Skip to main content

Stromal Support of Hematopoiesis

  • Chapter
Stem Cells Handbook

Abstract

Bone marrow stromal cells make up the microenvironment for hematopoiesis. The prototype for stem cell and lineages is that of the hematopoietic stem cell (HSC), as demonstrated by clonal analysis. The fate of the HSC is determined largely by the microenvironment (niche) provided by the mesenchymal stem cells (MSC). MSCs give rise to cells constituting the hematopoietic microenvironnement—i.e., stromal cells, endothelial cells, vascular smooth muscle cells (VSMCs), adipocytes, and osteoblasts—but also to other cell types—i.e., chondrocytes; sarcomeric muscle; and, in certain reports, neuroectoderm or endodermal cells. Transdifferentiation of MSC progeny seems more likely than in other cell lineages, and stromal cells from the different hematopoietic sites (bone marrow, fetal liver, aorta-gonad-mesonephros region) express a variety of mesenchymal cell–type markers, including markers for VSMCs, adipocytes, and osteoblasts. Stromal cells act through a number of mediators, cytokines, adhesion molecules, peptides, hormones, and other molecules such as wnts and eicosanoids. Cytokines and chemokines include the colony-stimulating factors, interleukin-6 (IL-6), leukemia inhibitory factor, IL-1, IL-7, IL-8, stem cell factor, flt3 ligand, hepatocyte growth factor, thrombopoietin, insulin-like growth factor1, transforming growth factor-3 TGF-β, -β-interferon-inducible protein-10 (IP-10), monocyte chemoattractant protein-1 (MCP-1), and stromal-derived factor-1 (see Table 2 in this chapter). IL-1 is a major inducer of the production of the other cytokines. TGF-βis the most potent inhibitor of hematopoiesis. It induces expression of inhibitory chemokines, such as MCP-1 and IP-10, and decreases expression of stromal adhesion molecules. Extracellular matrix collagens, laminins, and fibronectins each appear to have a role in hematopoiesis through binding to a number of cell adhesion molecules (see Table 3 of this chapter). This indicates a highly controlled, multifactorial, and redundant regulation of hematopoiesis by mesenchymal stromal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud, S. L., Bethel, R., and Aron, D. C. (1991) Secretion of insulin like growth factor I and insuline like growth factor-binding proteins by murine bone marrow stromal cells. J. Clin. Invest. 88:470–475.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, F., Flano, E., Castillo, A., Lopez-Fierro, P., Razquin, B., and Villena, A. (1996) Tissue distribution and structure of barrier cells in the hematopoietic and lymphoid organs of salmonids. Anat. Rec. 245: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Andrades, J. A., Han, B., Becerra, J., Sorgente, N., Hall, F. L., and Nimni, M. E. (1999) A recombinant human TGF-beta-1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp. Cell. Res. 250:485–498.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, D. F., Nemunaitis, J. J., and Singer, J. W. (1989) Recombinant tumor necrosis factor -alpha and interleukin 1-alpha increase expression of c-abl protooncogene mRNA in cultured human marrow stromal cells. Proc. Natl. Acad. Sci. USA 86:6788–6792.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, R. G., Singer, J. W., and Bernstein, I. D. (1989) Precursors of colony-forming cells in humans can be distinguished from colonyforming cells by expression of the CD33 and CD34 antigens and light scatter properties. J. Exp. Med. 169:1721–1731.

    Article  PubMed  CAS  Google Scholar 

  • Aoyama, K., Oritani, K., Yokota, T., et al. (1999) Stromal cell CD9 regulates differentiation of hematopoietic stem/progenitor cells. Blood 93: 2586–2594.

    PubMed  CAS  Google Scholar 

  • Austin, T. W., Solar, G. P., Ziegler, F. C., Liem, L., and Matthews, W. (1997) A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89:3624–3635.

    PubMed  CAS  Google Scholar 

  • Azizi, S. A., Stokes, D., Augelli, B. J., DiGirolamo, C., and Prockop, D. J. (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc. Natl. Acad. Sci. USA 95:3908–3913.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J. H., Joyner, C. J., Triffitt, J. T., and Owen, M. E. (1991) Adipocytic cells cultured from marrow have osteogenic potential. J. Cell Sci. 99:131–139.

    PubMed  Google Scholar 

  • Bianco, P. and Robey, P. G. (2000) Marrow stromal stem cells. J. Clin. Invest. 105:1663–1668.

    Article  PubMed  CAS  Google Scholar 

  • Bleul, C. C., Fuhlbrigge, R. C., Casanovas, J. M., Aiuti, A., and Springer, T. A. (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184:1101–1109.

    Article  PubMed  CAS  Google Scholar 

  • Brandon, C., Eisenberg, L. M., and Eisenberg, C. A. (2000) WNT signaling modulates the diversification of hematopoietic cells. Blood 96: 4132–4141.

    PubMed  CAS  Google Scholar 

  • Breems, D. A., Blokland, E. A. W., Neben, S., and Ploemacher, R. E. (1994) Frequency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia 8:1095–1104.

    PubMed  CAS  Google Scholar 

  • Brunner, G., Gabrilove, J., Rifkin, D. B., and Wilson, E. L. (1991) Phospholipase C release of basic fibroblast growth factor from human bone marrow cultures as a biologically active complex with a phosphatidylinositol-anchored heparan sulfate proteoglycan. J. Cell Biol. 114:1275–1283.

    Article  PubMed  CAS  Google Scholar 

  • Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P. R., Bellantuono, I., and Fisk, N. M. (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402.

    Article  PubMed  CAS  Google Scholar 

  • Caplan, A. I. (1991) Mesenchymal stem cells. J. Orthop. Res. 9:641–650.

    Article  PubMed  CAS  Google Scholar 

  • Charbord, P. (2001) Mediators involved in the control of hmatopoiesis by the microenvironment. In: Hematopoiesis. A developmental approach. Zon, L., ed., Oxford University Press, New York, pp. 702–717.

    Google Scholar 

  • Charbord, P., Tamayo, E., Saeland, S., Duvert, V., Poulet, J., Gown, A. M., and Hervé, P. (1991) Granulocyte-macrophage colony-stimulating factor (GM-CSF) in human long-term bone marrow cultures: endogeneous production in the adherent layer and effect of exogeneous GM-CSF on granulomonopoiesis. Blood 78:1230–1236.

    PubMed  CAS  Google Scholar 

  • Charbord, P., Tavian, M., Humeau, L., and Péault, B. (1996) Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87:4109–4119.

    PubMed  CAS  Google Scholar 

  • Chiu, C. P., Moulds, C., Coffman, R. L., Rennick, D., and Lee, F. (1988) Multiple biological activities are expressed by a mouse interleukin 6 cDNA clone isolated from bone marrow stromal cells. Proc. Natl. Acad. Sci. USA 85:7099–7103.

    Article  PubMed  CAS  Google Scholar 

  • Cortès, F., Deschaseaux, F., Uchida, N., et al. (1999) HCA, an immunoglobulin-like adhesion molecule present on the earliest human hematopoietic precursor cells, is also expressed by stromal cells in blood-forming tissues. Blood 93:1–14.

    Google Scholar 

  • Delikat, S., Harris, R. J., and Galvani, D. W. (1993) IL-1 alpha inhibits adipocyte formation in human long-term bone marrow culture. Exp. Hematol. 21:31–37.

    PubMed  CAS  Google Scholar 

  • Denizot, Y., Trimoreau, F., and Praloran, V. (1998) Effects of lipid mediators on the synthesis of leukemia inhibitory factor and interleukin 6 by human bone marrow stromal cells. Cytokine 10:781–785.

    Article  PubMed  CAS  Google Scholar 

  • Denizot, Y., Godard, A., Raher, S., Trimoreau, F., and Praloran, V. (1999) Lipid mediators modulate the synthesis of interleukin 8 by human bone marrow stromal cells. Cytokine 11:606–610.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, J. E. and Charbord, P. (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, J. E., Carbillet, J. P., Caplan, A., and Charbord, P. (2002) The STRO-1+ marrow cell population is multopotential. Cell. Tiss. Org. 170:73–82.

    Article  Google Scholar 

  • Deschaseaux, F. and Charbord, P. (2000) Human marrow stromal cell precursors are alpha 1 integrin subunit-positive. J. Cell. Physiol. 184: 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Desmoulière, A. and Gabbiani, G. (1995) Smooth muscle cell and fibroblast biological and functional features : similarities and differences. In: The Vascular Smooth Muscle Cell. Schwartz, S. M. and Mecham, R. P., eds., Academic Pres, San Diego, CA, pp. 329–359.

    Chapter  Google Scholar 

  • Dexter, T. M. and Moore, M. A. S. (1977) In vitro duplication and “cure” of haemopoietic defects in genetically anaemic mice. Nature 269:412–414.

    Article  PubMed  CAS  Google Scholar 

  • Dexter, T. M., Allen, T. D., and Lajtha, L. G. (1976) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol. 91:335–344.

    Article  Google Scholar 

  • Dobson, K., Reading, L., and Scutt, A. (1999) A cost-effective method for the automatic quantitative analysis of fibroblastic colony-forming units. Calcif. Tissue Int. 65:166–172.

    Article  PubMed  CAS  Google Scholar 

  • Drzeniek, Z., Siebertz, B., Stocker, G., et al. (1997) Proteoglycan synthesis in haematopoietic cells: isolation and characterization of heparan sulphate proteoglycans expressed by the bone-marrow stromal cell line MS-5. Biochem. J. 327:473–480.

    PubMed  CAS  Google Scholar 

  • Filshie, R. J. A., Zannettino, A. C. W., Makrynikola, V., et al. (1998) MUC18, a member of the immunoglobulin superfamily, is expressed on bone marrow fibroblasts and a subset of hematological malignancies. Leukemia 12:414–421.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, C. C., Szilvassy, S. J., Eaves, C. J., and Humphries, R. K. (1992) Proliferation of totipotent hematopoietic stem cells in vitro with retention of long-term competitive in vivo reconstituting ability. Proc. Natl. Acad. Sci. USA 89:1968–1972.

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein, A. J. (1980) Stromal mechanisms of bone marrow cloning in vitro and retransplantation in vivo. In: Immunology of Bone Marrow Transplantation. Thienfelder, S., ed., Springer Verlag, Berlin, pp. 19–28.

    Chapter  Google Scholar 

  • Friedenstein, A. J., Chailakhjan, R. K., Latsinik, N. V., Panasyuk, A. F., and Keiliss-Borok, V. (1974) Stromal cells responsible fro transferring the microenvironment of the hemopoietic tissues. Transplantation 17:331–340.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, C., Zausch, E., Sugrue, S. P., and Gutierrez-Ramos, J. C. (1996) Hematopoietic supportive functions of mouse bone marrow and fetal liver microenvironment: dissection of granulocyte, B-lymphocyte, and hematopoietic progenitor support at the stroma cell clone level. Blood 87:4596–4606.

    PubMed  CAS  Google Scholar 

  • Funk, P. E. and Witte, P. L. (1992) Enrichment of primary lymphocytesupporting stromal cells and characterization of associated B lymphocyte progenitors. Eur. J. Immunol. 22:1305–1313.

    Article  PubMed  CAS  Google Scholar 

  • Galmiche, M. C., Koteliansky, V. E., Hervé, P., and Charbord, P. (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82:66–76.

    PubMed  CAS  Google Scholar 

  • Gartner, S. and Kaplan, H. S. (1980) Long-term culture of human bone marrow cells. Proc. Natl. Acad. Sci. USA 77:4756–4759.

    Article  PubMed  CAS  Google Scholar 

  • Gautam, S. C., Noth, C. J., Janakiraman, N., Pindolia, K. R., and Chapman, R. A. (1995) Induction of chemokine mRNA in bone marrow stromal cells: modulation by TFG-beta-1 and IL-4. Exp. Hematol. 23:482–491.

    PubMed  CAS  Google Scholar 

  • Gentili, C., Bianco, P., Neri, M., et al. (1993) Cell proliferation, extracellular matrix mineralization, and ovotransferrin transient expression during in vitro differentiation of chick hypertrophic chondrocytes into osteoblast-like cells. J. Cell Biol. 122:703–712.

    Article  PubMed  CAS  Google Scholar 

  • Grellier, P., Yee, D., Gonzalez, M., and Abboud, S. L. (1995) Characterization of insulin-like growth factor binding proteins (IGFBP) and regulation of IGFBP-4 in bone marrow stromal cells. Br. J. Haematol. 90:249–257.

    Article  PubMed  CAS  Google Scholar 

  • Gronthos, S. and Simmons, P. J. (1995) The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood 85:929–940.

    PubMed  CAS  Google Scholar 

  • Gu, Y., Sorokin, L., Durbeej, M., Hjalt, T., Jonsson, J. I., and Ekblom, M. (1999) Characterization of bone marrow laminins and identification of alpha-5-containing laminins as adhesive proteins for multipotent hematopoietic FDCP-Mix cells. Blood 93:2533–2542.

    PubMed  CAS  Google Scholar 

  • Gu, Y. C., Nilsson, K., Eng, H., and Ekblom, M. (2000) Association of extracellular matrix proteins fibulin-1 and fibulin-2 with fibronectin in bone marrow stroma. Br. J. Haematol. 109:305–313.

    Article  PubMed  CAS  Google Scholar 

  • Guerriero, A., Worford, L., Holland, H. K., Guo, G. R., Sheehan, K., and Waller, E. K. (1997) Thrombopoietin is synthesized by bone marrow stromal cells. Blood 90:3444–3455.

    PubMed  CAS  Google Scholar 

  • Gupta, P., McCarthy, J. B., and Verfaillie, C. M. (1996) Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo maintenance of human long-term culture-initiating cells. Blood 87: 3229–3236.

    PubMed  CAS  Google Scholar 

  • Gupta, P., Oemega, T. R., Brazil, J. J., Dudek, A. Z., Slungaard, A., and Verfaillie, C. M. (1998) Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. Blood 92:4641–4651.

    PubMed  CAS  Google Scholar 

  • Hackney, J. A., Charbord, P., Brunk, B. P., Stoeckert, C. J., Lemischka, I. R., and Moore, K. A. (2002) A molecular profile of a hematopoietic stem cell niche. Proc. Natl. Acad. Sci. USA 99:13,061–13,066.

    Article  CAS  Google Scholar 

  • Hannocks, M. J., Oliver, L., Gabrilove, J. L., and Wilson, E. L. (1992) Regulation of proteolytic activity in human bone marrow stromal cells by basic fibroblast growth factor, interleukin-1, and transforming growth factor beta. Blood 79:1178–1184.

    PubMed  CAS  Google Scholar 

  • Harrison, D. E., Lerner, C. P., and Spooncer, E. (1987) Erythropoietic repopulating ability of stem cells from long-term marrow culture. Blood 69:1021–1025.

    PubMed  CAS  Google Scholar 

  • Hauser, S. P., Kajkenova, O., and Lipschitz, D. A. (1997) The pivotal role of interleukin 6 in formation and function of hematopoietically active murine long-term bone marrow cultures. Stem Cells 15:125–132.

    Article  PubMed  CAS  Google Scholar 

  • Haynesworth, S. E., Baber, M. A., and Caplan, A. I. (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1-alpha. J. Cell. Physiol. 166:585–592.

    Article  PubMed  CAS  Google Scholar 

  • Healy, L., May, G., Gale, K., Grosveld, F., Greaves, M., and Enver, T. (1995) The stem cell antigen CD34 functions as a regulator of hemopoietic cell adhesion. Proc. Natl. Acad. Sci. USA 92:12240–12244.

    Article  PubMed  CAS  Google Scholar 

  • Hogge, D. E., Cashman, J. D., Humphries, R. K., and Eaves, C. J. (1991) Differential and synergistic effects of human granulocyte-macrophage colony-stimulating factor and human granulocyte colony-stimulating factor on hematopoiesis in human long-term marrow cultures. Blood 77:493–499.

    PubMed  CAS  Google Scholar 

  • Huang, S. and Terstappen, L. X. (1994) Correction to Huang and Terstappen (1992). Nature 368:664.

    PubMed  CAS  Google Scholar 

  • Huang, S. and Terstappen, L. X. (1992) Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature 360:745–749.

    Article  PubMed  CAS  Google Scholar 

  • Hurley, R. W., McCarthy, J. B., and Verfaillie, C. M. (1995) Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation. J. Clin. Invest. 96:511–519.

    Article  PubMed  CAS  Google Scholar 

  • Huss, R., Hong, D. S., McSweeney, P. A., Hoy, C. A., and Deeg, H. J. (1995) Differentiation of canine bone marrow cells with hemopoietic characteristics from an adherent stromal cell precursor. Proc. Natl. Acad. Sci. USA 92:748–752.

    Article  PubMed  CAS  Google Scholar 

  • Huss, R., Lange, C., Weissinger, E. M., Kolb, H. J., and Thalmeier, K. (2000) Evidence of peripheral blood-derived, plastic-adherent CD34(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells 18:252–260.

    Article  PubMed  CAS  Google Scholar 

  • Issaad, C., Croisille, L., Katz, A., Vainchenker, W., and Coulombel, L. (1993) A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38- progenitor cells in long-term cultures and semi-solid assays. Blood 81:2916–2924.

    PubMed  CAS  Google Scholar 

  • Jacobsen, K., Kravitz, J., Kincade, P. W., and Osmond, D. G. (1996) Adhesion receptors on bone marrow stromal cells : in vitro expression of vascular cell adhesion molecule-1 by reticular cells and sinusoidal endothelium in normal and gamma-irradiated mice. Blood 87: 73–82.

    PubMed  CAS  Google Scholar 

  • Jia, D. and Heersche, J. N. (2000) Insulin-like growth factor-1 and -2 stimulate osteoprogenitor proliferation and differentiation and adipocyte formation in cell populations derived from adult rat bone. Bone 27:785–794.

    Article  PubMed  CAS  Google Scholar 

  • Kiassov, A. P., Van Eyken, P., van Pelt, J. F., et al. (1995) Desmin expressing nonhematopoietic liver cells during rat liver development: an immunohistochemical and morphometric study. Differentiation 59:253–258.

    Article  PubMed  CAS  Google Scholar 

  • Klein, G., Conzelmann, S., Beck, S., Timpl, R., and Muller, C. A. (1994) Perlecan in human bone marrow : a growth-factor-presenting, but anti-adhesive, extracellular matrix component for hematopoietic cells; Matrix Biol. 14:457–465.

    Article  Google Scholar 

  • Klein, G., Muller, C. A., Tillet, E., Chu, M., and Timpl, R. (1995) Collagen type VI in the human bone marrow microenvironment : a strong cytoadhesive component. Blood 86:1740–1748.

    PubMed  CAS  Google Scholar 

  • Klein, G., Kibler, C., Schermutzki, F., Brown, J., Muller, C. A., and Timpl, R. (1998) Cell binding properties of collagen type XIV for human hematopoietic cells. Matrix Biol. 16:307–317.

    Article  PubMed  CAS  Google Scholar 

  • Kodama, H., Nose, M., Yamaguchi, Y., et al. (1992) In vitro proliferation of primitive hemopoietic stem cells supported by stromal cells: evidence for the presence of a mechanism(s) other than that involving c-kit receptor and its ligands. J. Exp. Med. 176:351–361.

    Article  PubMed  CAS  Google Scholar 

  • Koenigsmann, M., Griffin, J. D., DiCarlo, J., and Cannistra, S. A. (1992) Myeloid and erythroid progenitor cells from normal bone marrow adhere to collagen type I. Blood 79:657–665.

    PubMed  CAS  Google Scholar 

  • Kuznetsov, S., Friedenstein, A. J., and Robey, P. G. (1997) Factors required for bone marrow stromal fibroblast colony formation in vitro. Brit. J. Haematol. 97:561–570.

    Article  CAS  Google Scholar 

  • Landreth, K. S., Narayanan, R., and Dorshkind, K. (1992) Insulin-like growth factor-I regulates pro-B cell differentiation. Blood 80: 1207–1212

    PubMed  CAS  Google Scholar 

  • Lemieux, M. E., Rebel, V. I., Lansdorp, P. M., and Eaves, C. J. (1995) Characterization and purification of a primitive hematopoietic cell type in adult mouse marrow capable of lymphomyeloid differentiation in long-term marrow “switch” cultures. Blood 86:1339–1347.

    PubMed  CAS  Google Scholar 

  • Lemischka, I. L. (2001). Regulation of hematopoietic stem cells : some conceptual and practical considerations. In: Hematopoiesis: A Developmental Approach. Zon, L., ed., Oxford University Press, New York, pp. 48–60.

    Google Scholar 

  • Lerat, L., Lissitzky, J. C., Singer, J. W., Keating, A., Hervé, P., and Charbord, P. (1993) The role of stromal cells and macrophages in fibronectin biosynthesis and matrix assembly in human long-term marrow cultures. Blood 82:1480–1492.

    PubMed  CAS  Google Scholar 

  • Li, J., Sensebé, L., Hervé, P., and Charbord, P. (1995) Non-transformed colony-derived stromal cell lines from normal human marrows. II. Phenotypic characterization and differentiation pathway. Exp. Hematol. 23:133–141.

    PubMed  CAS  Google Scholar 

  • Lichtman, M. A. (1981) The ultrastructure of the hemopoietic environment of the marrow : a review. Exp. Hematol. 9:391–410.

    PubMed  CAS  Google Scholar 

  • Lisovsky, M., Braun, S. E., Ge, Y., et al. (1996) F1t3-ligand production by human bone marrow stromal cells. Leukemia 10:1012–1018.

    PubMed  CAS  Google Scholar 

  • Lorenz, E., Uphoff, D., Reid, T. R., and Shelton, E. (1951) Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J. Natl. Cancer Inst. 12:197–201.

    PubMed  CAS  Google Scholar 

  • Lorenz, M., Slaughter, H. S., Wescott, D. M., et al. (1999) Cyclooxygenase-2 is essential for normal recovery from 5-fluorouracil-induced myelotoxicity in mice. Exp. Hematol. 27:1494–1502.

    Article  PubMed  CAS  Google Scholar 

  • Majumdar, M. K., Banks, V., Peluso, D. P., and Morris, E. A. (2000) Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J. Cell. Physiol. 185:98–106.

    Article  PubMed  CAS  Google Scholar 

  • Mauch, P., Greenberger, J. S., Botnick, L., Hannon, E., and Hellman, S. (1980) Evidence for structured variation in self-renewal capacity within long-term bone marrow cultures. Proc. Natl. Acad. Sci. USA 77:2927–2930.

    Article  PubMed  CAS  Google Scholar 

  • Maximow, A. A. (1924) Relation of blood cells to connective tissues and endothelium. Physiol. Rev. 4:533–563.

    Google Scholar 

  • Moore, K. A., Erna, H., and Lemischka, I. R. (1997) In vitro maintenance of highly purified, transplantable hematopoietic stern cells. Blood 89:4337–4347.

    PubMed  CAS  Google Scholar 

  • Nagasawa, T., Kikutani, H., and Kishimoto, T. (1994) Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl. Acad. Sci. USA 91:2305–2309.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, T., Kodama, H., and Honjo, T. (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265:1098–1101.

    Article  PubMed  CAS  Google Scholar 

  • Nemunaitis, J., Tompkins, C., Andrews, F., Rullian, M., and Singer, J. (1989) Marrow stromal cells: hematopoietic growth factors and extracellular matrix proteins. In: Experimental Hematology Today, Springer-Verlag, New York, pp. 53–57.

    Google Scholar 

  • Oh, S. H., Miyazaki, M., Kouchi, H., et al. (2000) Hepatocyte growth factor induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro. Biochem. Biophys. Res. Commun. 279: 500–504

    Article  PubMed  CAS  Google Scholar 

  • Ohneda, O., Ohneda, K., Arai, F., et al. (2001) ALCAM (CD166): its role in hematopoietic and endothelial development. Blood 98:2134–2142.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, M., Sakai, T., Saga, Y., Aizawa, S. I., and Saito, M. (1998) Suppression of hematopoietic activity in tenascin-C-deficient-mice. Blood 91:4074–4083.

    PubMed  CAS  Google Scholar 

  • Oostendorp, R. A. J., Spitzer, E., Reisbach, G., and Dormer, P. (1997) Antibodies to the beta- 1 -integrin chain, CD44, or ICAM-3 stimulate adhesion of blast colony-forming cells and may inhibit their growth. Exp. Hematol. 25:345–349.

    PubMed  CAS  Google Scholar 

  • O’Prey, J., Leslie, N., Itoh, K., Ostertag, W., Bartholomew, C., and Harrison, P. R. (1998) Both stroma and stem cell factor maintain longterm growth of ELM erythroleukemia cells, but only stroma prevents erythroid differentiation in response to erythropoietin and interleukin3. Blood 91:1548–1555.

    PubMed  Google Scholar 

  • Oritani, K. and Kincade, P. W. (1996) Identification of stromal cell products that interact with pre-B cells. J. Cell Biol. 134:771–782.

    Article  PubMed  CAS  Google Scholar 

  • Oritani, K., Wu, X., Medina, K., et al. (1996) Antibody ligation of CD9 modifies production of myeloid cells in long-term cultures. Blood 87:2252–2261.

    PubMed  CAS  Google Scholar 

  • Owen, M. (1988) Marrow stromal stem cells. J. Cell Sci. (Suppl. 10): 63–76.

    Google Scholar 

  • Paul, S. R., Bennett, F., Calvetti, J. A., et al. (1990) Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc. Natl. Acad. Sci. USA 87:7512–7516.

    Article  PubMed  CAS  Google Scholar 

  • Penn, P. E., Jiang, D. Z., Fei, R. G., Sitnicka, E., and Wolf, N. S. (1993) Dissecting the hematopoietic microenvironment. IX. Further characterization of murine bone marrow stromal cells. Blood 81:1205–1213.

    PubMed  CAS  Google Scholar 

  • Pereira, R. F., Halford, K. W., O’Hara, M. D., et al. (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA 92:4857–4861.

    Article  PubMed  CAS  Google Scholar 

  • Ploemacher, R. E., Van der Sluijs, J. P., Van Beurden, C. A. J., Baert, M. R. M., and Chan, P. L. (1991) Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 78:2527–2533.

    PubMed  CAS  Google Scholar 

  • Prockop, D. J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74.

    Article  PubMed  CAS  Google Scholar 

  • Rémy-Martin, J. P., Marandin, A., Challier, B., et al. (1999) The vascular smooth muscle differentiation of murine stroma. A sequential model. Exp. Hematol. 27:1782–1795.

    Article  PubMed  Google Scholar 

  • Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., and Verfaillie, C. M. (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625.

    Article  PubMed  CAS  Google Scholar 

  • Ross, S. E., Hemati, N., Longo, K. A., et al. (2000) Inhibition of adipogenesis by Wnt signaling. Science 289:950–953.

    Article  PubMed  CAS  Google Scholar 

  • Satomura, K., Derubeis, A. R., Fedarko, N. S., et al. (1998) Receptor tyrosine kinase expression in human bone marrow stromal cells. J. Cell. Physiol. 177:426–438.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, K. P., Humphries, M. J., de Wynter, E., Testa, N., and Gallagher, J. T. (1998) The effect of alpha-4 beta- 1 -integrin binding sequences of fibronectin on growth of cells from human hematopoietic progenitors. Blood 91:3230–3238.

    PubMed  CAS  Google Scholar 

  • Schofield, K. P., Gallagher, J. T., and David, G. (1999) Expression of proteoglycan core proteins in human bone marrow stroma. Biochem. J. 343:663–668.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, R. (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. A hypothesis. Blood Cells 4:7–25.

    PubMed  CAS  Google Scholar 

  • Sensebé, L., Li, J., Lilly, M., et al. (1995). Non-transformed colonyderived stromal cell lines from normal human marrows. I. Growth requirement and myelopoiesis supportive ability. Exp. Hematol. 23:507–513.

    PubMed  Google Scholar 

  • Shalaby, F., Ho, J., Stanford, W. L., et al. (1997) A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 89: 981–990.

    Article  PubMed  CAS  Google Scholar 

  • Siebertz, B., Stocker, G., Drzeniek, Z., Handt, S., Just, U., and Haubeck, H.-D. (1999) Expression of glypican-4 in haemopoietic-progenitor and bone-marrow-stromal cells. Biochem. J. 344:937–943.

    Article  PubMed  CAS  Google Scholar 

  • Siler, U., Seiffert, M., Puch, S., et al. (2000) Characterization and functional analysis of laminin isoforms in human bone marrow. Blood 96: 4194–4203.

    PubMed  CAS  Google Scholar 

  • Simmons, P. J. and Torok-Storb, B. (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, Stro-1. Blood 78:55–62.

    PubMed  CAS  Google Scholar 

  • Simmons, P. J., Gronthos, S., and Zannettino, A. C. W. (2001) The development of stromal cells. In: Hematopoiesis. A Developmental Approach. Zon, L., ed., Oxford University Press, New York, pp. 718–726.

    Google Scholar 

  • Singer, J. W., Keating, A., Cuttner, J., et al. (1984) Evidence for a stem cell common to hematopoiesis and its in vitro microenvironment : studies of patients with clonal hematopoietic neoplasia. Leuk. Res. 8: 535–545.

    Article  PubMed  CAS  Google Scholar 

  • Singer, J. W., Charbord, P., Keating, A., et al. (1987) Simian virus 40transformed adherent cells from human long-term marrow cultures: cloned cell lines produce cells with stromal and hematopoietic characteristics. Blood 70:464–474.

    PubMed  CAS  Google Scholar 

  • Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001) Stem cells find their niche. Nature 414:98–104.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, R. P., Reilly, C. R., and Witte, P. L. (1998) Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood 91:75–88.

    PubMed  CAS  Google Scholar 

  • Strobel, E. S., Moebest, D., von Kleist, S., et al. (1997) Adhesion and migration are differentially regulated in hematopoietic progenitor cells by cytokines and extracellular matrix. Blood 90:3524–3532.

    PubMed  CAS  Google Scholar 

  • Sugahara, H., Kanakura, Y., Furitsu, T., et al. (1994) Induction of programmed cell death in human hematopoietic cell lines by fibronectin via its interaction with very late antigen 5. J. Exp. Med. 179:1757–66.

    Article  PubMed  CAS  Google Scholar 

  • Sungaran, R., Markovic, B., and Chong, B. H. (1997) Localization and regulation of thrombopoietin mRNA expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood 89: 101–107.

    PubMed  CAS  Google Scholar 

  • Sutherland, H. J., Eaves, C. J., Eaves, A. C., Dragowska, W., and Lansdorp, P. M. (1989) Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74:1563–1570.

    PubMed  CAS  Google Scholar 

  • Sutherland, H. J., Eaves, C. J., Lansdorp, P. M., Thacker, J. D., and Hogge, D. E. (1991) Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood 78:666–672.

    PubMed  CAS  Google Scholar 

  • Sutherland, H. J., Hogge, D. E., Cook, D., and Eaves, C. J. (1993) Alternative mechanisms with and without Steel factor support primitive human hematopoiesis. Blood 81:1465–1470.

    PubMed  CAS  Google Scholar 

  • Szilvassy, S. J., Weller, K. P., Lin, W., et al. (1996) Leukemia inhibitory factor upregulates cytokines expression by a murine stromal cell line enabling the mainteance of highly enriched competitive repopulating stem cells. Blood 87:4618–4628.

    PubMed  CAS  Google Scholar 

  • Taipale, J. and Keski-Oja, J. (1997) Growth factors in the extracellular matrix. FASEB J. 11:51–59.

    PubMed  CAS  Google Scholar 

  • Takai, K., Hara, J., Matsumoto, K., et al. (1997) Hepatocyte growth factor is constitutively produced by human bone marrow stromal cells and indirectly promotes hematopoiesis. Blood 89:1560–1565.

    PubMed  CAS  Google Scholar 

  • Tanaka-Douzono, M., Suzu, S., Yamada, M., et al. (2001) Detection of murine adult bone marrow stroma-initiating cells in Lin(-)c-fms(+)ckit(low)VCAM-1(+) cells. J. Cell. Physiol. 189:45–53.

    Article  PubMed  CAS  Google Scholar 

  • Tang, J., Nuccie, B. I., Ritterman, I., Liesveld, J. L., Abboud, C. N., and Ryan, D. H. (1997) TGF-beta down-regulates stromal IL-7 secretion and inhibits proliferation of human B cell precursors. J. Immunol. 157: 117–125.

    Google Scholar 

  • Tavian, M., Hallais, M. F., and Péault, B. (1999) Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 126:793–803.

    PubMed  CAS  Google Scholar 

  • Thomas, T., Gori, F., Spelsberg, T. C., Khosla, S., Riggs, B. L., and Conover, C. A. (1999) Response of bipotential human marrow stromal cells to insulin-like growth factors: effect on binding protein production, proliferation, and commitment to osteoblasts and adipocytes. Endocrinol. 140:5036–5044.

    Article  CAS  Google Scholar 

  • Till, J. E. and McCulloch, E. A. (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Rad. Res., 14:213–222.

    Article  CAS  Google Scholar 

  • Till, J. E., McCulloch, E. A., and Siminovitch, L. (1963) A stochastic model of stem cell proliferation, based on the growth of spleen colonyforming cells. Proc. Natl. Acad. Sci. USA 51:29–36.

    Article  Google Scholar 

  • Toccanier-Pelte, M. F., Skalli, O., Kapanci, Y., and Gabbiani, G. (1987) Characterization of stromal cells with myoid features in lymph nodes and spleen in normal and pathologic conditions. Am. J. Pathol. 129:109–118.

    PubMed  CAS  Google Scholar 

  • Trentin, J. J. (1989) Hemopoietic microenvironments. Historical perspectives, status and projections. In: Handbook of the Hemopoietic Microenvironment. Tavassoli, M., ed., Humana Press, Totowa, NJ, 1–87.

    Chapter  Google Scholar 

  • van der Velde-Zimmermann, D., Verdaasdonk, M. A. M., Rademakers, L. H. P. M., De Weger, R. A., Van den Tweel, J. G., and Joling, P. (1997) Fibronectin distribution in human bone marrow stroma : matrix assembly and tumor cell adhesion via alpha-5-beta-1 integrin. Exp. Cell. Res. 230:111–120.

    Article  PubMed  Google Scholar 

  • van Vlasselaer, P., Falla, N., Snoeck, H., and Mathieu, E. (1994) Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin. Blood 84:753–763.

    PubMed  Google Scholar 

  • Waller, E. K., Olweus, J., Lund-Johansen, F., et al. (1995) The “common stem cell” hypothesis reevaluated : human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors. Blood 85:2422–2435.

    PubMed  CAS  Google Scholar 

  • Weimar, I. S., Miranda, N., Muller, E. J., et al. (1998) Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp. Hematol. 26: 885–894.

    PubMed  CAS  Google Scholar 

  • Weiss, L. and Geduldig, U. (1991) Barrier cells : stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow. Blood 78:975–990.

    PubMed  CAS  Google Scholar 

  • Weissman, I. L. (1994) Developmental switches in the immune system. Cell 76:207–218.

    Article  PubMed  CAS  Google Scholar 

  • Weissman, I. L. (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168.

    Article  PubMed  CAS  Google Scholar 

  • Whitlock, C. A., Robertson, D., and Witte, O. N. (1984) Murine B cell lymphopoiesis in long term culture. J. Immunol. Methods. 67: 353–369.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D. E., Eisenman, J., Baird, A., et al. (1990) Identification of a ligand for the c-kit proto-oncogene. Cell 63:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Wineman, J., Moore, K., Lemischka, I., and Muller-Sieburg, C. (1996) Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 87:4082–4090.

    PubMed  CAS  Google Scholar 

  • Wineman, J. P., Nishikawa, S. I., and Muller-Sieburg, C. E. (1993) Maintenance of high levels of pluripotent hematopoietic stem cells in vitro : effect of stromal cells and c-kit. Blood 81:365–372.

    PubMed  CAS  Google Scholar 

  • Wolf, N. S. and Trentin, J. J. (1968) Hemopoietic colony studies. V. Effect of hemopoietic organ stroma on differentiation of pluripotent stem cells. J. Exp. Med. 127:205–214.

    Article  PubMed  CAS  Google Scholar 

  • Yamane, T., Kunisada, T., Tsukamoto, H., et al. (2001) Wnt signaling regulates hemopoiesis through stromal cells. J. Immunol. 167:765–772.

    PubMed  CAS  Google Scholar 

  • Yan, Z. J., Wang, Q. R., McNiece, I. K., and Wolf, N. S. (1990) Dissecting the hematopoietic microenvironment. VII. The production of an autostimulatory factor as well as a CSF by unstimulated murine marrow fibroblasts. Exp. Hematol. 18:348–354.

    PubMed  CAS  Google Scholar 

  • Yanai, N., Matsuya, Y., and Obinata, M. (1989) Spleen stromal cell lines selectively support erythroid colony formation. Blood 74:2391–2397.

    PubMed  CAS  Google Scholar 

  • Yanai, N., Matsui, N., Funisawa, T., Okubo, T., and Obinata, M. (2000) Sphingosine- 1 -phosphate and lysophosphatidic acid trigger invasion of primitive hematopoietic cells into stromal cell layers. Blood 96: 139–144.

    PubMed  CAS  Google Scholar 

  • Yoder, M. C., Papaioannou, V. E., Breitfeld, P. P., and Williams, D. A. (1994) Murine yolk sac endoderm- and mesoderm-derived cell lines support in vitro growth and differentiation of hematopoietic cells. Blood 83:2436–2443.

    PubMed  CAS  Google Scholar 

  • Zannettino, A. C., Buhring, H. J., Niutta, S., Watt, S. M., Benton, M. A., and Simmons, P. J. (1998) The sialomucin CD164 (MGC-24v) is an adhesive glycoprotein expressed by human hematopoietic progenitors and bone marrow stromal cells that serves as a potent negative regulator of hematopoiesis. Blood 92:2613–2628.

    PubMed  CAS  Google Scholar 

  • Zuckerman, K. S., Rhodes, R. K., Goodrum, D. D., et al. (1985) Inhibition of collagen deposition in the extracellular matrix prevents the establishment of a stroma supportive of hematopoiesis in long-term murine bone marrow cultures. J. Clin. Invest. 75:970–975.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Charbord, P. (2004). Stromal Support of Hematopoiesis. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics