS  Google Scholar 

  • Yan, R. T., Ma, W. X., and Wang, S. Z. (2001) Neurogenin2 elicits the genesis of retinal neurons from cultures of nonneural cells. Proc. Natl. Acad. Sci. USA 98:15,014–15,019.

    CAS  Google Scholar 

  • Young, M. J., Ray, J., Whiteley, S. J. O., Klassen, H., and Gage, F. H. (2000) Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol. Cell. Neurosci. 16:197–205.

    Article  PubMed  CAS  Google Scholar 

  • Young, R. W. (1985a) Cell differentiation in the retina of the mouse. Anat. Rec. 212:199–205.

    Article  PubMed  CAS  Google Scholar 

  • Young, R. W. (1985b) Cell proliferation during postnatal development of the retina in the mouse. Brain Res. 353:229–239.

    PubMed  CAS  Google Scholar 

  • Zuber, M. E., Perron, M., Philpott, A., Bang, A., and Harris, W. A. (1999) Giant eyes in Xenopus laevis by overexpression of XOptx2. Cell 98: 341–352.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marquardt, T., Gruss, P. (2004). Molecular Genetic Approaches in the Study of Retinal Progenitor Cells and Stem Cells. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics